archive header ht - TestConX

41
ARCHIVE 2006 ARCHIVE 2006 Hot Topics Session A Trio Of Trends And Challenges COPYRIGHT NOTICE COPYRIGHT NOTICE The papers in this publication comprise the proceedings of the 2006 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors. • There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies. • The BiTS logo and ‘Burn-in & Test Socket Workshop’ are trademarks of BiTS Workshop LLC. “Test Handling Challenges Associated With Socket Designs” John Pollock — Aetrium Incorporated “Optimization Of Interconnects” Ho Peng Ching — Micron Semiconductor Asia “Thermal Considerations In Testing Very High Performance Devices” Thomas Di Stefano — Centipede Systems

Transcript of archive header ht - TestConX

Page 1: archive header ht - TestConX

A R C H I V E 2 0 0 6A R C H I V E 2 0 0 6Hot Topics Session

A Trio Of Trends And Challenges

COPYRIGHT NOTICECOPYRIGHT NOTICE• The papers in this publication comprise the proceedings of the 2006 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.• There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.• The BiTS logo and ‘Burn-in & Test Socket Workshop’ are trademarks of BiTS Workshop LLC.

“Test Handling Challenges Associated With Socket Designs”John Pollock — Aetrium Incorporated

“Optimization Of Interconnects”Ho Peng Ching — Micron Semiconductor Asia

“Thermal Considerations In Testing Very High Performance Devices”Thomas Di Stefano — Centipede Systems

Page 2: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

1

A Trio Of Trends And Challenges

Test Handling Challenges Associated with Socket Designs

2006 Burn-in and Test Socket WorkshopMarch 12 - 15, 2006

John PollockVice President & General Manager

March 2006 Test Handling Challenges 2

Handler Purchase Criteria

End User Wants:• Lowest Cost of Test

– Dedicated High Volume– Flexible Small Lots– Quick Change Over– Tri-temperature

18%

24%

29%

38%

53%

71%

Temperature

Changeover

Customization

Price

Jam Rate

Throughput

Source: Booz Allen & Hamilton

Page 3: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

2

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 3

Complete Solution

ITCBITS

Semicon

March 2006 Test Handling Challenges 4

What’s Driving the Socket Designs

• Increasing Device Performance• Increasing Device Power (Thermal)• Increasing Package Proliferation• Increasing Package Assembly Methods• Decreasing Geometries

Page 4: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

3

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 5

Device Performance Challenges

• Analog Accuracy of Measurements• Logic Signal Speed & Thermal• Mixed Signal Speed & Accuracy• Memory Massively Parallel Contacts

March 2006 Test Handling Challenges 6

Handler Evolution• Gravity

– DIP, SOIC & QFN• Pick & Place

– QFP, PGA & BGA• Turret

– SOT• Strip

– SOIC & QFN• Wafer

– KGD

Page 5: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

4

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 7

Package Evolution

• Analog Devices– DIP, SOIC & QFN

• Logic, Memory & Mixed Signal– QFP, PGA & BGA

• Discrete– SOT

March 2006 Test Handling Challenges 8

Package Proliferation Challenges

• Leaded• Pads (Leadless)• BGA• Array• Pitch • Dimensional

Tolerances

Page 6: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

5

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 9

QFN Dimensional Tolerences

• Rough edges – Punch – Sawn

• Thickness

Punch Sawn

Rough edge

0.55, 0.75, 0.90 mm

March 2006 Test Handling Challenges 10

Load Board Challenges

• Contactor Mounting • Handler Alignment• Multi Site• Signal Conditioning

Page 7: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

6

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 11

Docking Challenges

• Direct Docking • Cable Up Docking • Dimensional Stack Ups

– Socket– Load Board– Support Rings– Test Head Manipulators

March 2006 Test Handling Challenges 12

Tolerance Stack Ups

• X Direction• Y Direction• Z Direction

– example

Tolerance Analysis - 5x5 MLF/QFN

COMPONENTS Tolerance Nominal Feature

Plate: 0.0015 0.1975

Leadbacker: 0.001 0.198

Device: 0.0005 0.0341 Actual0.003 0.0354 Print

Socket 0.0008 0.039 Surface 10.0008 0.031 Groove 10.0002 0.027 Elastomer0.0005 0.017 Contact

