Arch. Biol. Med. Exp. 13, The Enzymology of DNA Replication · The Enzymology of DNA Replication La...

20
Arch. Biol. Med. Exp. 13, 213-232, 1980 The Enzymology of DNA Replication La enzimología de la replicación de DNA RAFAEL VICUNA Laboratorio de Bioquímica. Instituto de Ciencias Biológicas. Universidad Católica de Chile. Casilla 1 14-D. Santiago, Chile. (Recibido el 26 de marzo de 1980) I. INTRODUCTION 213 2. THE INITIATION REACTION 214 2.1. E. dili priming proteins —dna G gene product —RNA polymerase 2.2. Bacteriophage-coded DNA primases —14 DNA primase —T7 gene 4 protein 2.3. Other primases 2.4. Initiation by a site-specific endonucleolytic cut —0X 174 gene A and fd gene II proteins 3. THE ELONGATION REACTION 217 3.1. E. coli DNA polimerases —E. coli DNA polymerase I —E. cob DNA polymerase 111 3.2. Bacteriophage-coded DNA polymerases —T4 gene 43 protein —T7 gene 5 protein 3.3. DNA polymerases a, B and 7 from eukaryo- tic cells 4. SEALING OF DNA FRAGMENTS 219 4.1. E. coli DNA ligase 4.2. Bacteriophage T4 gene 30 protein 4.3. Mammalian DNA ligases I and II CONFORMATIONAL CHANGES OF DNA DURING REPLICATION 220 5.1. E. coli HDP 5.2. Bacteriophage-coded HDPs —T4 gene 32 protein —T7 HDP —fd gene V protein 5.3. Eukaryotic HDPs 5.4. Bacterial DNA topoisomerases —Swivelases —DNA gyrase 5.5. Bacteriophage-coded DNA topoisomerases —T4 DNA topoisomerase —Lambda int gene product —0X174 gene A and fd gene II proteins 5.6. Eukaryotic DNA topoisomerases 5.7. E. coli DNA helicases —DNA helicase I —DNA helicase II —rep protein —rec BC nuclease 5.8. Bacteriophage-coded DNA helicases —T4 gene dda protein —T7 gene 4 protein 5.9. Eukaryotic DNA helicases CONCLUSIONS 227 REFERENCES '227 APPENDIX 232 1. INTRODUCTION Progress made during the last years in our knowledge of DNA replication has shown that it is a somewhat complex process (for recent reviews see refs 1-6). Attempts to elucidate the mechanism of DNA synthesis have been undertaken using simple templates, such as bacterial and animal viral chromosomes and plasmids. All these systems have shown that several proteins are required to initiate and elongate DNA chains, as well as to bring about the topological changes the DNA molecule must undergo during its duplication. The requirement for these proteins can be directly demonstrated with the utilization of thermosensitive mutants, by using specific inhibitors and by reconstitution of an in vitro replication system with the purified components. Although in some cases 'The abbreviations used are: ss: single stranded; ds: double stranded; NEM: N-ethyimaleimide; DNA pol: DNA polymerase; M. W.: molecular weight; ddTTP: 2'3' dideoxythymidine triphosphate; HDP: helix destabilising protein; RF: replicative form; EF: elongation factor; SDS: sodium dodecyl sulfate.

Transcript of Arch. Biol. Med. Exp. 13, The Enzymology of DNA Replication · The Enzymology of DNA Replication La...

Arch. Biol . Med. E x p . 13, 2 1 3 - 2 3 2 , 1 9 8 0

The Enzymology of DNA Replication

La enzimología de la replicación de DNA

R A F A E L V I C U N A

Laboratorio de Bioquímica. Instituto de Ciencias Biológicas. Universidad Católica de Chile. Casilla 1 14-D. Santiago, Chile.

(Recibido el 26 de marzo de 1980)

I. INTRODUCTION 213

2. T H E INITIATION REACTION 214 2.1. E. dili priming proteins

—dna G gene product —RNA polymerase

2.2. Bacteriophage-coded DNA primases — 1 4 DNA primase —T7 gene 4 protein

2.3. Other primases 2.4. Initiation by a site-specific endonucleolytic

cut — 0 X 174 gene A and fd gene II proteins

3. T H E ELONGATION REACTION 217 3.1. E. coli DNA polimerases

—E. coli DNA polymerase I —E. cob DNA polymerase 111

3.2. Bacteriophage-coded DNA polymerases — T 4 gene 43 protein —T7 gene 5 protein

3.3. DNA polymerases a, B and 7 from eukaryo­tic cells

4. SEALING OF DNA FRAGMENTS 219

4.1. E. coli DNA ligase 4.2. Bacteriophage T 4 gene 30 protein 4.3. Mammalian DNA ligases I and II

C O N F O R M A T I O N A L CHANGES OF DNA DURING REPLICATION 220 5.1. E. coli HDP 5.2. Bacteriophage-coded HDPs

— T 4 gene 32 protein —T7 HDP —fd gene V protein

5.3. Eukaryotic HDPs 5.4. Bacterial DNA topoisomerases

—Swivelases —DNA gyrase

5.5. Bacteriophage-coded DNA topoisomerases — T 4 DNA topoisomerase —Lambda int gene product — 0 X 1 7 4 gene A and fd gene II proteins

5.6. Eukaryotic DNA topoisomerases 5.7. E. coli DNA helicases

—DNA helicase I —DNA helicase II —rep protein —rec BC nuclease

5.8. Bacteriophage-coded DNA helicases — T 4 gene dda protein —T7 gene 4 protein

5.9. Eukaryotic DNA helicases CONCLUSIONS 227 REFERENCES '227 APPENDIX 232

1. INTRODUCTION

Progress made dur ing the last years in our knowledge o f D N A repl ica t ion has shown that it is a somewhat complex process (for recent reviews see refs 1-6). At tempts to elucidate the mechanism o f D N A synthesis have been under taken using simple templates , such as bacterial and animal viral ch romosomes and plasmids. All these systems

have shown that several proteins a re required to initiate and e longate D N A chains, as well as to br ing about the topological changes the D N A molecule must unde rgo dur ing its duplication. T h e requ i remen t for these proteins can be directly demons t ra ted with the utilization o f thermosensi t ive mutants , by using specific inhibitors and by reconsti tut ion o f an in vitro replication system with the purified componen t s . Al though in some cases

'The abbreviations used are: ss: single stranded; ds: double stranded; NEM: N-ethyimaleimide; DNA pol: DNA polymerase; M. W.: molecular weight; ddTTP: 2'3' dideoxythymidine triphosphate; HDP: helix destabilising protein; RF: replicative form; EF: elongation factor; SDS: sodium dodecyl sulfate.

2 1 4 VICl.'ÑA

direct implication of certains proteins has not

been possible, the catalytic activity o f some

proteins (e.g. topoisomerases , helicases)

justify the assumption that they play an

essential role in DNA replication.

T h i s article does not intend to be a critical

nor a comprehens ive review on D N A

synthesis. It represents ra ther a survey of

some o f the proteins that are involved in this

process, both in prokaryot ic and eukaryot ic

systems.

2. T H E INITIATION REACTION

None o f the viral, bacterial o r animal D N A

polymerases isolated to date are able to start

D N A chains de novo, suggesting that o ther

proteins a re involved in chain initiation.

T h e s e enzymes, called D N A primases, show a

high degree o f site specificity when they act at

the origin o f ch romosomal replication. T h e v

must also copy the small ol igonucleot ides that

serve as pr imers for the synthesis o f Okazaky

fragments .

2.1. E. Coll PRIMING PROTEINS

— dna G gene product

Using the ss ' D N A o f phage G 4 as template ,

Bouché et al. (7) were the first to show that the

dna G gene product oi E. coli, in the presence

o f binding protein, catalyzes the synthesis o f a

short polynucleotide p r imer at the origin o f

replication. Later , S. Wickne r (8) demonst ra ­

ted that dna G polymerizes r N T P s and d N T P s

interchangeably, to yield ribo-, deoxyr ibo-

and mixed r ibo-deoxyr ibonucleot ide pr imers .

T h e isolation o f dna G primase has been

approached in three different ways (9 , 10).

O n e m e t h o d c o n s i s t s i n a n in vitro complementa t ion assay, in which dna G

protein present in an ext rac t p repared from

wild type cells restores the activity o f an

ext rac t p repared from a dna G ts mutant. A

second method has been to follow directly the

enzymatic activity o f dna G protein, that is, the

synthesis o f a p r imer using D N A binding

protein plus G 4 , o¡ 3 o r S T - 1 DNAs as

templates. A third method involves the

coupl ing o f the pr iming reaction with the

D N A elongat ion system. In this assay d N M P

incorporat ion is measured , since il is

proport ional to the extent of pr iming.

The dna G protein is a single polypeptide,

(M.W. 6 0 , 0 0 0 ) ; it has an isoelectric point of f>.9

at 8°C and it is resistant to NKM and

rifampicin (9 , 10), but it is sensitive to the

nucleotide analogue 2 ' -deoxy-2 ' -a / ido-

cytidine t r iphosphate ( 1 1 ) .

dna G pr imase recognizes a unique region

at the origin o f minus strand replication o f

phages G 4 , a 3, S T - 1 and 0 K . These various

initiation regions have been located with the

aid o f restriction enzymes and have been

defined at the nucleot ide level by compar ing

the sequence o f these origin sites with the-

sequence o f an R N A pr imer synthesized bv

dna G (12 , 13) . D N A sequencing studies show

that all these origins are very similar, as

compared to adjacent coding regions. It is

possible to a r range them in similar pat terns of

two or three hairpin loops in the regions o f

negative strand initiation suggesting their im­

portance as recognit ion signals for dna G pro­

tein.

Several lines of evidence show that the

main tenance o f the s t ructure at the origin site

ra ther than the sequence itself is essential for

initiation: a) inactive phage D N A can be

activated by heat ing and slow cooling in

the presence of E. coli b inding protein

(9) ; b.) E. coli dna topoisomerase I. an

enzyme known to form knotts with ss DNA

(14 ) , when present , inhibits the p reming

reaction dependent on dna G (9) ; c) three

well separated groups o f nucleot ides within

the negative strand origin o f phage 0 K are

protected by dna G protein agains nuclease

digestion, suggesting some degree o f folding

o f the D N A in a tertiary s tructure ( ) . Sims, E.

Benz , personal communica t ion ) ; d) the

pr iming react ion with 0 X 1 7 4 ss D N A , in

addition to dna G and binding protein,

requires the products o f dna B and dna C, and

the replication factors X , Y and Z (also called i,

n and n') ( 1 5 , 16) . T h e role o f these additional

proteins, which form a pre-pr iming complex

with 0 X 1 7 4 D N A , is perhaps to crea te a site

on the template that can be recognized bv dna

G primase. However , the origin o f 0 X 1 7 4

complementa ry strand synthesis seems not be

unique: i f the pr iming react ion is uncoupled

from D N A synthesis, it gives rise to many

ENZYMOLOGY OF DNA REPLICA I ION 2 1 5

pr imers in each circle ( 1 7 ) . R o m b e r g has proposed (18) that the dna B protein (M.W. 2 8 0 , 0 0 0 ) , aided by its own r N T P a s e action (19 , 2 0 ) , moves processively on the template strand, acting as a mobil replicat ing promoter , dna B protein interacts specifically with dna C protein (M.W. 3 0 , 0 0 0 ) in the presence o f A T P (21) and it is thus t ransferred to the pre-pr iming complex with the help o f protein X (M.W. 4 5 , 0 0 0 ) . (3 ) . Protein Y (M.W. 7 0 , 0 0 0 ) , like dna B , is a DNA-dependen t ATPase or d A T P a s e , but works best with DNAs that require this protein for initiation ( 2 2 ) . T h i s mult ienzyme system o f the host used by 0 X 1 7 4 to pr ime D N A synthesis is probably used by the cell to replicate its own ch romosome .

T h e length o f the p r imer synthesized by dna G in the presence o f G 4 or ct3 D N A as templates and the four r ibonucleot ides is o f 2 8 nucleotides (9 , 2 3 ) . However , the presence o f deoxyr ibonucleot ide residues in the chain limits p r imer chain length (9 , 2 4 ) . This effect occurs even when the r ibonucleot ides are present in a ten-fold excess in the pr iming reaction. Only after p ro longed incubation periods is the full lenght p r imer obtained under these condit ions (9) . W h e n only the four d N T P s are present in the reaction, the rate o f p r imer format ion is ten-fold slower compared to the rate with the four r N T P s alone, and the po lydeoxynucleo t ide chains obtained are he te rogeneous in size. P r imer synthesis is initiated with A T P or d A T P at the 5' end. ( 2 4 ) . I f A D P is used in place o f any o f these nucleoside t r iphosphates , it is incorpora ted both internally and at the 5 ' end (9) .

T o date, several genomes have been shown to require dna G for replication. These include the ss D N A phages, the E. coll. c h r o m o s o m e , plasmid col El and phage lambda.

— RNA polymerase.

Init iat ion o f D N A replication by R N A polymerase both in vivo and in vitro is well documen ted for the Col El type plasmids and the filamentous ss D N A phages id and M 1 3 . In both cases, R N A polymerase initiates D N A synthesis at un ique origin sites and it is not

involved in the pr iming o f Okazaki f ragments . Using fd D N A as template , and in the

presence of binding protein, RNase H (an enzyme that degrades RNA when hvbridized to D N A ) and discriminatorv factors a and B. R N A polymerase recognizes a specific hairpin s tructure o f the viral g e n o m e and transcribes from it a short R N A fragment ( 2 5 - 2 8 ) . This pr imer is subsequently e longated by E. coli D N A polymerase I I I plus the e longat ion factors. The requ i rement o f additional proteins besides R N A polymerase to initiate the pr iming reaction is related to the specificity of the system, i .e. to start at a unique origin and also to avoid unspecific pr iming by R N A polymerase on o the r templates.

T o initiate replication of p B R 3 4 5 , a Col El-type plasmid, R N A polymerase synthesizes a 100 nucleot ide long transcript in a region which is about 4 5 0 bases pairs appar t from the replication origin ( 2 9 ) . Apparent ly , this R N A segment is processed by RNase I I I and RNase H (30 , 3 1 ) and thereaf ter it hybridizes to the origin region where it serves as a p r imer for D N A synthesis. Tomizawa et al. ( 32 ) have mapped the origin o f Col E l D N A replication at the nucleot ide level. T h e y have also found that early D N A fragments (6 S) contain r ibonucleo t ide-DNA linkages, most of them having very few r ibonucleot ides at the i r 5 ' ends ( 3 3 ) .

R N A polymerase is also required to initiate new rounds of replication o f E. coli. c h r o m o s o m e (34 , 3 5 ) . T h e r e is no evidence, however, that the R N A transcr ibed at the origin (36) functions as a p r imer for D N A synthesis. Alternatively, t ranscript ion may be a mechanism by which R N A pol­ymerase activates the origin by separat ing both D N A strands, in o r d e r to help dna G to prime replication in the p resence o f the gene products o f dna A, dna B , dna C, dna I , dna J , dna K and dna P ( 3 7 ) .

Transcr ip t ion by R N A polymerase at t h e i n i t i a t i o n r e g i o n o f p h a g e l a m b d a c h r o m o s o m e has also been shown to be essential for D N A replication, not only to provide the messenger o f genes O and P, but also to activate the origin ( 3 8 ) . Alson in this case, there is no evidence that the t ranscr ipt is elongated by D N A polymerase .

2 1 6 VICUÑA

2.2. BACIERIOPHAGE-CODEl) DNA PRIMASES

— 14 DNA prima.se.

T w o phage T 4 - c o d e d proteins a re required to

initiate replication on a ss D N A template .

T h e y are the product of gene 41 ( 3 9 - 4 0 ) and

another protein tentatively identified as the

product of the DNA-delay gene 61 (40 ) .

Originally, the requ i rement of the latter

protein had been missed because it was

present as a minor contaminant in gene 32

protein preparat ions ( 4 1 ) . G e n e 41 protein

has been purified to nea r homogenei ty (42 ,

4 3 ) . It is a single polypeptide chain with a

M.W. o f 5 8 , 0 0 0 and catalyzes a ss

DNA-dependent hydrolysis o f purinic

nucleoside t r iphosphates . Synthesis o f the

primers, which are 6 to 8 nucleotides long, has

an absolute requ i rement for A T P and G T P .

In contrast to dna G and R N A polymerase,

but similar to T 7 primase, initiation by T 4

proteifis does not requi re b inding protein.

T h e reason for the involvement o f two

proteins in the pr iming react ion o f

bac ter iophage T 4 D N A replication is not

known. It could be related to mechanis t ic

problems inheren t to initiating synthesis in

the lagging strand ( 3 9 ) . I t may also have to do

with the main tenance o f the duplex s t ructure

between the R N A pr imer and the D N A

template , in o r d e r to facilitate elongat ion by

the mul t ienzyme complex fo rmed by proteins

coded by genes 3 2 , 4 3 , 4 4 / 6 2 and 4 5 (39 , 4 4 ) .

—T7 gene 4 protein

G e n e 4 protein o f bac te r iophage T 7 has been

identified as a D N A primase ( 4 5 - 4 8 ) . After

purification with the use o f an in vitro complementa t ion assay, the enzyme has a

M.W. o f 5 8 , 0 0 0 . ( 4 5 , 4 9 ) . G e n e 4 protein, in

the presence o f any natural ss D N A , A T P and

G T P , or a mixture o f all four r N T P s , catalyzes

the s y n t h e s i s o f s h o r t o l i g o n u c l e o t i d e s ,

p r e d o m i n a n t l y p p p A G C A ( 4 5 - 4 8 ) . T h e

primary structure o f these pr imers has been

conf i rmed by T . Okazaki (50 ) by studies done

in vivo. T 7 D N A pol can utilize p p p A C G A o r

synthet ic tri , t e t ra o r p e n t a n u c l e o t i d e s as

chain initiators in the presence o f T 7 gene 4

protein. Apparent ly , in this case the pr imase

plays an active role in chain e longat ion by

stabilizing the shor t p r imer segments in a

duplex state with the D N A template ( 5 1 ) . The

interaction between both T 7 - c o d e d enzymes

is speci f ic , s ince o t h e r D N A p o l y m e r a s e s

cannot replace T 7 DNA pol in the extension

o f t h e s e o l i g o n u c l e o t i d e s . U n l i k e o t h e r

primases, T 7 gene 4 protein is activated five

fold when d N T P s are present , a l though there

is no evidence that they are incorpora ted (45 ) .

An exp lana t ion for this s t imula tory effect

could be that d N T P s protect r N T P s against

hydrolysis by T 7 pr imase, an activity that is

intrinsic to the enzyme. (See also section 5 .8 . ) .

2.3. O T H E R PRIMASES

E. Lanka et al. (52) have recently isolated a

D N A primase specified by the I-like plasmids

( R 6 4 , Gol I ) . T h e enzyme has a sedimentat ion

coefficient o f 3 .6 s and utilizes all four

r ibonucleoside t r iphosphates . In react ions

carr ied out with c rude extracts p repared from

thermosensi t ive dna mutans, this pr imase can

substitute for the host functions of dna B-dna

C-dna G, R N A polymerase and dna G, in the

conversion o f t h e s s D N A o f phage 0 X 1 7 4 , fd

and G 4 to the duplex form, respectively.

So far, information about this enzyme is

rather prel iminary. Data regard ing direct

measurements of R N A synthesis, require­

ments o f the reconst i tuted react ion and

site specificity o f initiation must be

awaited.

Polyoma nascent D N A strands synthesized

in vitro contain decar ibonucleot ides at tached

at their 5 ' end ( 5 3 ) . T h e s e pr imers , called

iRNA, begin always with A T P o r G T P and are

t ranscr ibed randomly on the genome . iRNA

synthesized unde r condit ions o f limiting

r N T P contains d N T P s . T h e initiating enzyme

has been t e rmed primase, in analogy to the

dna G protein of E. coli.

2.4. INITIATION BY A SITE-SPECIEIC

ENDONUCLEOLYTIC C U T

— 0174 gene A and fd gene II products

Circular ds genomes which replicate through

the roll ing circle mechan ism must suffer an

EN/.YMOI.OGY OK l)N A REPLICATION 2 1 7

endonucleolvt ic cleavage in one of their strands in o rde r to unwind the duplex and initiate D N A synthesis. S o m e of the best known examples of this type of replication are those represen ted by phages 0 X 1 7 4 and fd. During the life cycle of these phages, their ss circular c h r o m o s o m e becomes a duplex r ing which multiplies itself several fold utilizing the rolling circle model . ( 5 6 - 5 8 ) .

The 0 X 1 7 4 gene A codes for a site-specific endonuclease called A protein (M.W. 5 8 . 0 0 0 ) which int roduces a ss discontinuity in the viral strand of supercoi led 0 X R F I D N A ( 5 9 - 6 5 ) . T h e location of this nick is between nucleotides 4 2 9 7 and 4 2 9 8 in the A cistron ( 6 6 ) . T h e enzyme is highly specific: it will not cleave re laxed 0 X R F T V , Col El, PM2 , fd o r M 1 3 DNAs ( 6 0 , 6 f ) . After cleavage, the A protein remains covalently at tached to the 5 ' end ( 6 0 , 6 1 ) , while the 3 ' hydroxyl genera ted serves as a p r imer for the synthesis of viral strands. T h e 0 X R F I I D N A A protein complex can be isolated and it is able to support D N A synthesis by itself when supplemented with c rude extracts o f uninfected E. coli ( 6 0 ) .

T h e 0 X A protein does not act catalytically in the cleavage o f 0 X R F I D N A . U n d e r condit ions leading to the quantitative cleavage o f 0 X R F I D N A , the molar ratio of 0 X R F I D N A to added 0 X A protein is approximate ly 1:10, a l though the actual s toichiometry o f the react ion is not known ( 6 1 ) .

E isenberg et al. (64)have repor ted that after the synthesis o f a 0 1 7 4 unit lenght viral s t rand is comple ted , the A protein bound at the 5 ' end ligates the two ends of the viral D N A to form covalently closed circles.

Bac t e r iophage fd gene I I protein is also a site-specific endonuc lease which cleaves the viral s t rand o f fd R F I D N A between nucleotides 5 7 6 3 and 5 7 6 4 ( 6 7 - 7 1 ) . T h i s site is only 2 4 nucleot ides away from the origin of complemen ta ry s trand synthesis, in the integenic region between genes I I and I V ( 7 1 ) . G e n e I I protein has a M.W. o f 4 5 , 0 0 0 , and in contras t to 0 X 1 7 4 A protein, it does not remain bound to the 5 ' end o f the viral s trand. Ins tead , it leaves 3 ' hydroxyl and 5 ' phospha te te rmini ( 7 1 ) . G e n e I I protein is conceivably involved in the unwinding o f the strands dur ing replication and the closing o f

the viral strand which is displaced from the rolling circle ( 6 8 ) .

It can be predicted that replication of phages lambda (72) and PM2 ( 7 3 ) , which also proceed utilizing the roll ing-circle system, will require initiation by site-specific viral-coded nucleases, as yet unidentif ied.

3. T H E ELONGATION REACTION

D N A polymerases are the enzymes that actually synthesize the new polynucleot ide chains. T o accomplish this react ion, they function as one o f the componen t s o f the " repl isome" complex , o f which primases, b inding proteins, e longat ion factors, topoisomerases and helicases are also consti tuents. D N A polymerases are widely distr ibuted in nature , be ing present in bacteria, plant and animal cells. T h e y are also coded by some bacterial and animal viral genomes .

Gene t ic and biochemical evidence have demons t ra ted the presence o f three dif ferent D N A polymerases in the bacter ia E. coli ( 74 , 7 5 ) , B. subtilis ( 76 , 77)and A. calcoaceticus ( 7 8 ) , some o f which have been purif ied to homogenei ty ( 7 9 - 8 2 ) . O n the o the r hand, only one D N A polymerase species has been identified and character ized from M. Luteus (83 ) , T. aquaticus ( 84 ) and the mar ine Pseudomonas BAL-31 ( 8 5 ) .

Eukaryot ic cells contain three D N A polymerases, usually re fe r red to as D N A polymerases a , 3 and 7 (reviewed in refs. 8 6 - 8 8 ) . W h e n they are ex t rac ted using non aqueous solvents, they can be found mainly in the nuclei , a l though D N A pol y is also present in the mi tochondr ia . T h e y all share the c o m m o n proper ty of being devoid o f associated exonuclease activities.

Selec ted features of some D N A polymerases are presented below.

3.1. E. COLI DNA POLYMERASES

— E. coli DNA polymerase I

T h i s enzyme is a single polypeptide o f M.W. 1 0 9 , 0 0 0 and it is resistant to N E M . It represents the most extensively studied of all D N A polymerases. D N A pol I participates

2 1 8 VICUÑA

actively in the repair o f lessions suffered by

the ch romosome . However , its role in D N A

synthesis as an elongat ion enzyme is very

restricted. Only the Col El-type plasmids

requi re D N A pol I for replication, a l though in

conjuct ion with D N A pol I I I ( 89 , ' 2 9 ) .

Nevertheless, the activity o f nick translation

which is intrinsic to D N A pol I (90) has been

shown to be essential for cell viability ( 9 1 ) . The

evidence available (91) suggests that this

activity is in charge o f the processing o f the

pr imers o f the Okazaki f ragments , reaction

after which D N A pol I leaves a nick that is

thereaf ter sealed by D N A ligase.

— E. coli DNA polymerase III

T h i s enzyme.is coded by the gene dna E ( 9 2 ) ,

being the M.W. o f the native enzyme 1 8 0 , 0 0 0 .

It is composed o f subunits o f 1 4 0 , 0 0 0 , 2 5 , 0 0 0

and 1 0 , 0 0 0 (62 , 8 1 ) . In addit ion o f being the

enzyme that replicates the host c h r o m o s o m e ,

D N A p o l I I I a l s o is r e q u i r e d f o r t h e

replication o f the icosahedral and f i lamentous

ss D N A phages , p h a g e l a m b d a and some

plasmids. As D N A pol I , the enzyme contains

both a 5' to 3' and a 3 ' to 5 ' (proofreading)

exonuclease activities (62 , 8 1 , 9 3 ) .

D N A pol I I I is unable to copy by itself a

long pr imed ss D N A template . T o accomplish

this react ion, it requires additional e longat ion

factors ( E F ) and A T P o r d A T P (3 ) . T h e s e

proteins a re : E F I ( M . W . 4 0 , 0 0 0 ) , E F I I I (M.W.

6 3 , 0 0 0 ) and the product o f the gene dna Z

(M.W. 1 1 0 , 0 0 0 ) . T h e mechan i sm o f the

e longat ion react ion has been solved ( 9 4 ) : a

complex fo rmed spontaneously by dna Z

protein and E F I I I catalyzes the t ransfer o f

E F I to a pr imed- templa te in an A T P or

d A T P - d e p e n d e n t react ion. D N A pol I I I

binds then to the E F I D N A template complex

and catalyzes the incorporat ion o f d N T P s into

D N A . T h e fate o f A T P in the react ion is not

clear , since hydrolysis o f this molecule has not

been detected. It might be requi red to induce

a conformat iona l change in one o f these

e longat ion proteins .

R o m b e r g ' s g roup has isolated a different

form o f D N A pol I I I , t e rmed D N A pol I I I

ho loenzyme ( 9 5 , 9 6 ) . T h i s form appears to be

a complex o f the th ree polymerase subunits

plus the E F . T h e identity o f the ho loenzyme

as such is not yet clear , since the E F can be separated from D N A pol I I I by convent ional

ch romatograph ic procedures . In addition,

these E F can also activate E. coli D N A pol II

(97 ) and B. subtilrs D N A pol I I I ( 8 2 ) .

Lately, th ree new proteins, have been

implicated in the e longat ion react ion. O n e o f

them has been called protein u ( 9 6 ) . The

other two, which have been identified

independent ly (96 , 9 8 ) , copurify with D N A

pol I I I and weigh about 8 0 , 0 0 0 , indicating

that they may be the same entity.