dimensions in inches

Nominal Tolerance: Nominal Compression: 0.0086

Maximum Tolerance Minimum Compression: 0.0033

Minimum Tolerance:Maximum Compression: 0.0139

Page 8: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

7

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 13

Contacting Measurement Challenges

• Performance• Lead Length• Signal Conditioning • Non Kelvin• Kelvin

March 2006 Test Handling Challenges 14

Kelvin Contacting Challenges

• Pogo Pins – Cleaning Issues– Shorter Life

• Wires (fingers) – Scrub

• Elastomers– Capacitance and Inductance

Page 9: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

8

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 15

Kelvin Pogo Pin Contacting

March 2006 Test Handling Challenges 16

Kelvin Wire Finger Contacting

Page 10: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

9

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 17

Thermal Challenges• Temperature Range

– +155°C to -55°C

• Convection vs Conduction• Test Site Accuracy

– ± 1°C or less

• Environmental Sealing– Frosting

March 2006 Test Handling Challenges 18

Going Forward

Can not lose sight of continuing to provide the most simple and cost effective total solution

Requires a joint effort

Page 11: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #1

10

A Trio Of Trends And Challenges

March 2006 Test Handling Challenges 19

Steps For Going Forward

• Propose Test Socket Committee– Define Best Practices– Members From

• IDM• Handlers Manufacturers• Socket Manufacturers• Load Board Manufacturers• Tester Manufacturers

Thank You

Questions?

Page 12: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

1

A Trio Of Trends And Challenges

Optimization of

Interconnects

2006 Burn-in and Test Socket WorkshopMarch 12–15, 2006

Ho Peng ChingMicron Semiconductor Asia

3/2006 2

Agenda

• Background• Design Review

– Board-to-Board Interposer Design– Signal-Gnd Via Structure

• System-Level Performance • Conclusions• References• Acknowledgments

Page 13: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

2

A Trio Of Trends And Challenges

3/2006 3

Background• Recap of the Flexi-Interface Test Interface

Fixture [1]

Universal Base Assembly

Changeover kits (Device Specific)

Socket Board

InterconnectAdaptor BoardSocket

3/2006 4

Background• Extracts from their conclusion

– The concept was proven to be viable for device testing (for SDRAM). There is, however, still room for improvement on the interface between board-to-board.

– The next challenge would be to prove the Flexi-interface concept for higher speed device testing (DDR2 and beyond).

Page 14: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

3

A Trio Of Trends And Challenges

3/2006 5

Interconnect

Background

What’s next?Extending the speed envelope of the current design by focusing on improving the electrical performance of the board-to-board interconnect.

Socket Board

Adaptor BoardSocket

3/2006 6

How ?

Page 15: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

4

A Trio Of Trends And Challenges

3/2006 7

Design Review

Area of Focus:1. Board-to-Board Interposer2. Signal-Gnd Via Structure

Board

Board

Interposer

Sig­Gnd Via Structures

3/2006 8

Design Review

Let’s begin with the

Board-to-Board Interposer

Page 16: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

5

A Trio Of Trends And Challenges

3/2006 9

Design Review(Board-to-Board Interposer)

Board

Board

Interposer

Unshielded!