T h e part icipation o f at least six and possibly

nine polypeptide chains in the e longat ion o f a

pre-pr imed template , makes this react ion far

m o r e compl ica ted than first imagined.

3.2. BACTERIOPHAGE-CODED DNA

POLYMERASES

— T4 gene 43 protein

T 4 induced D N A pol is a single polypept ide 'of

M . W . 1 1 0 , 0 0 0 . Coded by gene 4 3 , T 4 D N A

pol has a 3 ' to 5 ' exonuc lease activity and it is

inhibited by sulfhydryl blocking reagents

( 9 9 - 1 0 0 ) . T h e prefe r red template for the

enzyme is primed-ss D N A . T h e elongat ion

react ion can be activated specifically by T 4

gene 32 binding protein, which forms a

complex with the polymerase ( 1 0 1 ) .

Incorpora t ion o f d N T P s is also activated

synergistically by the products o f T 4 genes 4 5

and 4 4 / 6 2 , in a react ion that requires A T P

( 1 0 2 , 103 ) . T h e 4 4 / 6 2 protein complex is an

A T P a s e and the mechan ism by which it

increases the efficiency o f the D N A pol

react ion is not known.

— T7 gene 5 protein

T 7 D N A pol is d imer composed o f T 7 gene 5

protein (M.W. 8 4 , 0 0 0 ) and t h i o r e d o x i n ( M . W .

1 2 , 0 0 0 ) , a prote in specified by the host gene

T s n C ( 1 0 4 ) . T h e precise role o f th ioredoxin

in T 7 D N A replicat ion is not known, a l though

it could catalyze r ibonucleot ide reduct ion at

the polymerizat ion site. T 7 D N A pol, as o the r

D N A polymerases o f prokaryot ic origin

contains an intrinsic 3 ' to 5 ' exonuc lease

activity.

ENZYMOl.OGY OK 1)NA RKI'I.ICA I ION 2 1 9

3.3 D N A P O L Y M E R A S E S a, B A N D y F R O M

E U K A R Y O T K ; C E L L S

T h e as ignement of precise M.W. for D N A pol a has been difficult because it exhibits some heterogenei ty . Multiple forms could represent proteolytic degradat ion ( 1 0 5 ) , contaminat ion o f the cells used to isolate the enzyme ( 1 0 6 ) o r the format ion o f complexes between D N A pol a and o the r proteins ( 1 0 7 , 108 ) . Most repor ts est imate the M.W. for D N A pol a ranging from 1 3 0 , 0 0 0 to 1 6 0 , 0 0 0 , with variable subunit composi t ions. T h e enzyme is inhibited by N E M and by NaCl concent ra t ions above 2 5 m M . It exhibits optimal activity with gapped D N A as template and shows little activity with pr imed-r ibohomopolymer templates such as poly A-oligo d T .

D N A pol 3 has a M.W. o f about 4 0 , 0 0 0 and it is resistant to N E M . It is st imulated by 1 0 0 - 2 0 0 m M NaCl and utilizes equally well activated D N A and pr imed-polyr ibo-or polydeoxyribonucleot ides as templates.

D N A pol 7 comprises about 1% o f the total cellular polymerase activity. T h e M.W. o f this enzyme ranges between 1 2 0 , 0 0 0 and 3 0 0 , 0 0 0 . Its p re fe r red template is poly A-oligo d T , it is st imulated by 2 0 0 m M KC1 and it is inhibited by N E M .

Since condit ional mutat ions in the genes specifying for the various D N A polymerase species a re not available in eukaryot ic cells, d ifferent approaches have been used to assign a role for each o f them: a) the levels o f D N A pol a have been found to increase in rapidly growing cells, such as those from regenera t ing rat liver ( 1 0 9 ) and neoplasic liver ( 1 1 0 ) , and also dur ing the S period o f the cell cycle ( 1 1 1 ) . No changes in the level of D N A pol 3 have been observed unde r these condit ions, a l though D N A pol 7 levels have also expe r imen ted a rise; b) the effect of the inhibitors 2 ' 3 ' d ideoxy T T P ( d d T T P ) and a r a C T P o n D N A r e p l i c a t i o n h a s b e e n examined. D N A synthesis in isolated S-phase H e L a nuclei ( 1 1 2 ) and in permeabi l ized baby hamste r kidney cells ( 1 1 3 ) is very sensitive to a r a C T P , while purified D N A pol B is resistant to this inhibitor. O n the o the r hand, d d T T P , which inhibits D N A pols 3 and 7 but not D N A pol a , does not inhibit e i ther in vitro S V 4 0

( 1 1 4 , 115) of H e L a cell ( 1 1 2 , 116) D N A synthesis; c) a third approach has been to identify the different D N A polymerase species present in replication complexes o f some animal viruses. Thus, D N A pols a and 7, but not DNA pol 3, are present in adenovirus replication complexes ( 1 1 7 - 1 1 8 ) , while D N A pol a is found in S V 4 0 replication complexes ( 1 1 4 , 115 , 119) . Addition of d d T T P to isolated nuclei which synthesize adenovirus D N A in vitro has a s t rong inhibitory effect, indicating that D N A pol 7 is required for viral r e p l i c a t i o n ( 1 2 0 ) ; d ) n u c l e i f r o m a d u l t non-dividing brain neurons contain only D N A pol 3 ( 1 2 1 ) . B y st imulating repair-type synthesis with U V light, a seven- to ten-fold stimulation o f D N A repair at tr ibutable to D N A pol B e a n be observed ( 1 2 1 , 122 ) . Also in these cells, evidence has been obtained for a role o f D N A pol 7 in mitochondria l D N A replication, since this is the only D N A polymerase species present in this organel le (106 , 123) ; e) Spadar i and Weissbach ( 1 2 4 ) have found that only D N A pol a can ex tend a natural R N A pr imer hybridized to a D N A template. Pr imers in vivo consist mainly o f short RNA transcripts ( 5 3 , 1 2 5 - 1 2 7 ) .

T h e conclusions emerg ing from these studies seem to indicate the following: D N A pol a is the replicating enzyme in the nuclei . D N A pol 3 is a repai r enzyme and D N A pol 7 replicates mitochondria l DNA. However , the possibility that D N A pol a and D N A pol 3 have minor roles in repai r and replication respectively, cannot be ruled out.

4. S E A L I N G O F D N A F R A G M E N T S

Cells have an enzyme capable of j o i n i n g single-stranded interrupt ions which arise in D N A dur ing the processes of replication, recombinat ion and repair . T h i s enzyme, called D N A ligase, is essential for viability o f the cell ( 1 2 8 ) . I t was first found en E. coli using as an assay the enzymatic conversion o f l inear lambda D N A conta in ing sticky ends to a covalently closed circular form ( 1 2 9 , 130) . D N A ligase plays an active role in discontinuous D N A replication, linking the short Okazaki f ragments to the growing ch romosome .

2 2 0 VICUÑA

4.1. E . C O L I U N A L I G A S E

T h e enzyme has been purified to

homogenei ty ; it is a single polypeptide with a

M.W. o f 7 5 , 0 0 0 (reviewed in ref. 131) . T h e

sealing react ion requires M g 2 + and also N A D

as a cofactor , to form a l igase-AMP

intermedia te complex . T h e adenyl g roup o f

the coenzyme binds to an e-amino g roup o f a

lysine residue o f the enzyme, with the release

o f N M N . In a second step, the A M P moiety is

t ransferred to the 5 ' phospha te terminus of

D N A , in a react ion that requires the free 3 '

hydroxyl end . Th i rd ly , a phosphodies ter

bond is fo rmed by a nucleophi l ic attack, o f the

3 ' hydroxyl t e rminus to the activated 5' end ,

with the concomi tan t release o f A M P . Each

step o f this react ion can be reversed by the

cor respond ing products . A m m o n i u m ions

activate the enzyme. E. coli D N A ligase can

j o i n adjacent D N A fragments and also 3 ' R N A

to 5 'DNA, only when they are hybridized to a

D N A strand.

4.2. BACTERIOPHAGE T 4 GENE 30 PROTEIN

Phage T 4 induces ( 1 3 2 ) , as does T 7 ( 1 3 3 ) , a

D N A ligase which is the product o f gene 3 0 .

T 4 D N A synthesis is impaired in gene 3 0

mutants , the re fo re the phage- induced ligase

canno t be replaced by the host enzyme ( 1 3 4 ,

135 ) . Al though the same three-step

mechan ism out l ined for the E. coli enzyme is

also followed by T 4 ligase, both enzymes

differ in several aspects: a) A T P is the cofactor

o f the phage enzyme, be ing A M P and

pyrophosphate the products o f the react ion

instead o f A M P and N M N ; b) T 4 D N A ligase

can pe r fo rm end-to-end j o i n i n g o f flush

ended D N A molecules , conver t ing ds phage

P22 D N A into ol igomers ( 1 3 6 ) ; c) in contrast

to the host enzyme, T 4 D N A ligase can j o i n

D N A o r R N A segments in all combinat ions ,

e i ther hybridized to D N A o r R N A ( 1 3 7 , 1 4 0 ) .

4.3. MAMMALIAN DNA LIGASES I AND II

T h e major D N A ligase activity present in

extracts p repared f rom mouse embryo

fibroblasts ( 1 4 1 ) , c a l f thymus ( 1 4 2 ) , rat liver

( 1 4 3 ) and a h u m a n cell l ine ( 1 4 4 ) is called

D N A ligase I . I t is an A T P - requi r ing enzyme

with a M.W. ranging from 1 7 5 , 0 0 0 to 2 0 0 , 0 0 0 .

T h e mechanism of the ligation reaction

appears to be similar to that observed with

D N A ligases o f prokaryot ic origin, since the

format ion o f l igase-AMP and D N A - A M P

intermediates has been detected ( 1 4 5 , 146) .

Mammal ian cells also contain a second

enzyme with an A T P - d e p e n d e n t D N A ligase

activity, called D N A ligase I I ( 1 4 2 ) . Im­

munological tests indicate that this enzyme

is not related to D N A ligase I ( 1 4 7 ) . Bo th

enzymes are present in the nuclei , a l though

only D N A ligase 1 levels appea r to be regulat­

ed dur ing the cell cycle ( 1 4 7 ) .

5. CONFORMATIONAL CHANGES OF DNA DURING REPLICATION

St rand separat ion at the replication fork, as

well as the el iminat ion o f the topological

constraints arising dur ing the overall process

o f duplication, a re problems inheren t to D N A

synthesis.

A m o n g the proteins that alter D N A

conformat ion are the ss D N A binding

proteins , also called hel ix destabilizing

proteins ( H D P ) . T h e y have been isolated from

a variety o f prokaryot ic and eukaryot ic

sources, and they are thought to play several

roles in the cell: a) HDPs are requi red for the

pr iming react ion o f the ss D N A phage-s and

most probably o f the E. coli c h r o m o s o m e ;

b) they activate the e longat ion reaction

catalyzed by D N A polymerases; c) HDPs

facilitate unwinding catalyzed by D N A

helicases by binding to ss D N A at the

replication fork.

Enzymes that al ter the deg ree o f

supercoiling o f D N A are called topo-

isomerases. A m o n g them, nicking-

closing enzymes (swivelases) r emove super-

helical turns f rom circular dup lex D N A

to yield a re laxed and covalently closed

molecule . T h e react ion involves the

introduct ion o f a t ransient nick into the helix,

which allows the strand to swivel in o rde r to

relieve the torque crea ted dur ing the

unwinding o f the duplex . As nicking-closing

enzymes opera te without an energy source , it

has been proposed that a covalent

enzyme-DNA complex conserves the energy

o f the phosphodies ter bond dur ing the

ENZYMOLOGY OF DNA REPLICA H O N 2 2 1

relaxat ion react ion. Swivelases lack D N A ligase-type activity. T h e i r part icipation in D N A replication is only assumed, since no mutans have been isolated to date. O n the contrary, it has been clearly established that E. coli D N A gyrase, an enzyme that introduces superhel ical turns into D N A in an A T P - d e p e n d e n t react ion, plays an active role in D N A synthesis (as well as in t ranscript ion and recombina t ion) . T h e r e is now good evidence showing that D N A must be supertwisted in o r d e r to be replicated ( 3 1 , 1 4 8 - 1 5 1 ) . In addition, D N A gyrase is the target enzyme o f nalidixic acid and novobiocin, two potent inhibitors o f D N A synthesis ( 1 5 2 ) .

Topoisomerases can be assayed by agarose-gel e lectrophoresis , where supercoiled circular duplex D N A can be separated from re laxed D N A . ( 1 5 3 ) . S ince the reaction catalyzed by both nicking-closing enzymes and D N A gyrase does not follow a single hit mechanism, the separat ion of topoisomers with an in termedia te degree o f superhelici ty can be achieved.

Actual strand separat ion is carr ied out by DNA helicases. T h e s e enzymes catalyze the hydrolysis o f A T P to A D P and Pi in a reaction coupled to strand separat ion. S o m e o f them, like £ . coli rep protein and the r e c B C nuclease, require in addition the presence o f a H D P to avoid reassociation o f the D N A strands. T h e substrate utilized to measure the activity of DNA helicases consist in a labelled polynucleotide (e.g. a restrict ion f ragment ) hybridized to non-labelled ss D N A . T h e degree o f unwinding can be quant i ta ted as the amount o f radioactive D N A which is r endered acid soluble after t rea tment o f the product with a ss specific deoxyr ibonuclease . Helicases have been isolated from E. coli, bacter io-phage-infected cells and mammal ian cells.

5.1. E. COLI HDP

E. coli D N A binding protein is a heat stable te t ramer o f 1 8 , 5 0 0 M.W. subunits ( 1 5 4 ) which binds cooperatively to ss D N A . In the absence o f M g 2 + and at low ionic s trength, it lowers the melting tempera ture o f the duplex by nearly 40°C ( 1 5 5 ) . Each t e t r amer o f the native protein interacts with 32 nucleot ides, causing

a 4 0 percent shor tening in the length of ss DNA ( 1 5 5 ) . B ind ing o f E. coli H D P to D N A reduces the activity o f most ss DNases , excep t micrococcal nuclease, E . oy/2 exonuc lease I and the nucleases associated with E. coli D N A pol II and T7- induced D N A pol ( 1 5 6 ) . Mol ineux el al. ( 156 ) have shown that, excep t for micococcal nuclease, these enzymes form stable complexes with the binding protein. Moreover , the D N A pol I I - H D P c o m p l e x is able to copy a long gap in dup lex D N A , a reaction the free polymerase cannot carry out (157) .

In vitro, E. coli H D P is required for the convers ion of ss D N A o f icosahedral and f i lamentous bacter iophages to the ds replicative form. (3) . Its role in D N A replication in vivo became evident only recently, when Meyer et al. ( 1 5 8 ) identified a mutant with a temperature-sensi t ive defect in E. coli H D P .

5.2. BACTERIOPHAGE-CODED HDPs

— T4 gene 32 protein

T h e product o f T 4 gene 32 (M.W. 3 5 , 0 0 0 ) was the first H D P isolated ( 1 5 9 ) . W h e n gene 32 protein binds to ss D N A at saturat ing levels.it covers about eight nucleotides, ex tend ing the D N A chain 5 0 percent ( 1 6 0 , 1 6 1 ) . In this ss DNA-pro te in complex , T 4 H D P forms l inear aggregates in which the D N A binding sites a re thought to be al igned. T h e s e protein-protein interact ions could be the basis for cooperat ive binding to D N A . G e n e 32 protein stimulates specifically T 4 D N A pol when assayed with a long ss D N A template ( 1 0 1 ) and also with nicked ds D N A ( 1 6 2 ) ; in the later case, it does it presumably by allowing the d isplacement o f the non- templa te s trand. T 4 H D P plays a p rominen t role in D N A metabol ism, since it is requi red for replication ( 1 6 3 ) , repai r ( 1 6 4 ) , and genet ic recombina t ion ( 1 6 5 ) .

— T7 HDP

T 7 D N A binding protein (M.W. 3 0 , 0 0 0 ) stimulates specifically T 7 D N A pol ( 1 6 6 , 167 ) . I t has not been def ined genetically, possibly because it can be replaced by E. coli H D P . T 7 HDP lowers the T m o f poly d A T by 4 0 ° C , and

222 VICl'ÑA

aggregates itself in the p re sen te of M g 2 +

( 1 6 8 ) .

— fd gene V protein

Bac te r iophage fd-coded binding protein is

absolutely required to direct the synthesis of

progeny ss viral D N A ( 1 6 9 , 170) . The native

protein consists of a d imer of 2 0 , 0 0 0 , each

m o n o m e r covering approximate ly four nu­

cleotides ( 1 7 0 , 171) . Coopera t ive binding is so

strong, that fd H D P lowers the I'm o f ds DNA

by nearly 40°C ( 1 6 9 ) . The t e r c i a n s tructure o f

gene V product o f bac te r iophage fd and its

complexes with D N A have been studied ( 1 7 2 ) .

T h e enzyme binds to c i rcular single strands in

such a way that brings toge ther non adjacent

regions o f the D N A , giving to the complex a

rod-like shape ( 1 7 3 ) . .,

5.3. EUKARYOTIC HDPs

Proteins have been isolated from plant ( 1 7 4 ) ,

mammal ian ( 1 7 5 - 1 8 0 ) and viral infected cells

( 1 8 1 , 182) by virtue o f their preferent ia l bin­

ding to ss D N A . T h i s property, c o m m o n to

their prokaryot ic counterpar ts , besides facili­

tating mel t ing o f a duplex, promotes also re-

naturat ion o f single strands, a react ion requi­

red dur ing recombina t ion and repair . HDPs

isolated from the various eukaryot ic sources

activate specifically homologous D N A poly­

merases ( 1 0 8 , 178 , 183) , indicating a possible

involvement o f these proteins in the replicati-

ve process in vivo.

Nuclei isolated from meiotic cells o f lilies

and some mammals conta in an H D P (M.W.

3 2 , 0 0 0 ) which is only active dur ing the inter­

val following the S-phase until te rminat ion o f

c h r o m o s o m e pair ing ( 1 7 4 , 184 ) . T h i s enzyme,

as well as H D P isolated from mouse ascites

cells, changes its binding capacity to ss and

ds DNA upon phosphorylat ion; which may

constitute a regulatory mechanism ( 1 7 8 ,

185) .

H u m a n adenovirus induces an H D P (its

M . W . varies with the type o f virus) which has

several functions: a) it is involved in the initia­

tion and e longat ion steps o f viral D N A repli­

cation ( 1 8 6 , 1 8 7 ) ; b) it modulates the levels o f

several early viral t ranscripts , including auto-

r e g u l a t i o n o f i ts o w n leve l s ( 1 8 8 , 1 8 9 ) ;

c) t empera tu re - sens i t i ve mutan t s in a d e n o

H D P transform rat cells at non permissive

t empera tu re at h igher frequencies than wild

type virus ( 1 9 0 ) ; d) the enzyme is also requi­

red for in vitro viral replication. When this

reaction contains endogenous viral DNA as

template , adeno H D P can be replaced by E. coli H D P ( 1 9 1 , 192) . Adeno- induced H D P is

present as a phosphoprote in that exhibits dif­

ferent degrees of phosphorylat ion ( 1 9 2 - 1 9 5 ) .

T h i s modificat ion, however, does not affect

the binding of this protein to D N A .

5.4. BACTERIAL DNA I OPOISOMERASES

—Swivelases

E. coli omega protein was the first

nicking-closing enzvme to be discovered

(196) . Since then, they have been isolated

from M. luteus ( 1 9 7 - 1 9 8 ) , Pseudomonas B A L - 3 1 ( 1 9 9 ) and .4. tumejaaens ( 2 0 0 ) . B a c ­

terial swivelases (M.W. about 1 1 0 , 0 0 0 ) art-

designated type I topoisomerases . since they

tan readily remove negative superhelical

turns but remove positive turns inefficiently.

T h e y all require only Mg~ + ion for activity,

except the enzyme from Pseudomonas B AL-3 1,

which requires in addit ion a monovalent

eation salt.

In the absence of M g 2 + , E. coli omega

protein forms stable complexes with ss DNA,

which dissociate when minute amounts of

M g 2 + are added ( 2 0 1 ) . T r e a t m e n t o f the

complex with alkali o r pronase leads to the

eleavage of the D N A chain, after which the

protein remains covalently l inked to the 5 '

terminus o f the DNA.

It has been demons t ra ted that the ss

character o f a duplex D N A molecule is

proportional to its deg ree of negative

supercoiling ( 2 0 2 ) . T h e r e f o r e , the removal o f

only negative superhelical turns, the

dependency on the degree o f supercoi l ing for

catalysis and the inhibition of the reaction by

ss DNA, are consistent with the initial binding

of bacterial swivelases to ss regions o f the

substrate in o r d e r to catalyze the relaxation

reaction.

E. coli nicking-closing enzyme also forms

salt stable complexes with ds D N A , al though

they are nei ther dissociated by the addit ion o f

M g 2 + , nor does D N A scission occur when

protein denaturants are added ( 2 0 3 ) .

E N Z Y M O L O G Y O K U N A R E P L I C A T I O N 2 2 3

Two novel react ions a re catalyzed by the E. coli and M. luteus enzymes with c i rcular ss D N A : a) in the presence of monovalent cations they form knot ted rings which can be identified by sedimentat ion and e lect ron microscopy ( 1 9 7 , 2 0 4 ) , and b) they p romote the interwinning o f circles of complemen ta ry sequences into a covalently closed duplex r ing ( 2 0 5 ) .

— DNA gyrase

D N A gyrase is an enzyme that induces negative supercoi l ing into closed ci rcular ds D N A at the expense o f A T P hydrolysis ( 2 0 6 ) . It has been isolated from E. coli ( 2 0 6 ) and M. luteus ( 2 0 7 ) , a l though most o f the studies have been pe r fo rmed with the fo rmer enzyme. D N A gyrase is an essential enzyme in E. coli ( 2 0 8 ) and it is involved in: a) replication o f 0 X 1 7 4 ( 1 4 8 ) , some plasmids ( 3 1 , 2 0 9 ) , T 7 ( 2 0 1 , 2 1 1 ) and host D N A s ( 1 4 9 ) ; b) integrative recombina t ion o f phage lambda ( 2 1 2 ) ; c) D N A repa i r ( 2 1 3 ) and, d) t ranscript ion ( 2 1 4 - 2 1 8 ) . Repl icat ion o f phage T 4 mutants in DNA-delay genes 3 9 , 52 and 6 0 unde r non permissive condit ions, also requires E. coli D N A gyrase ( 2 1 9 ) . T h e s e genes code for the componen t s o f a phage A T P - d e p e n d e n t topoisomerase (see below). In addit ion to A T P , gyrase requires M g 2 + and it is activated by spermidine ( 2 0 6 ) .

T h e purif ied enzyme can catalyze five dif ferent react ions: a) the int roduct ion o f negative superhelical turns in the presence o f A T P ; b) re laxat ion o f supercoils in the absence o f A T P ; c) D N A - d e p e n d e n t hydrolysis o f A T P to A T P and Pi; d) enzyme binding to D N A , e) site-specific cleavage o f D N A .

D N A gyrase is composed o f two subunits, A and B , which can be purif ied separately and r ecombined to reconst i tute active D N A gyrase ( 2 2 0 - 2 2 2 ) . Apparent ly , both subunits a re present independent ly in the cell, as well as forming a complex . Subuni t A is coded by nal A gene , which governs sensitivity to nalixidic and oxol inic acids ( 2 1 8 , 2 2 1 , 2 2 0 , 2 2 3 ) . W h e n purif ied separately to homogenei ty , nal A gene product is a d imer o f two identical subunits, each with a M.W. o f 1 1 0 , 0 0 0 . Nal A gene product catalyzes, as does native D N A

gyrase, the A T P - i n d e p e n d e n t and nalidixic acid sensitive relaxat ion o f positive and negative superhel ical turns o f D N A , there fore it is a type II topoisomerase ( 2 2 0 , 2 2 3 ) . Several cr i ter ia indicate that in spite o f their similar M . W . and activities, the nal A protein is not related to the o m e g a protein ( 2 2 0 ) . Subuni t B o f D N A gyrase is coded by thecou g e n e , which governs sensitivity to coumermic in and novobiocin ( 2 2 4 ) . Gel ler t et al. have found that the c o u , gene product (M.W. 9 5 , 0 0 0 ) is involved in the energy t ransduct ion aspect o f the supercoi l ing react ion and that this protein has a specific binding site for A T P which is b locked by novobiocin ( 2 2 5 - 2 2 7 ) . Native D N A gyrase is able to induce negative superhel ical turns in the p resence o f nonhydrolyzable A T P analogs ( 2 2 6 ) . T h e r e f o r e , Cozzarelli et al. have proposed that A T P acts as an allosteric ef fec tor which is hydrolyzed to A D P and Pi in o r d e r to make the enzyme work catalically ( 2 2 6 ) .

W h e n oxol inic acid and S D S are added to the react ion mix ture , D N A gyrase cleaves ds D N A site-specifically ( 2 2 0 , 2 2 3 , 2 2 5 , 2 2 6 , 2 2 8 ) . I t makes a four nucleot ide s taggered cut, c reat ing D N A termini with a 3 ' hydroxyl end and a 5 ' ex tens ion which contains the enzyme covalently bonded ( 2 2 8 ) . D N A gyrase follows then the pat tern o f type I and type I I topoisomerases , storing the energy released by scission o f the D N A backbone in a covalent enzyme-DNA intermedia te .

5.5 BACTERIOPHAGE-CODED DNA

TOPOISOMERASES

— T4 DNA topoisomerase

A distinct A T P - d e p e n d e n t D N A topo­isomerase has been isolated from T 4 infected cells ( 2 2 9 , 2 3 0 ) . T h e purified en­zyme preparat ion exhibits th ree protein componen t s : the product o f the DNA-delay gene 3 9 (M.W. 6 4 , 0 0 0 ) , the product o f the DNA-delay gene 5 2 (M.W. 5 1 , 0 0 0 ) and a third protein (M.W. 1 1 0 , 0 0 0 ) the identify o f which is not known. T 4 topoisomerase hydrolyzes A T P during the relaxat ion o f both positive and negative superhelical turns. T h e enzyme is not inhibited by the antibiotics oxol inic acid and novobiocin, which are known antagonists

2 2 4 V I C U Ñ A

oí E. coli D N A gyrase. T 4 D N A topoisomerase

is not essential for viral replication, since it can

be replaced by E. coli D N A gyrase ( 2 1 9 ) .

Under these condit ions, however, phage

DNA synthesis is depressed.

Liu et al. ( 230 ) have proposed that the

enzyme may act at the origin site in conjunc­

tion with the products o f phage genes 41 and

61 (pr imase) in o r d e r to initiate D N A synthe­

sis. I t remains to be seen i f this A TP-

dependen t T 4 topoisomerase is able to induce

superhel ical turns on ds D N A , as well as to

establish the role o f A T P in the relaxat ion

react ion.

—Lambda int gene product

This phage-coded enzyme, which is required

for integrative recombinat ion , contains

swivelase activity ( 2 3 1 ) . T h e int gene product

is a type II topoisomerase , since it re laxes

positive and negative supercoils . T h e

nicking-closing activity o f int protein shows

no sequence specificity and functions in the

absence o f a divalent cation. It is inhibited by

M g 2 + ions, spermidine and ss D N A .

—0X174 gene A and fd gene II proteins

T h e s e enzymes, which are site-specific

endonucleases requi red to start replication o f

the ds replicative forms 0 X 1 7 4 and fd

phages , ( 5 9 , 6 7 ) also display nicking-closing

activity.

W h e n 0 X R F I D N A is incubated with low

levels o f A protein, a small p ropor t ion o f

re laxed D N A is detected ( 6 0 ) . T r e a t m e n t o f

re laxed 0 X R F I V D N A with sarkosyl o r S D S

has no effect in its s t ructure. I n contrast ,

t reatment with phenol and/or prote inase K

quantitatively yields nicked R F I I D N A ( 6 0 ) .