Proposed Design Change: To minimize the unshielded signal path

Current design shortfall:

3/2006 10

Design Review(Board-to-Board Interposer)

• Simulation results of original interposer design (using Ansoft HFSS software)

S11

S12

Observations:• 1dB insertion loss at 4.6 GHz• 10dB return loss at 3.4 GHz

Page 17: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

6

A Trio Of Trends And Challenges

3/2006 11

Design Review(Board-to-Board Interposer)

• Simulation results of optimized interposer design

S11

S12

Observations:• 1dB insertion loss at >5 GHz• 10dB return loss >5 GHz

3/2006 12

Design Review(Board-to-Board Interposer)

S12

Original Design Optimized Design

E-Fi

eld

H-F

ield

• Field Plot

Page 18: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

7

A Trio Of Trends And Challenges

3/2006 13

Design Review(Board-to-Board Interposer)

• Tester Shmoo Data: Original vs Optimized Interposer Design

Orig

inal

In

terp

oser

Opt

imiz

ed

Inte

rpos

erDATE: 07-Sep-2005 TIME: 10:27:17

9.300nS 9.600nS 9.900nS 10.20nS 10.50nS +---------+---------+---------+---------+

950.0mV +. . . . . . . .**************************+940.0mV |. . **************************|930.0mV |. . *************** * *** ***|920.0mV |. . ****.******* *** .|910.0mV |. . * ****** ** * .|900.0mV +. . . . . . . . ******.*. . . . . . . . .+890.0mV |. . **** . .|880.0mV |. . * * . .|870.0mV |. . ** . .|860.0mV |. . . . .|850.0mV +. . . . . . . . . . . . . . . . . . . . .+840.0mV |. . . . .|830.0mV |. . . . .|820.0mV |. . . . .|810.0mV |. . . . .|800.0mV +. . . . . . . . . . . . . . . . . . . . .+790.0mV |. . . . .|780.0mV |. . . . .|770.0mV |. . . . .|760.0mV |. . . . .|750.0mV +. . . . . . . . . . . . . . . . . . . . .+

+---------+---------+---------+---------+9.300nS 9.600nS 9.900nS 10.20nS 10.50nS

DATE: 07-Sep-2005 TIME: 12:19:20

9.300nS 9.600nS 9.900nS 10.20nS 10.50nS +---------+---------+---------+---------+

950.0mV +. . . . . . . . . . . . . . . . . . . . .+940.0mV |. . . . .|930.0mV |. . . . .|920.0mV |. . . . .|910.0mV |. . . . .|900.0mV +. . . . . . . . . . . . . . . . . . . . .+890.0mV |. . . . .|880.0mV |. . . . .|870.0mV |. . . . .|860.0mV |. . . . .|850.0mV +. . . . . . . . . . . . . . . . . . . . .+840.0mV |. . . . .|830.0mV |. . . . .|820.0mV |. . . . .|810.0mV |. . . . .|800.0mV +. . . . . . . . . . **. . . . . . . . . .+790.0mV |. . ** .* . .|780.0mV |. . ****** ** *. .|770.0mV |. . * *.************ ** .|760.0mV |. . ******************* ****|750.0mV +. . . . . . . . .************************+

+---------+---------+---------+---------+9.300nS 9.600nS 9.900nS 10.20nS 10.50nS

DATE: 07-Sep-2005 TIME: 11:09:33

9.300nS 9.600nS 9.900nS 10.20nS 10.50nS +---------+---------+---------+---------+

950.0mV +. . . . . .******************************+940.0mV |. . *****************************|930.0mV |. . *****************************|920.0mV |. . *****************************|910.0mV |. . ****************************|900.0mV +. . . . . . .****************************+890.0mV |. . ****************************|880.0mV |. . ****************************|870.0mV |. . ****************************|860.0mV |. . ****************************|850.0mV +. . . . . . .****************************+840.0mV |. . ****************************|830.0mV |. . ***************************|820.0mV |. . ***************************|810.0mV |. . ***************************|800.0mV +. . . . . . . ***************************+790.0mV |. . ***************************|780.0mV |. . ***************************|770.0mV |. . ***************************|760.0mV |. . ***************************|750.0mV +. . . . . . . ***************************+