Incubat ion o f 0 X R F I with large amounts o f A

protein yields R F I I with large detectable

re laxed structures.

U p o n t rea tment o f fd supercoi led D N A

with gene I I endonuclease , two thirds o f this

substrate are cover ted to the nicked form and one third is t r ans formed to re laxed covalently closed circles. T h i s addit ional activity o f gene I I protein might be impor tan t for the circularization o f the l inear viral s trands dur ing phage D N A synthesis ( 6 8 ) .

5.6 EUKARYOT1C DNA TOPOISOMERASES

T h e eukaryot ic enzymes have been te rmed

type I I topoisomerases since they can catalyze

relaxat ion o f both positive and negative su­

perhelical turns. They have been found in

mouse ( 2 3 2 ) , drosophi la eggs ( 2 3 3 ) , K B cells

( 2 3 4 ) , H e L a cells ( 2 3 5 ) , rat iiver nuclei ( 2 3 6 ) ,

vaccinia virions ( 2 3 7 ) , yeast ( 2 3 8 ) , e tc . In addi­

tion to their possible role at the replication

fork, they part icipate in the association of his­

tories to the c h r o m o s o m e s ( 2 3 9 ) . Eukaryot ic

swivelases exhibi t M.W. ranging from 6 0 . 0 0 0

to 8 0 . 0 0 0 and posses several features that dis­

tinguish t hem from swivelases o f bacterial ori­

gin: a) they requi re between 0 .15 M and 0 . 2 0

M monovalen t cation salt; b) they can be as­

sayed in the p resence o f excess E D T A , and c)

their activity does not d e p e n d on the deg ree

o f superhelici ty o f the substrate. O n the o the r

hand, like type I topoisomerases , they do not

requi re an energy source and catalyze the

stepwise relaxat ion of the supercoi led subs­

trate.

Work ing with the rat liver enzyme,

C h a m p o u x ( 2 4 0 - 2 4 2 ) has been able to t rap a

nicked p ro te in -DNA in te rmedia te c o m p l e x

which contains the enzyme covalentfy

a t tached to the 3 ' end . T h e chemica l na ture o f

this l inkage is not known. With respect to

specificity, the enzyme can act at any site on ds

DNA.^However , studies carr ied out with the

S V 4 0 c h r o m o s o m e , show that rat liver

nicking-closing enzyme has a p re fe rence for

six discrete sites ( 2 4 3 ) . C h a m p o u x et al. have

also demons t ra ted that in contras t to o the r

enzymes involved in D N A replicat ion, rat liver

topoisomerase levels a re not regula ted dur ing

the cell cycle ( 2 4 3 ) .

Recent ly , a D N A topoisomerase has been

purif ied f rom rat liver mi tochondr ia ( 2 4 4 ) .

T h e enzyme sensitivity to e thidium b romide

and to the t rypanocidal d rug bereni l is

d i f ferent to that o f its nuc lear counte rpar t ,

suggesting that they may be dif ferent en­

zymes.

5.7. E. COLI DNA HELICASES

— DNA helicase I

E. coli helicase I is a long, f ibrous single

polypeptide (M.W. 1 8 0 , 0 0 0 ) which is present

KN/.VM()l.(X;V ()!• 1)NA RK.I'l.ICAHON 2 2 5

at about 6 0 0 copies per cell ( 2 4 5 - 2 4 7 ) . The enzyme has a ss DNA-dependen t N P T a s e activity: A T P and d A T P are the pre fe r red substrates, a l though the o the r r N T P s are hydrolyzed to some exten t . T o initiate unwinding o f ds DN A, helicase I binds first to pro t ruding 5' ss ends which have to be at least 2 0 0 nucleotides long. It then advances in the 5' to 3 ' direct ion o f the D N A chain to which it is bound , in a react ion coupled to A T P hydrolysis. A D N A molecule with prot ruding 3 ' ss ends is not a substrate for helicase 1 ( 2 4 8 , 2 4 9 ) . Abou t 7 0 molecules o f enzyme are present continously at the separat ion fork. Since the protein has a s t rong tendency to ' form aggregates in solution, this type o f protein-protein interact ion may be the basis for cooperativity and translocation o f the enzyme at the replication fork.

A T P a s e activity o f helicase I is opt imal under condit ions where the enzyme is known to form aggregates and it is abolished when ds DNA is used as a cofactor .

D N A h e l i c a s e I w o r k s in a p r o c e s s i v e fashion: i f ss D N A is added once the react ion has started, there is no inhibit ion o f the unwinding react ion ( 2 4 8 , 2 4 9 ) .

— DNA helicase II

E. coli helicase IITM.W. 7 5 , 0 0 0 ) ( 2 5 0 , 2 5 1 ) is probably identical to D N A - d e p e n d e n t A T P a s e I isolated by Kohiyama's g roup ( 2 5 2 , 2 5 3 ) . T h e enzyme shows specificity for A T P or d A T P hydrolysis and it is inactive with o the r nucleotides ( 2 5 0 ) . As helicase I , it starts unwinding ds D N A sequentially in the 5 ' to 3 ' direct ion, a l though it requires ss ends only 12 nucleot ides long ( 2 4 8 , 2 4 9 ) . In contrast to helicase I , helicase.11 requires the cont inous absort ion o f enzyme molecules to D N A at the separation fork. T h i s s toichiometr ic require­ment o f enzyme is consistent with the inhibition observed when compet ing ss D N A is added to the assay.

— rep protein

A third E. coli D N A helicase is coded by the rep gene . T h i s protein (M.W. 7 0 , 0 0 0 ) is requ i red for the replicat ion both in vito and in

vitro of certain bac te r iophage genomes ( 0 X 1 7 4 , fd, P2) and for the ' normal replication o f the host c h r o m o s o m e ( 6 3 , 2 5 4 - 2 5 7 ) . T h i s r equ i r emen t has provided an assay for the purification o f r ep protein and the subsequent study o f its physiological role ( 6 2 - 6 4 , 2 5 8 - 2 6 1 ) .

Replicat ion in vitro o f ds 0 X 1 7 4 R F I requires the phage coded A protein, rep protein, E. coli H D P and D N A pol I I I plus e longat ion factors (62 , 6 4 ) . First, i the A protein cleaves site-specifically the viral s t rand o f 0 X 1 7 4 R F I and remains covalently bound to the 5 ' end o f the nick ( 6 0 ) . T h e dup lex D N A is then unwound by the rep protein in the presence o f H D P with the s imultaneous hydrolysis o f two A T P (or d A T P ) molecules per base pair b roken ( 2 5 8 - 2 6 2 ) . Nicked 0 X 1 7 4 R F lacking A protein is not a substrate no r a cofac tor for rep A T P a s e , suggesting that the A protein present at the nick interacts with rep to start unwinding (62 , 2 6 1 ) . In the absence o f A protein, but in the presence o f HDP, rep enzyme unwinds ds D N A when it has ss extending regions. As D N A helicases I and I I , rep protein unwinds in the 5 ' to 3 ' direc­tion ( 2 6 1 ) . T h i s is impor tan t i n ' t he react ion descr ibed above, because the 3 ' end o f the A prote in- induced nick is left in a duplex structure, to be used as a p r imer for viral replication via rolling circle mechanism.

A T P a s e activity o f rep protein requires ss D N A as a cofactor ; ds D N A o r HDP-coa ted ss D N A are inactive as cofactors . However , since the rep catalyzed unwinding react ion requires HDP, it appears that the t rue ef fec tor for the A T P a s e is the separat ing fork ( 2 6 1 , 2 6 2 ) .

— rec BC nuclease

E. coli rec B C nuclease, also called exonuclease V , plays a centra l role in genet ic recombina t ion and recombinat ional repai r ( 2 6 3 ) . T h e native enzyme is a composi te protein o f M.W. 2 7 0 , 0 0 0 which exhibits several activities: a) it is an A T P - d e p e n d e n t 5 ' to 3' and 3' to 5' exonuclease , which degrades both ds and ss D N A ; b) it is also an A TP-stimulated ss endonuc lease and c) it is a D N A dependent A T P a s e , a l though s imultaneous DNA degradat ion is not necessary for A T P hydrolysis ( 2 6 4 , 2 6 5 ) .

2 2 6 VICUÑA

S. L inn has proposed a model for the

degradat ion o f ds D N A by re t B C nuclease

( 2 6 6 ) : the enzyme binds to both strands at the

end o f the duplex. It then unwinds the strands

from o n e t e rminus , cleaving f ragments at 5 0 0

nucleot ide intervals while it remains bound to

the end o f the undegraded strand. Af ter

unwinding about 5 , 0 0 0 nucleotides, the

enzyme switches strands and degrades the ss

tail f rom its terminus , yielding a shor tened

wholly duplex molecule . T h e 5 0 0 nucleotides

long f ragments a re then degraded by the

enzyme to acid soluble ol igonucleot ides.

Presumably, A T P hydrolysis is coupled to the

unwinding o f the D N A helix and it is not

related to the actual nucleolytic activity, since

several A T P molecules a re hydrolyzed per

each phosphodies ter bond broken ( 2 6 4 , 2 6 7 ) .

I f H D P is added to this react ion, rec B C

works as a D N A helicase ( 2 6 8 , 2 6 9 ) . B ind ing

o f H D P to the ex tend ing ss tails results in

protect ion against exonucleolyt ic

degradat ion. T h e r e f o r e , the products a re

long ss pieces derived from limited nuclease

cutt ing after helix unwinding.

R e c B C enzyme is regulated by C a 2 + ions.

W h e n both C a 2 + and M g 2 + are present

simultaneously in the react ion, a marked

inhibit ion o f the nuclease activity is observed,

while the A T P a s e is not affected ( 2 6 9 , 2 7 0 ) .

U n d e r these condit ions, the enzyme binds

initially to the te rminus o f duplex D N A and

then tracks a long the D N A molecule ,

producing local and transient unwinding o f

the strads as it moves. As a result, ds D N A

remains as a dup lex s tructure, in spite o f the

fact that it contains a few n i c k s . T h e c o m b i n e d

action o f M g 2 + , C a 2 + and H D P produces

complete denatura t ion o f ds D N A and solely

ss f ragments a re found ( 2 6 9 , 2 7 0 ) .

5.8. BACTERIOPHAGE-CODED DNA HELICASES

— T4 dda protein

The purified product o f 1*4 gene dda is

DNA-dependent A T P a s e (M.W. 5 6 , 0 0 0 )

which is able to unwind ds D N A in the 5' to 3 '

direction ( 2 4 8 , 2 4 9 , 2 7 1 ) . The enzyme action

is non processive as indicated by the following

criteria: a) the n u m b e r of enzyme molecules

required to unwind D N A is a function o f the

lenght o f the DNA; b) the reaction is inhibited

when ss DNA is added to t rap Iree en/.yme

molecules. As most DNA helicases, T 4 - d d a

protein binds first to a ss region and (ba in

separation is brought about by the cont inued

adsortion o f protein molecules to DNA at the

separating fork. T h i s reaction is driven bv

A T P (or d A T P ) hydrolysis. Mutational loss o f

this enzyme is not lethal to the virus ( 2 7 2 ) .

— T7 gene 4 protein

T h i s enzyme does not only fuction as a D N A

primase for T 7 replication ( 4 5 - 4 8 ) , but also as

a nucleoside t r iphosphate-dependent D N A

unwinding catalyst ( 4 5 , 4 9 , 2 7 3 - 2 7 5 ) . T 7 D N A

pol is unable to use intact o r nicked duplex

D N A as template . However , in the presence o f

gene 4 protein and the four d N T P s , T 7 D N A

pol catalyzes the incorporat ion of d N T P s ,

which is started at a nick in ds D N A (49 ,

2 7 3 - 2 7 5 ) . T h i s activation o f the polymerase by

gene 4 protein is specific. Polymerization

occurs simultaneously with the displacement

o f o n e of the parental strands, with the

concomi tan t hydrolysis o f 4 .6 d N T P s to

dNDPs and Pi for each d N T P polymerized

( 2 7 3 ) . At later t imes in the react ion, the

polymerase j u m p s across the fork and copies

the displaced strand, the re fo re all the newly

synthesized D N A is covalently a t tached to the

template ( 2 7 4 , 2 7 5 ) .

I f the react ion mix tu re with nicked D N A

contains both d N T P s and r N T P s , 17 gene

4 unwinding protein synthesizes oligo-

ribonucleotides on the displaced ss tail which

function as pr imers for T 7 D N A pol. As a

result, D N A chains copied in the lagging

strand are not covalently at tached to the D N A

template (47 , 4 8 , 2 7 4 ) . U n d e r these

condit ions, the total n u m b e r o f d N T P s and

r N T P s hydrolyzed per d N T P incorpora ted

are 3 .0 and 1.2, respectively ( 2 7 3 ) . B o t h

p r imer and D N A synthesis a re st imulated

about 5-fold by e i ther E. coli o r T 7 binding

proteins ( 4 7 ) .

T 7 gene 4 protein is a ss DNA-dependen t

r N T P a s e or d N T P a s e ( 4 5 , 2 7 3 ) . Dup lex D N A

is a cofac tor only when hydrolysis o f

nucleoside t r iphosphates is coupled to D N A

synthesis; d d T T P , an inhibi tor o f T 7 D N A

pol, stops N T P a s e activity. Moreover , 3 — 7

E N Z Y M O L O G Y O F D N A R E P L I C A T I O N 2 2 7

methylene d T T P , which cannot be

hydrolyzed to T D P and Pi, inhibits also D N A

synthesis ( 2 7 3 ) .

5.9. EUK.ARYOTIC DNA HELICASES

Cobianchi et al. ( 2 7 6 ) have isolated from

human cells a ss D N A - d e p e n d e n t A T P a s e

(M.W. 1 1 0 , 0 0 0 ) . T h e enzyme binds first to ss

D N A and moves a long in the 5 ' to 3 ' direct ion

unwinding dup lex D N A . H u m a n A T P a s e can

activate D N A pol 6 from H e L a cells possibly

by providing it with a template upon

denatura t ion o f the duplex . d N T P

incorporat ion is e n h a n c e d even futher by ca l f

thymus HDP.

In contras t to E. coli helicase I, human

helicase is unable to unwind R N A fragments

hybridized to D N A .

6. CONCLUSIONS

A b r i e f outl ine o f some o f the proteins

involved in D N A replication has been

presented. As stated before , the re is direct

p r o o f for the part icipation o f most o f them in

this process. O t h e r proteins , like lambda int

gene product and rec B C nuclease a re not

involved in D N A synthesis, but they have been

included due to their similarity with

replicat ing proteins .

Al though all these enzymes have been

discussed independent ly , o n e has to imagine

all o f them working as a repl isome complex at

the replication fork.

D N A synthesis starts at a specific origin and

proceeds almost continously in the leading

strand. At t h e same t ime, helicases with the

help o f H D P s unwind the duplex , and

discont inuous synthesis proceeds in the

lagging strand. Pr iming o f Okazaki f ragments

may requi re several proteins and elongat ion

proteins. La te r , Okazaki f ragments a re

processed and sealed by D N A ligase to form a

cont inuous polynucleot ide chain.

S o m e aspects o f D N A synthesis remain still

obscure . Not much is known about its

regulat ion and the mechan i sm o f te rminat ion

o f c h r o m o s o m e replication. T h e answer o f

these quest ions presents cer tain difficulties,

since the various systems which have been

investigated, a l though shar ing a c o m m o n

genera l pat tern, present also several different

features. F o r example , a c i rcular duplex

molecule may replicate th rough a rolling

circle o r a Cairns ( tetha) type o f in termediate ,

or both. W e still have to learn the role o f

adenovirus terminal protein, the lambda

genes O and P and the T antigen of S V 4 0 in

the initiation react ion, e tc . The picture

complicates even fur ther when cons ider ing

the involvement o f enzymes that display more

than a single catalytic activity, such as D N A

gyrase, 0 X 1 7 4 A protein, fd gene II protein

and T 7 gene 4 protein.

Finally, it is interest ing to point out how

actively A T P participates in D N A replicat ion:

a) pr imases pre fe r to start with A T P at the 5 '

end ; b) A T P is required for the format ion of

specific complexes a m o n g proteins , i.e. dna

B-dna C, pr imed- template-e longat ion factor

I, etc.; c) A F P es a cofac tor for D N A ligases

and d) A T P is hydrolyzed by helicases, gyrase,

dna B , replication factor Y , T 4 coded

topoisomerase, T 4 gene 41 protein, e tc .

ACKNOWLEDGEMENTS

I am grateful to E. Cardemil, J . Eyzaguirre and A. Yudelevich for their help in the preparation of this manuscript.

REFERENCES

1. GEIDER, K . C u r r . Topics Microbiol. Immunol .

74:55-112. 1976. 2. ALBERTS, B . , STERNULAN*, R . Nature 2 6 9 : 6 5 5 - 6 6 1 ,

1977. 3. WICKNEK, S. Ann. Rev. Biochem. 47:1163-1191, 1978. 4. SHEININ, R . , HUMBERT, J . , PEARLMAN, P . E . Ann. Rev.

Biochem. 47:277-316, 1978.

5. H u R w i r z , J . CRC. Crit. Rev. Biochem. 7:45-74, 1979. 6. KORNBERG, A. CRC. Crit. Rev. Biochem. 7:23-43,

1979.

7. Boucm:, J .P . , ZUMEL, K., KORNBERC, A. J. Biol. Chem. 250:5995-6001, 1975.

8. WICKNER, S. Proc. Natl. Acad. Sci. USA. 74:2815-2819, 1977.

9. BENZ, E . , REINBERC, D., VICUÑA, R . , HLKWITZ, J . J. Biol.

Chem. in press, 1980.

10. ROWEN, L., KORNBERG, A . J . Biol. Chem. 255:758-764 , 1978.

11. REICHARU, P., ROWEN, L. , EI.IASSON, R . , HOBBS. S.,

ECKSTEIN, F . J . Biol. Chem. 255:7011-7016 , 1978.

2 2 8 V I C U Ñ A

12. S I M S , J . , Koms, K., DRLSSI.EK, D. (x>ld Spring Harbor Symp. Quant. Biol. 45:349-365, 1978.

13. SIMS, J . , CAPON, D., DRESSIER, D. ) . Biol. Chem.

254:12615-12628 , 1979. 14. L i u , L . F . , DKCEW, R.E. , WANG, ].C. | . Mol. Biol.

706:439-452, 1976. 15. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA.

77:4120-4124, 1974.

16. ScilEKMAN, R . , W E I N E R , | . H . , W t l N t k , A., KoRNIURG, A.

J . Biol. Chem. 250:5859-5865 , 1975. 17. MCMACKEN, R., KORNBERG. A. J . Biol. Chem.

255:3313-3319 , 1978. 18. MCMACKEN, R., U t .uA, K . KORNBERG. A. Proc. Natl.

Acad. Sci. ISA. 74:4190-4194, 1977. 19. WICKNER, S., WRIGHT, M., HURWIIZ, J . Proc. Natl.

Acad. Sci. USA., 77:783-787, 1974.

20. REHA-KRAN I z, L . J . , H I - R W I I / , J . | . Biol. Chem. 255:4051-4057, 1978.

21. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA. 72:921-925, 1975.

22. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA. 72:3342-3346, 1975.

23. BOUCHE, J .P . , Row EN, L . , KORNBERG, A . J . Biol. Chem. 255:765-769, 1978.

24. ROWEN, L . , KORNBERG, A . J . Biol. Chem. 255:770-774, 1978.

25. VICUÑA, R., HURWIIZ,J. WALLACE, S., GIRARU, M . J . Biol.

Chem. 252:2524-2533 , 1977.

26. VICUÑA, R., IKEDA, J . , HURWIIZ, J . J . Biol. Chem.

252:2534-2544 , 1977.

27. GEIDER, K . , BECK, E., SCHALLER, H. Proc. Natl. Acad.

Sci. USA. 75:645-649, 1978.

28. G E I D E R , K . , K O R N B E R G , A. J . B i o l . C h e m .

249:3999-4005 , 1974.

29. BACKMAN, K . , BETLACH, M., BOVER, H . W . , YANOESKY, S.

Cold Spring Harbor Symp. Quant. Biol. 45:69-76, 1978.

30. KAHN, M.L., FIGURSKI, D., lio, L . , HELINSKI, D.R. Cold

Spring Harbor Symp. Quant. Biol. 45:99-103, 1978.

31. IIOH, T . , TOMIZAWA, J . Cold Spring Harbor Symp. Quant. Biol. 45:409-417, 1978.

32. TOMIZAWA, J . , OHMORI, H., BIRD, R. Proc. Natl. Acad.

Sci. USA. 74:1865-1869, 1977. 33. BIRD. R., TOMI/AWA, | . | . Mol. Biol. 720:137-143.

1978. 34. LARK, K.G. J . Mol. Biol. 64:47-60, 1972. 35. MESSER, W . J . Bact. 772:7-12, 1972. 36. MESSER, W . , DANKWARIH, L . , TIPPE-SCHINDLER, R.,

WOMACK, J . E . , ZAHN, G. in DNA synthesis and its

regulation (Goulian, M., Hanawalt, P. Eds.) W . A . Benjamin Inc. USA. 1975, pp. 602-617.

37. TOMIZAWA, ) . , S I L / I R , G. Ann. Rev. Biocheni.

4<V:999-1034, 1979.

38. DOVE, W . F . , IMIKUCHI, H . , STEVENS, W . F . in The

bacteriophage lambda (Hershey, A.D., E d ) . Coltl Spring Harbor Press. 1971, pp. 747-771.

39. Liu, C.C., BURKE, R.L., HIRNER. U . , BAKKV, ] . . Ai IIERTN.

B. Cold Spring H a r b o r Symp. Quant . Biol. 45:469-487, 1978.

40. SILVER, L . L . , NOSSAL, N.G. Cold Spring Harbor Svmp. Quant. Biol. 45:489-494, 1978.

41. B i r r s K R , M., BURKE, R .L . , ALBERTS, B. | . Biol. Chem. 254:9565-9572, 1979.

42. NOSSM, N. J . Biol. Chem. 254:6020-6031 , 1979. 43. MORRIS, CM.I-. , MOKMM, I..A., A u n t R i s . B. |. Biol.

Chem. 254:6797-0802, 1979. 44 NOSSAL, N . G . , PITI.RI.ISG, B.M. J . Biol. Chem.

254:6032-6037, 1979. 45. I i 11 I.EMIKAMI, ( . . , MORI i.i.i, ( . . , LA*K\ , E . , Si;m KWIMCXK.

E . Cold Spring H a r b o r Svmp. Quanl . Biol. 43:449-459, 1978.

46. SCIII-RZINGER, E . , LANKA, E . . MOKLLLI, G. , S H I I I K I , I ) . .

VIKI. A . Eur. J . Biocheni. 72:543-558, 1977. 47. ROMANO, L . J . , Rn IIARDSON, CM. | . Biol. Chem.

254:10476-10482, 1979. 48. ROMANO, L . S . . Ri< M'AKDSON, ( i n . | . Biol. Chem.

254:10483-10489, 1979.

49. KOI.ODNER, R., MASAMUNE, Y . , Le CI . IRC, | . E . ,

RICHARDSON, CM. J . Biol. Chem. 255:566-573 . 1978.

50. OKA/.AKI, I . , K l R O S A U A , Y . , O l . A U \ , 1.. S t K I , I .,

S l l l N O / \ K I , K. , H l R O M , S . , F l j | I V A M A . A.A.. K o i l A K f G Y . .

MAGUIDA, Y., TAMANOI, F\, H o / i i U i , I . Cold Spring

Harbor Symp. Quant. Biol. 45:203-219, 1978. ,

51. Scm.R/iM.t.K. E . , LANKA, E . , Mil LEMKRAMD. (.. Nucí. Ai.

Res. 4:4151-4163, 1977.

52. LANK\, E . , SI HEKZINCIK, E . . GUNIHIK, E . . S c i i y s T i K, I I .

Proc. Natl. Acad. Sci. USA. 76:3632-3636. 1979. 53. REKIIARD, P. , EI.IAS.SON, R., SODI RM VK, (.',.. Proc. Natl.

Acad. Sci. ISA. 7/:49(ll-49t)5, 1974. 54. ELIASSON, R . , R i K H A R D , P. Nature 272:184-185, 1978. 55. REKIIARD. P. , ELIASSON, R. Cold Spring Harbor Sunp.

Quant. Biol. 45:271-277, 1978.

56. DRESSIER, D., WOI.ESON, ) . Proc. Natl. Acad. Sci. USA. 67:456-463. 1970.

57. Koms, K . , DRESSIER. D. Proc. Natl. Acad. Sci. u s * .

75:605-610. 1978. 58. ALLISON, D .P . . GANEN vs.. A . T . . MURA. S . Fed. P r i x .

55:1491, 1974. 59. HENRY, T . J . , KMPHERN, R. Proc. Natl. Acad. Sci. ysi\.

77:1549-1553, 1974. 60. IKEDA, J . , Yi DELEYICH. A . , H i RUIIZ, ]. Proc. Natl. Acad.

Sci. ISA. 75:2669-2673. 1976. 61. IKEDA, ) . , Yi DEI.EA K M. A . , SIIIMAMOIO. H . , H I KUI I/ . J. | .

Biol. Chem. 254:9416-9428 , 1979. 62. Si MIDA-YASI Muro, Cti., IKKI>\. } . . BEN/, E . . M \RIANN. K. .

VICUÑA, R., SUGRUI, S., Zii'i KSKI. L . , HiRuiiyi, J .

Spring Harbor Svmp. Quant. Biol. 4 5 : 3 1 1 - 3 2 9 . 1978.

63. ElSENBERG. S-, ScOTI, J.F., KoRNBIRG, A . Proc. Natl.

Acad. Sci. VSA. 75:1594-1597, 1976. 64. EISENBERG, S., Scon, J . F . , KORNBERG, A . Cold Spring

Harbor Symp. Quant. Biol. 45:295-302. 1978. 65. EISENBERG, S., KORNBERG, A . J . Bio l . C h e m .

254:5328-5332, 1979. 66. LANGEVELD. S.A., VVN MANSUI.II, A . D . M . . B\.v>. P .D. ,

JANS/, H.S., VAN ARKEL, G . A . , WEISSBEI K, P . J . Nature

277:417-420, 1978. 67. LIN, N.S.C.. PRAM. D . J . Mol. Biol. 72:37-49, 1972. 68. GEIDER, K . , MEYER, I F . Cold Spring Harbor Symp.

Quant. Biol. 45:59-62, 1978. 69. M E Y E R , T . F . , ( i n HER. K . J . B i o l . C h e m .

254:12636-12642, 1979. 70. M E Y E R , T . F . , ( « E I D E R . K . ) . B i o l . Q h e m .

254:12643-12646, 1979. 71. SCHALLER, H. Cold. Spring Harbor Symp. Quant.

Biol. 45:401-408, 1978.

E N Z Y M O I A ) G Y O K ON A R E P L I C A T I O N 2 2 9

7'.». E N Q I I S I . 1 . .W. , S K U K A . A.M. 1 1 B S 5:279-283, 1978.

73. E S P E J O . R . T . . C \ M i.o. E.S. , S I N S I I E I M I K . R . L . J . Mol. Biol.

56.597-621. 1971.

74. KoKMiiRc. 1.. K O R N I U R G . A . in The Enzymes (Bover.

P. E<1.)3"' Edition. Academic Press. New York. 1974.

/fV: 119-144.

75. ( W H K R . Ml. . Ann. Rev. Biochem. 44:45-78. 1975.

76. G \ss, K . B . . Co/z V R E I . L I . N R . J . Biol. C h e m .

2 ^ : 7 6 8 8 - 7 7 0 0 . 1973.

7 7 . G \ N I S M A N . A .T . . Y I I I I . E , C O . . Y i . C.C. Biochem.

Biophvs. Res. Coinniun. 50:155-163. 1973.