+---------+---------+---------+---------+9.300nS 9.600nS 9.900nS 10.20nS 10.50nS

DATE: 07-Sep-2005 TIME: 12:35:53

9.300nS 9.600nS 9.900nS 10.20nS 10.50nS +---------+---------+---------+---------+

950.0mV +. . . . . .******************************+940.0mV |. . *****************************|930.0mV |. . ****************************|920.0mV |. . ****************************|910.0mV |. . ****************************|900.0mV +. . . . . . .****************************+890.0mV |. . ****************************|880.0mV |. . ****************************|870.0mV |. . ****************************|860.0mV |. . ****************************|850.0mV +. . . . . . .****************************+840.0mV |. . ****************************|830.0mV |. . ****************************|820.0mV |. . ***************************|810.0mV |. . ***************************|800.0mV +. . . . . . .****************************+790.0mV |. . ***************************|780.0mV |. . ***************************|770.0mV |. . ***************************|760.0mV |. . ***************************|750.0mV +. . . . . . . ***************************+

+---------+---------+---------+---------+9.300nS 9.600nS 9.900nS 10.20nS 10.50nS

Observations:

Larger PASSregion for the optimized interposer design

- DUT Passing Point

3/2006 14

Design Review(Board-to-Board Interposer)

Summary • From the simulation results, the optimized

Board-to-board interposer has shown significant improvement over the original design in terms of Insertion Loss and Return Loss over a 5 GHz BW.

• The improvement seen from the simulation results was validated with Tester’s shmoodata.

Page 19: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

8

A Trio Of Trends And Challenges

3/2006 15

Design Review(Board-to-Board Interposer)

Summary • This has helped to establish a good

confidence level of using simulation for design assessment prior to actual prototype build.

3/2006 16

Design Review

Next let’s look at

Signal-Gnd Via Structure

Page 20: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

9

A Trio Of Trends And Challenges

3/2006 17

Design Review(Signal-Gnd Via Structure)

• Original via structure- Offset signal via

3/2006 18

Design Review(Signal-Gnd Via Structure)

• Simulation results of original via design

S11

S12

Observations:• 0.48dB insertion loss at 5 GHz• 11dB return loss at 5 GHz

Page 21: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

10

A Trio Of Trends And Challenges

3/2006 19

Design Review(Signal-Gnd Via Structure)

• Optimized via structure- Centered signal via

3/2006 20

Design Review(Signal-Gnd Via Structure)

• Simulation results of optimized via design

S12

S11

Observations:• 0.35dB insertion loss at 5 GHz• 13dB return loss at 5 GHz

Page 22: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

11

A Trio Of Trends And Challenges

3/2006 21

Design Review(Signal-Gnd Via Structure)

Summary • The simulation results show 27 percent

improvement on insertion loss and 18 percent on return loss for the optimized signal-gndvia design as compared to original.

• However, this may need to be compromised with the mechanical requirement of having a larger signal pad, which the original design can provide. A larger landing pad is preferred for ease of contacting with the signal probes on the interposer.

3/2006 22

Design Review(Signal-Gnd Via Structure)

Summary • So does it justify a design change?

Unless the impact of optimized via design can be quantified from a system-level perspective, no decision can be adequately made with respect to the final choice of design options. This will be dealt with in the next session on system-level performance.

Page 23: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

12

A Trio Of Trends And Challenges

3/2006 23

How to model

System-Level Performance

3/2006 24

System-Level Performance• Objective:

– Assessment of individual design gain from a system-level perspective

• Advantages:– Help to provide a matrix of merits on the

various design combinations– Facilitate decision-making process on the

selection of the most viable design combination with consideration to practicality and cost (expense versus performance index)

Page 24: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

13

A Trio Of Trends And Challenges

3/2006 25

System-Level Performance• Explore a low-cost approach that can

sufficiently provide the first order assessment. How?