78. Nvs. I.E.. K I . E P P E . K. EEBS Lett. 4 ? : 180-184, 1974.

79. K O R N B E R G . A. Science 16J: 1410-1418. 1969.

80. G E E T E R . M . L . in Piogi. Nucl. Ac. Res. Mol. Biol.

(Davidson. I .M. . C.ohn. W . E . Eds.) Academic Press.

New York. 1974. 74:101-1 15.

8 1 . M . H E N R Y , C . S . . C R O W . W . J . B i o l . C h e m .

2W: 17 18-1753, 1979.

82. Low, R . L . . R A I I S B ¿ I > M , S.A., C D Z Z A R E I . I . I , N.R. J . Biol.

Chem. 257:1311-1325 , 1976.

83. ZIMMERMAN, B . K . J . Biol. Chem.247:2035-2041 . 1966.

84. C H U N , A., E D G A R , D . B . , T R E I . A , J . M . J . Bact .

727_: 1550-1557. 1976.

85. Vu i V Y , R. , V A I D E S , F . J . , M E D I N A , M.A., Yi D E I . I A K M , A.

J . Bact.' in press, 1980.

8 6 . D» B E , D.K., K I N K E L , T.A. , S E A L , G . , L O E B , L.A.

Biochim. Biophys. Acta 567:369-382. 1979.

87. W E I S S B A C H , A . Ann. Rev. Biochem. 46:25-47, 1977.

88. S A R N G A D H A R A N . M.G. , R O B E R T - G I R O E E , M. , G A L L O , R.

Biochim. Biophys. Acta, 5 /6 :419-487 , 1978.

89. S i A I D E N B A I E R , W . L . Mol. Gen. Genet. /49:151 - 1 5 8 .

1976.

9 0 . K E L L Y , R . B . , C O Z Z A R E I . L I , N .R . , D E I I S C H E R , M . P . ,

L E H M A N , I .R. . K O R N B E R G , A . J . Biol. Chem. 245:39-45 ,

1970.

9 1 . L E H M A N , I .R. , U Y E M U R A , D.G. Science 795:963-969,

1976.

92. (Ill I l k , M.L . , H I R O I A , Y., K O K N B L K I . , T., W E I I I S I . I R ,

J . A . , B A R N O I x, C. P r o c . Natl. Acad. Sci. I S A .

6#:3150-3153. 1971.

93. L I V I N G S T O N , D . M . , R I C H A R D S O N , C. J . Biol. Chem.

250:470-478, 1975.

94. W I C K N E R , S. Proc. Natl. Acad. Sci. I S A . 75:3511-3515,

1976.

95. M c H E N R Y , C , K O R N B E R G , A. ) . B io l . C h e m .

252:6478-6484, 1977.

96. M E Y E R , R.R., S H L O M A I , J . , K O B O K I , ) . , B A T E S , D .L . ,

R O W E N , L., M C M A C K E N , R . , U E D A , K . , K O R N B E R G , A.

Cold Spring Harbor Symp. Quant. Biol. 45:289-293 , '

1978.

97. H I K W I I Z , J . , W I C K N E R , S. Biochem. Biophys. Res.

Commun. 57:257-267, 1973.

98. M C H E N R Y , C. Abst. XI' 1 ' Intern. Congress Biochem. Toronto, p. 42, 1979.

99. C M H . I L I A N , M., L U C A S . Z . ) . , K O R N B E R G , A . ] . Biol. Chem. 245:627-638, 1968.

100. H U A N G , W . M . , L E H M A N , R .R . J . Biol . C h e m .

247:3139-3146, 1972.

101. Hi B E R M A N , J . , K O R N B E R G , A . , A L B E R T S , B . J . Mol. Biol.

62:39-52, 1971.

102. P I P E R N O , J . R . , A L B E R T S . B .M. J . Biol . C h e m .

255:5174-5179, 1978.

1 0 3 . P I P E R N O . J R . . K A I I E N . R.C;., A L B E R I S , B.M. J . Biol.

Chem. 2 5 3 : 5 1 8 0 - 5 1 8 5 , 1 9 7 8 .

1 0 4 . M A R K . J . F . , Ru I I A R D S D N , C. Proc. Natl. Acad. Sci. L I S A .

7 . 5 : 7 8 0 : 7 8 4 , 1 9 7 6 .

1 0 5 . B R A K E I . C . L . . B I I M I N I U M , A . B . Biochemistry

/ 6 : 3 1 3 7 - 3 1 4 3 , 1 9 7 7 .

1 0 6 . B o i D E N . A., N O Y , G.P. , W K L S K B A I . I I , A. ]. Biol. Chem.

2 5 2 : 3 3 5 1 - 3 3 5 6 , 1 9 7 7 .

1 0 7 . Mn I I A I I , M., Di R I C O N D O , A.M. Eur. J . Biochem.

5 « : 4 6 1 - 4 6 6 , 1 9 7 5 .

1 0 8 . H E R R I C K , G . , D E E D S , H., A L B E R I S , B. J . Biol. Chem.

2 5 7 : 2 1 4 2 - 2 1 4 6 , 1 9 7 6 .

1 0 9 . B A R I I , E . F . , J E N K I N S , M.D., B R O W N , O., L A S Z L O , | . ,

M O R R I S , H.P. Cancer Res. 5 5 : 1 1 8 7 - 1 1 9 3 , 1 9 7 3 .

1 1 0 . Gnu, J . F . , C R A D D O C K , C , M O R R I S , H.P., H N M . I C A , L .S .

Cancer Biochem. Biophys. 7 : 1 3 - 2 1 , 1 9 7 4 .

1 1 1 . S P A D A R I , S., W E I S S B A C H , A. J . Mol. Biol. # 6 : 1 1 - 2 0 , 1 9 7 4 .

I 12 . W I S I , E. Biochem. Biophys. Acta 5 6 2 : 6 2 - 6 9 , 1 9 7 9 .

1 1 3 . C A S i E L L o i , J . J . , M I L L E R , M.R., L E H T O M A K I , D.M.,

P A R D E E , A . B . J . Biol. Chem. 2 5 4 : 6 9 0 4 - 6 9 0 8 , 1 9 7 9 .

1 1 4 . E D E N B E R G , H.J., A N D E R S O N , S., D E P A M P H I L I S , M.L. J.

Biol. Chem. 2 5 5 : 3 2 7 3 - 3 2 8 0 , 1 9 7 8 .

1 1 5 . D E P A M P H I L I S , M.L. , A N D E R S O N , S., B A R - S I I A V I I , R.,

C O L L I N S , E., E D E N B E R G , H., H E R M A N , T . , K A R A S , B.,

K A L L M A N N , G. , K R O K A N , H., S H E L T O N , E., S I , R „ T A P P E R ,

D., W A S S A R M A N , P.M. Cold Spring Harbor Svmp.

Quant. Biol. 4 5 : 6 7 9 - 6 9 2 , 1 9 7 8 .

1 1 6 . W A O U A R , M.A., E V A N S , M.J., H L B E K M A N , J.A. Nucl. Ac.

Res. 5 : 1 9 3 3 - 1 9 4 6 , 1 9 7 8 .

1 1 7 . A R E N S , M., Y A M A S H I I A , T . , P A D M A N A B I I A N , R., T S U R N O ,

T . , G R E E N , M . J . Biol. Chem. 2 5 2 : 7 ° 4 7 - 7 9 5 4 , 1 9 7 7 .

1 1 8 . B R I S O N , O., K E D I N G L R , C., W I I . H E L M , J. | . Virol.

2 4 : 4 2 3 - 4 3 5 , 1 9 7 7 .

1 1 9 . O n o , B„ F A N N I N G , E. Nucl. Ac. Rs. 5 : 1 7 1 5 - 1 7 2 8 ,

1 9 7 8 .

1 2 0 . V A N D E R V I . I E I , P.C., K W A N T , M.M. Nature

2 7 6 : 5 3 2 - 5 3 4 , 1 9 7 8 .

1 2 1 . H C B S C H E R , U . , Kl E N Z L E , C . C , LlMACHER, W . , ScHERRER,

P., S P A D A R I , S. Cold Spring Harbor Symp. Quant.

Biol. 4 5 : 6 2 5 - 6 2 9 , 1 9 7 8 .

1 2 2 . Hi B S C H E R , U . , K U E N Z L E , C.C., S P A D A R I . S. Proc. Natl.

Acad. Sci. C S A . 7 6 : 2 3 1 6 - 2 3 2 0 , 1 9 7 9 .

1 2 3 . H U B S C H E R , U . , Ki E N Z L E , C.C., S P A D A R I , S. Eur. ].

Biochem. A 7 . 2 4 9 - 2 5 8 , 1 9 7 7 .

1 2 4 . S P A D A R I , S., W E I S S B A C H , A. Proc. Natl. Acad. Sci.

I S A . 7 2 : 5 0 3 - 5 0 7 , 1 9 7 5 .

1 2 5 . A N D E R S O N , S., K A L E M A N N , G . , D E P A M P H I L I S . M.L .

Biochemistry 7 6 : 4 9 9 0 - 4 9 9 8 , 1 9 7 7 .

1 2 6 . T S E N G , B . Y . , G O I L I A N , M . J . Mol. Biol. 9 9 : 3 3 9 - 3 4 6 ,

1 9 7 5 .

1 2 7 . W A Q L A R . M . A . , Hi B E R M A N , J . A . Cell; 6 : 5 5 1 - 5 5 7 , 1 9 7 5 .

1 2 8 . P A L L I N G , C , H A M M , L . Proc. Natl. Acad. Sci. i s\.

6 0 : 1 4 9 5 - 1 5 0 2 , 1 9 6 8 .

1 2 9 . G E L L E R I , M. Proc. Natl. Acad. Sci. is\ . 5 7 : 1 4 8 - 1 5 5 ,

1 9 6 7 .

1 3 0 . G E E T E R , M.L., B E C K E R , A., Hi R I V I I / , ). Proc. Natl.

Acad. Sci. I S A . 5 5 : 2 4 0 - 2 4 7 , 1 9 6 7 .

1 3 1 . L E H M A N , l.R. Science: 7 5 6 : 7 9 0 - 7 9 7 , 1 9 7 4 .

1 3 2 . W E I S S , B., R I C H A R D S O N , C. Prod. Natl. Acad. Sci. I S A .

5 7 : 1 0 2 1 - 1 0 2 8 , 1 9 6 7 .

1 3 3 . M A S A M U N E , Y . , F R E N K E L , G.D., R I C H A R D S O N , C . J . Biol.

Chem. 2 4 6 : 6 8 7 4 - 6 8 7 9 , 1 9 7 1 .

2 3 0 VICUÑA

1 3 4 . S lGIMOIO. K . , O K A / . A K I . T . , O k A / A K I . R. PlOC. Nall.

Acad. Sci. I S A . 60:1356-1362. 1968. 135. N E W M A N , ) . , H A N A U A L I , P. Cold Spring Harbor Svinp.

Quant. Biol. 53:145-150. 1968. 136. S G \ R A M E L L A , V. P r o c . Nat l . A c a d . Sci. i s v.

69:3389-3393. 1972.

137. K l . E P P E , K . , VAN lit S A S D K , J . H . . K l I O R A N A , H . G . P l O C .

Natl. Acad. Sci. I S A . 67:68-73, 1970.

138. F A R E E D , ( i . C , W i l l , E.M.. R I C H A R D S O N , C. J . Biol.

Chem. 246:925-932, 1971.

139. S A N O , H . , F E I X , G . Biochemistry /5:51 10-5115, 1974.

140. N A I I I . K. , H U R W I I Z , ) . | . Biol. C:hem. 249:3680-3688 ,

197*4.

141. B E A R D , P. Biochim. Biophys. Acta: 269:385-396,

1972.

142. SontRi iAi . i , S., L I N D A I I I . , T . Biochim. Biophys. Res.

Commun. 53:910-916, 1973.

143. Z I M M E R M A N , S . B . , L E \ I N . C . J . ) . Biol. C h e m .

250:149-155, 1975.

144. P U M I A I J - N O V , G . L . . S l ' A D A k l , S.. ClARROCGIII, G. , P E I I R I N I .

A.M., F A I . V K . H I , A . , Eur. ]. Biochem. 39:343-351, 1973.

145. S O D E R H A I E , H . , L I M H H I . , T . | . Bio l . C h e m . 24^:672-675, 1973.

146. S O D E R H A I . ! . . S. Eur. J . Biochem. 57:129-136. 1975. 147. S O D E R H A L I , S . , L I N D A I I I . , T . J . B io l . C h e m .

250:8438-8444. 1975.

148. M A R I A N S , K . J . , I K E D A , ]., S C I I I . A C . U A N , S., H I K W U Z . J .

Proc. Natl. Acad. Sci. I S A . 74:1965-1968, 1977.

149. D K I I C A , K. , S N Y D E R , M. ]. Mol. Biol. 720:145-154, 1978.

150. M A I I E K N . M.R., P A I N I K R , R . B . Biochim. Biophvs.

Acta. 563:293-305, 1979.

151. M A I I - E R N , M.R. , P A L M E R , R . B . Biochim. Biophys.

Acta. 563:306-312, 1979.

152. C O Z Z A R E L L I , N.R. Ann. Rev. Biochem. 46:641-

668, 1977.

153. K E L L E R , W . , W E N D E L L , I . Cold Spring Harbor Symp.

Quant. Biol. 39:199-208, 1975.

154. W E I N E R , J . H . , B E R I S C H , L . L . , K O R N B E R G , A . | . Biol.

Chem. 250:1972-1980 , 1975.

155. S l t . A L , N., D E L I U S , H . , K O R N B E R G , T . . G E E I E R , M.L.,

A L B E R I S , B . P r o c Natl. Acad. Sci. I S A . 69:3537-3541,

1972.

156. M O L I N E L X , I . J . . G E E I E R , M.L. ) . Mol. Biol. 9#:811-825,

1975.

157. MoiiNEix, I . J . , F R I E D M A N , S . , G E E T E K , M.L. J . Biol.

Chem. 249:6090-6098 , 1974.

158. M E Y E R , R.R., G L A S S B E R G , J . , K O R N B E R G , A . Proc. Natl.

Acad. Sci. L ' S A . 76:1702-1705, 1979.