– Cascade the S-parameter matrices of individual network

– Mathematically manipulate the matrices to obtain the system-level S-parameters [2]

3/2006 26

System-Level Performance

S-parameters for system level

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡'2

'1

'22

'21

'12

'11

'2

'1

aa

SSSS

bb

Network(via)

Network(interposer)1

1

ba

'2

'2

ab

2

2

ab

'1

'1

ba

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

2

2

2221

1211

1

1

ba

TTTT

ab

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

2

1

2221

1211

2

1

aa

SSSS

bb

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡'2

'2

'22

'21

'12

'11

'1

'1

ba

TTTT

ab

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡'2

'2

''22

''21

''12

''11

1

1

ba

TTTT

ab

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡'2

'1

''22

''21

''12

''11

2

1

aa

SSSS

bb

Page 25: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

14

A Trio Of Trends And Challenges

3/2006 27

System-Level Performance

Original ViaStructure(Org_Via)

Optimize Via Structure

(Optm_Via)

Original Interposer(Org_Int)

Design assessment matrix at system level

Optimized Interposer(Optm_Int)

Worstcase

Bestcase

??

??

3/2006 28

System-Level PerformanceInsertion Loss (dB)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)

Org_Via + Org_Int Optm_Via + Optm_Int Org_Via + Optm_Int Optm_Via + Org_Int

Observations:• As expected, a complete, optimized

design gives the best performance (as shown by the curve Optm_Via+Optm_Int)

• However, sufficient performance can also be achieved with only the optimized interposer design (as shown by the curve Org_Via+Optm_Int)

Page 26: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

15

A Trio Of Trends And Challenges

3/2006 29

Summary: • The system-level S-parameters can be

obtained mathematically by manipulating the S-parameter matrices of individual networks (the interposer and via structure).

• As such, the system-level performance of various combinations of the interposer and via designs can be compared.

System-Level Performance

3/2006 30

Summary: • The results show that the optimized

interposer design has the biggest impact to the system-level performance.

• Thus, decision-making on the final choice of design combination is made much easier.

System-Level Performance

Page 27: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

16

A Trio Of Trends And Challenges

3/2006 31

In essence…

3/2006 32

Conclusions• The simulation tool is used to assess the

merits of design change during the design optimization cycle.

• The simulation result is validated using the tester’s shmoo data. This has enhanced the confidence level of the simulation model.

Page 28: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

17

A Trio Of Trends And Challenges

3/2006 33

Conclusions

• Simulation data of individual network can be cascaded to provide an overall assessment of performance at a system level.

• The ability to obtain the system-level performance can be shown to aid decision making on the final choice of design combination.

3/2006 34

References[1] Koh Tuan Meng and Lim Kok Lay, “A FLEXIBLE

ELECTRICAL INTERFACE DESIGN FOR THE FIXTURE BETWEEN TESTER AND DUT TO ACHIEVE REDUCED COST AND LEADTIME INATE TOOLINGS”, BiTS 2003 Workshop.

[2] Agilent AN 154, S-Parameter Design, Application Note.

Page 29: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #2

18

A Trio Of Trends And Challenges

3/2006 35

Acknowledgments

Special thanks to the following people for their support on this project:

Seah Yee Choon, Koh Tuan Meng, Lim Kok Lay, Ong Boon Ngoh, Calvin Lim, Richard Teo and Yap Khai Tian from MSA Test Equipment R&D. Chia Yong Poo from MSA AssyPkg R&D.

Page 30: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

1

A Trio Of Trends And Challenges

1 BiTS 2006

Thermal Considerations Thermal Considerations in Testing Very High in Testing Very High Performance DevicesPerformance Devices

Thomas Di StefanoCentipede Systems

2110 Ringwood AvenueSan Jose, CA 95131

[email protected]

2 BiTS 2006

Thermal Considerations Thermal Considerations ……

What’s New ?• More Thermal Gradients (Hot Spots)*

• Higher Power Densities

• Increased Testing of Bare Flip-Chips

* Dave Gardell, Thermal Characterization and Specification for Test and Burn-in, BiTS 2005

Page 31: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

2

A Trio Of Trends And Challenges

3 BiTS 2006

Debendra Malek, Thermal Issues from ITRS Perspective, MEPTEC The Heat is On 2006

BiTS 2006

4 BiTS 2006

Bidyut Sen & Jim Jones, Thermal Challenges for Sparc Based Microprocessors, MEPTEC The Heat is On 2006

BiTS 2006

Page 32: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

3

A Trio Of Trends And Challenges

5 BiTS 2006

Thermal Considerations Thermal Considerations ……

What’s New ?• More Thermal Gradients (Hot Spots)*

• Higher Power Densities

• Increased Testing of Bare Flip-Chips

* Dave Gardell, Thermal Characterization and Specification for Test and Burn-in, BiTS 2005

6 BiTS 2006

Thermal Considerations Thermal Considerations ……State of the Art• TIM Materials Θ ~ 0.15 ºC-cm² / W• Temperature Control ! 2 ºC average

Emerging Problem – “Hot Spots”• Thermal Error Yield Loss• Increased Re-test Rates

Page 33: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

4

A Trio Of Trends And Challenges

7 BiTS 2006

Hot SpotsHot Spots

Reduced IC PerformanceReduced IC Performance

Thermal Error Yield LossThermal Error Yield LossLocal Heating:• Degrades Switching Time of Critical Nets,

• Reduces Performance ~ 0.5 % per ºC at 25 ºC

• Leads to Unnecessary Yield Loss

8 BiTS 2006

“Every 15ºC increase locally causes a delay or skew to increase roughly 10 to 15%”

- Andrew Yang, TSMC EDN Sept /2005

Hot Spots Cause Performance Degradation– Reduction of Surface Channel Mobility

ص / ØΤ = - Κµ0 / Τ Κ ~ 1.5 to 2.5– Increased RC Delays

ØRC / ØΤ = 0.0038 RC

Yield Loss due to Hot SpotsYield Loss due to Hot Spots

Page 34: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

5

A Trio Of Trends And Challenges

9 BiTS 2006

Thermal Error Yield LossThermal Error Yield LossSimplified Model Assumptions*• Switching time is temperature dependent

τ ∼ 1.13 x10−4 τ0 Τ 1.6 (Τ in ºK)

• Worst case performance is determined by hot spot δΤ

δτ / δΤ = 0.0055 τ0 Delay Time

δf / δΤ = - 0.0055 f0 Frequency

* Precise model depends upon specific details

10 BiTS 2006

Simplified Model Assumptions*• IC performance is a normal distribution around f0

* Precise model depends upon specific details

Thermal Error Yield LossThermal Error Yield Loss

f0

f

P ( f )

fC

PerformanceYield Loss δΥ

σ

Page 35: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

6

A Trio Of Trends And Challenges

11 BiTS 2006

Simplified Model Assumptions*• Performance yield curve is shifted by hot spot

* Precise model depends upon specific details

Thermal Error Yield LossThermal Error Yield Loss

f

P ( f )

f0f0

fC

δΥ

σ

12 BiTS 2006

Thermal Error Yield LossThermal Error Yield LossSimplified Model*

• Performance yield curve is shifted by hot spot

Υ = ½ + ½ erf { (f0(Τ) – fC) / (σ√2) }

• Yield loss due to hot spot

δΥ/δΤ = - 0.00242 (f0/σ) { 1 – 1.03 (Υ0 – 0.5) - … }δΤ = Hot Spot Temperature above Τ0

* Precise model depends upon specific details

Page 36: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

7

A Trio Of Trends And Challenges

13 BiTS 2006

Thermal Error Yield LossThermal Error Yield Loss

δΥ/δΤYield Loss

(% / ºC)

2 4 6 8

1.0

0.5

0.0

1.5

ΥP = 98%

ΥP = 95%

ΥP = 90%

ΥP = 80%ΥP = 70%

f0 /σPerformance Yield Distribution

14 BiTS 2006

Test MethodsTest Methods can Introduce can Introduce Thermal Errors Thermal Errors ::

• Insufficient Thermal Conductivity in TIM• Errors due to Single Point Sensing• Temperature Non-Uniformities on Heat Sink

Page 37: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

8

A Trio Of Trends And Challenges

15 BiTS 2006

Flip ChipIllustrative Model #1Illustrative Model #1

+ 1.

0 cm

+ 0.

5 cm

Hot Spot δΤδP = 250 W/cm2 (10 W in 0.2 cm x 0.2 cm)δΤ = Error Temperature (ºC)

TIM 1

Heat Sink = 0º C

+ 0.

1 cm

16 BiTS 2006

Illustrative Model #1Illustrative Model #1Flip Chip

0.20 ºC

20 ºC

40 ºC

60 ºC

0.40.0

TIM (ºC-cm2 / W)

δΤ (ºC)

Hot Spot Hot Spot ΤΤ (above Average (above Average ΤΤ))

Page 38: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

9

A Trio Of Trends And Challenges

17 BiTS 2006

Illustrative Model #1Illustrative Model #1Flip Chip Parameters

Hot Spot 10 W in 0.2 x 0.2 cm areaPerformance Yield YP = 95 %Yield Distribution σ = 0.33 f0

TIM Material 0.2 ºC-cm2 / W

Temperature ErrorTemperature Error δΤδΤ = 33= 33ººCCTThermal Error Yield Loss = 5.9%hermal Error Yield Loss = 5.9%

18 BiTS 2006

Illustrative Model #2Illustrative Model #2

TIM 1 = 0.1 ºC-cm² / W

+ 10

mm

+ 5

mm

-5

mm

-10

mm

-1

mm

+ 1

mm

Thermal Spreader

Heat Sink = 0º C

TIM 20.1 cm W-Cu Spreader

Hot SpotδP = 250 W/cm2 (10 W in 0.2 cm x 0.2 cm)δΤ = Error Temperature (ºC)

Page 39: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

10

A Trio Of Trends And Challenges

19 BiTS 2006

Thermal SpreaderIllustrative Model #2Illustrative Model #2

0.20 ºC

20 ºC

40 ºC

60 ºC

0.40.0TIM (ºC-cm2 / W)

δΤ (ºC)

Hot Spot Hot Spot ΤΤ (above Average (above Average ΤΤ))

20 BiTS 2006

Illustrative Model #2Illustrative Model #2Thermal Spreader Parameters

Hot Spot 10 W in 0.2 x 0.2 cm areaPerformance Yield YP = 95 %Yield Distribution σ = 0.33 f0

TIM Material 0.2 ºC-cm2 / W

Temperature ErrorTemperature Error δΤδΤ = 36= 36ººCCTThermal Error Yield Loss = 6.4 %hermal Error Yield Loss = 6.4 %

Page 40: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

11

A Trio Of Trends And Challenges

21 BiTS 2006

Caveat Caveat ……

Thermal Error Yield Loss Model Must Take into Account the Actual:• Impact of Temperature on IC Performance• Thermal Properties of Materials• IC Performance Yield

22 BiTS 2006

Local Heat Generation in IC• Hot Spots Degrade Measured Chip Performance

Single Point Temperature Measurement• Local Variations Induce Errors in Control Temperature

Thermal Gradients on Heat Sink• Degrade Measured Chip Performance

Thermal Considerations Thermal Considerations ……

Page 41: archive header ht - TestConX

20062006 Hot Topics Session

March 12 - 15, 2006

Paper #3

12

A Trio Of Trends And Challenges

23 BiTS 2006

Conclusions Conclusions ……

Improvements Needed to Avoid Unnecessary Thermal Error Yield Loss• Thermal Head Performance• Temperature Detection and Control• Temperature Uniformity of Thermal Head