159. A L B E R I S , B . M . , F R E Y , L . Nature227:1313-1318, 1970.

160. J E N S E N , D . E . , K E L L Y , R.C., V O N H I P P I E , P . H . J . Biol.

Chem. 257:7215-7228 , 1976.

161. D E L R S , H., M A N T E L L , N . J . , A L B E R I S , B . M . J . Mol. Biol.

67:341-350, 1972.

162. N O S S A L , N . G . J . Biol. Chem. 249:5668-5676 , 1974.

163. E P S T E I N , R., B O L L E , A., S T E I N B E R G , C , K E L L E N B E R I . E R , E.,

B O Y D E L A T O U R , E., C H E V A L L E Y , R., E D G A R , R., S I S M A N ,

M., D E N H A R D I , G., L i E i . A i s i s , A. Cold Spring Harbor

Symp. Quant. Biol. 2<?:375-392, 1963.

174. We, J . , Y F H , Y . J . Virol. 72:758-765, 1973.

1 6 5 . T O M I Z A U \ , ] . . A N R A K I . N. , 1 \ \ A M A . Y . | . Mol. Biol.

2 7 : 2 4 7 - 2 5 3 . 1 9 6 6 .

1 6 6 . St i i r . K / i M . E R . E . . L I I I I N , I .. ] o s i , E . Mol. ( . tu . Genet.

7 2 3 : 2 4 7 - 2 6 2 , 1 9 7 3 .

1 6 7 . R E U B E N , R.C.. G E M I R . M . L . Proc. Natl. Acad. Sci. i s \ .

7 0 : 1 8 4 6 - 1 8 5 0 . 1 9 7 3 .

1 6 8 . R E U B E N , R . C . , G E M I R , M . L . J . Biol . C h e m .

2 4 9 : 3 8 4 3 - 3 8 5 0 . 1 9 7 4 .

1 6 9 . S A L S i R O M . J .S . . P R A I I . O . J . Mol. Biol. 61:

4 8 9 - 5 0 1 , 1 9 7 1 .

1 7 0 . O E Y . J . L . , K N I I T E R S , R . J . Mol. Biol. 6.V: 1 2 5 - 1 3 8 . 1 9 7 2 .

1 7 1 . A L B I R E S , B . , F R E Í , L . . D E L H S , H . J . Mol. Biol. 6 ^ : 1 3 9 - 1 5 2 . 1 9 7 2 .

1 7 2 . M c P l l E R S O N , A . , Joi 'RNAk, F . . W \ N G , A., K o i I ' V k , 1'..

M o i . i N t i N , L, Run, A . Cold Spring Harbor Svmp.

Quant. Biol. 4 3 : 2 1 - 2 8 , 1 9 7 8 .

1 7 3 . P R A I I , D.. L A W S , P . , Gkiiiiin, | . J . Mol. Biol.

« 2 : 4 2 5 - 4 3 9 , 1 9 7 4 .

1 7 4 . Hon A . Y. . S i i .RN. H . Dev. Biol. 2 6 : 8 7 - 9 9 . 1 9 7 1 .

1 7 5 . HikkiGk. G. . A i H I K I S , B . M . | . Bio l . Clieni.

2 5 7 : 2 1 2 4 - 2 1 3 2 , 1 9 7 6 .

1 7 6 . D i c i i i . M . , i n R . M O N D O , A . M . J . Biol. Chem.

2 5 5 : 1 6 6 0 - 1 6 6 6 . 1 9 7 8 .

1 7 7 . T S A I , R.L., G R E E N , H . J . Mol. Biol. 7 3 : 3 0 7 - 3 1 6 . 1 9 7 3 .

1 7 8 . O M O , B . , B A V N K S , M . . K N U ' P E R S . R. Eur. J . Bioilieni.

7 3 : 1 7 - 2 4 , 1 9 7 7 .

1 7 9 . E N O M O I O , "!'., Y A M A H A , M. Biochem. Biophvs. Res.

Commun. 7 7 : 1 2 2 - 1 2 7 , 1 9 7 6 .

1 8 0 . N A S S , F R E N K E L , G.D. J . Biol. Chem. 2 5 4 : 3 4 0 7 - 3 4 1 0 ,

1 9 7 9 .

1 8 1 . V A N D E R V I . I E I , P . C . , L E V I N E , A . J . , E N S I N G I K . M..

( . I N S B E R G , H.S. |. Virol. 7 5 : 3 4 8 - 3 5 4 . 1 9 7 5 .

1 8 2 . P I R I E O Y , D.J.M., P O W E L L , K . L . J . Virol. 7 9 : 7 1 7 - 7 3 1 .

1 9 7 6 .

1 8 3 . B L U E , W . T . , W I I S S I I A I I I . A . Biochem. Biophvs. Res.

Commun. # 4 : 6 0 3 - 6 1 0 , 1 9 7 8 .

1 8 4 . M A I L E R , | . , H O I I A , Y . Exp. Cell. Res. / 0 9 T 8 1 - I 8 9 .

1 9 7 7 .

1 8 5 . H O L L A , Y . , S I I R N , H . Eur. J . Biochem. 9 5 : 3 1 - 3 8 ,

1 9 7 9 .

1 8 6 . V A N D E R V I . I E I , P . C . , Si S S E N H A G I I , ) .S. Virologv

6 7 : 4 1 5 - 4 2 6 , 1 9 7 5 .

1 8 7 . H O R W I T Z , M . S . P r o c . Nat l . A c a d . Sci . i s \ .

7 5 : 4 2 9 1 - 4 2 9 5 , 1 9 7 8 .

1 8 8 . C A R T E R , T . H . , ( Í I M S B E R G , H.S. | . Virol. IS: 1 5 6 - 1 6 6 ,

1 9 7 6 .

1 8 9 . C A R E E R , T . H . , B L A N I O N , R.A. ) . Virol. 2 5 : 6 6 4 - 6 7 4 .

1 9 7 8 .

1 9 0 . W I L L I A M S , J . F . , Y o l N G , C . S . H . , H A I S I I N , P.E. Cold

Spring Harbor Symp. Quant. Biol. 5 9 : 4 2 7 - 4 3 7 .

1 9 7 4 .

1 9 1 . H o R w r r z , M.S., K A P L A N , L . , A B B O L D , M., M A R I I M O . ) . .

C H O W , L . T . , B R O K E R , T . R . Cold Spring Harbor Svmp.

Quant. Biol. 4 3 : 7 6 9 - 7 8 0 . 1 9 7 8 .

1 9 2 . K A P L A N , L . , A R I O A , H . , H I R W I I Z , ]. , H O R W I I Z , M.S.

Proc. Natl. Acad. Sci. I S A . 7 6 : 5 5 3 4 - 5 5 3 8 . 1 9 7 9 .

1 9 3 . J E N G , Y . H . , Worn, W.S.M., S L G A W A R A , K . , G I L Í \I>. Z . ,

G R E E N , M . J . Virol. 2 2 : 4 0 2 - 4 1 I , 1 9 7 7 .

1 9 4 . L E V I N S O N , A.D., P O S I E L , E.H.. L I A I N I . A.). Virologv

7 9 : 1 4 4 - 1 5 9 , 1 9 7 7 .

1 9 5 . L I N N E , T . , J O R N V A I I , H., P u n I P S O N , L . Fur. ] . Biochem.

7 6 : 4 8 1 - 4 9 0 , 1 9 7 7 .

1 9 6 . W A N G , J . C . J . Mol. Biol. 5 5 : 5 2 3 - 5 3 3 . 1 9 7 1 .

E N / Y M O I . O G Y O F U N A R E P L I C A I I O N

197. K I M . , V . T . , W A N G , J . C . J . B i o l . C l i c m . 252:5398-5402, 1977.

198. Ili cu i . R . , Tu 11 i M \ N N . I I . W . N m . Ac. Res. 4:4235-4248, 1977.

199. Bn.i.. M.,REINBERG, 1)., Vic i NA A, R. , YI DI I.IAII II, A.

Abstr. X I ' 1 ' Intern. Congress Biochein., Toronto, |) . 44, 1979.

200. LK BON, ]. , KADO, C . I . , ROSEN I IIAI , l . J . ( JIIKIKM \ X , J . G .

Proc. Nati. Atad. So. ISA. 75:4097-4101. 1978. 201.Dr.i-Ew, R E . , Lir, L . F . , WAM„ J . C . ). Biol. Clieni.

255:511-518, 1978. 202. B A I E R , W . R . A n n . Rev . B i o p h y s . B i o e n g .

7:287-313, 1978. 203. Li i , L . F . , W A N < ; , J . C . J . B i o l . C h e m .

254:11082-11088, 1979. 204. L I E , L . F . , DEPEW, R . E . , WAM;, J . C . J . Mol. Biol.

706:439-452, 1976. 205. K i R K E i . A A R u , K . , W.INI; , J . C . Nuc l . A c . Res .

5:3811-3820, 1978. 206. GEILERT, M. , MIZITCHI,K.,0'DEA, M . H . , NASH, H . Proc.

Natl. Acad. Sci. ISA. 73:3872-3876, 1976. 207. Lic. L . F . , WANG. J . C . Proc. Natl Acad. Sci. ISA.

75:2098-2102, 1978. 208. K R E I Z E R , K . M . , M C . E N I E E , K . . GI.BAI.EE. A . P . ,

COZZARELLI, H . R . Mol. Gen. Genet. 767:129-137, 1978.

209. TAYLOR, D.E. , LEVI.NE, J . G . Mol. Gen. Genet.

774:127-133, 1979. 210. lion, T . , TOMIZ.AWA, J . Nature; 270:78-80, 1977. 211. Di. W i s G A E R i , M . A . , H I N K I E , D . C . J . Viro l .

29:529-535, 1979. 212. M i z i T c m , K . , GEELERI, M. , NASH, H . A . J . Mol. Biol.

727:375-392, 1978. 213. HAYS, J .B. , BOEHMEK, S. Proc. Natl. Acad. Sci. ISA.

75:4125-4129, 1978. 214. FALCO, S.C.Zivis .R., ROIIIMAN-DENES, L . B . Proc. Natl.

Acad. Sci. ISA. 75:3220-3224, 1978. 215. S M I I H , C . L . , K ino , M . , IMAMOIO. F . N a t u r e

275:420-423, 1978. 216. Sin MAN, H . M SCHWARIZ, M. Biochem. Biophys. Res.

Commun. 64:204-209, 1975. 217. SANZEY, B . J . Bact. 735:40-47, 1979. 218. Y \NG, H . L . , HELLER, K . , GEELERI , M. , ZIIIAY. G. Proc.

Natl. Acad. Sci. ISA. 76:3304-3308, 1979. 219. MCAR-IIIY, D.J. Mol. Biol. 727:265-283, 1979. 220. SIGINO, A., PEEBLES, C . L . , KRLI ZER, K.N. , COZZAREI.I.I,

N.R. Proc. Natl. Acad. Sci. ISA. 74:4767-4771, 1977. 221. HIGGINS, N.P., PEEBLES, C . L . , SIGINO, A., COZZARELLI,

N.R. Proc. Natl. Acad. Sci. ISA. 75:1773-1777, 1978. 222. PEIBI.ES, C . L . , HIGGINS, N.P., KREI ZER, K.N., MORRISON,

A., BROWN, P . O . , SIGINO, A., COZZARELLI, N.R. Cold

Spring Harbor Symp. Quant. Biol. 43:41-52, 1978. 223. GEI.LERI, M. , MiziTciii, K., O'DEA, M . H . , lion, T . ,

ToMizAw.A,). Proc. Natl. Acad. Sci. ESA. 74:4772-4776, 1977.

224. GEI.I.EKI, M. , O'DEA. MIL. Iron, T . , TOMI/.AWA, J . Proc.

Natl. Acad. Sci. ISA. 75:4474-4478, 1976. 225. GEI.I.EKL, M „ MIZLLC.III, K., O'DEA, M . H . , OILMORI, H . ,

TOMIZAWA,]. Cold Spring Harbor Symp. Quant. Biol. 43:35-40, 1978.

226. SIGINO, A., HIGGINS, N.P., BROWN, P.O., PEEBLES. C.I..,

COZZARELLI. N.R. Proc. Natl. Acad. Sci. ISA. 75:4838-4842. 1978.

2 2 7 . Mi/i LCIII, K. , O'DEA, M.H., GEELERI, M. Proc. Natl. Acad. Sci. i SA. 7 5 : 5 9 6 0 - 5 9 6 3 , 1 9 7 8 .

2 2 8 . MORRISON, A., COZZARELLI, N. Cell. 7 7 : 1 7 5 - 1 8 4 , 1 9 7 9 .

2 2 9 . SIEILER, G.I . . , KING, G . | . , HI \NG, W.M. Proc. Natl.

Acad. Sci. ISA. 7 6 : 3 7 3 7 - 3 7 4 1 , 1 9 7 9 .

2 3 0 . L I E , L . F . , L I E , C - C , A I . B I R I S , B . M . N a t u r e

2 5 7 : 4 5 6 - 4 6 1 , 1 9 7 9 .

2 3 1 . KiKic . i i i , Y . , NYSII, 11.A. Proc. Nail. Acad. Sci. i s \ .

7 6 : 3 7 6 0 - 3 7 6 4 , 1 9 7 9 .

2 3 2 . VOSBERG, H-P, VI.NCX.RAI>, ]. Biochem. Biophys. Res. Commun. 6 5 : 4 5 6 - 4 6 4 , 1 9 7 6 .

2 3 3 . B.AASE, W.A. , WANG, J . C . Biochemistry /5=4299-4303,

1 9 7 4 .

2 3 4 . KELLER, W . Proc. Natl. Acad. Sci. ISA. 7 2 : 4 8 7 6 - 4 8 8 0 , 1 9 7 5 .

2 3 5 . VOSBERG, H-P., GROSSMAN, L . I . , VINOGKAD, J . Eur. J

Biochem. 5 5 : 7 9 - 9 3 , 1 9 7 5 .

2 3 6 . CIIAMPOI x, ) . ( . , Mi CON AI GH Y , B . L . Biochemistry

7 5 : 4 6 3 8 - 4 6 4 2 , 1 9 7 6 .

2 3 7 . BALER, W . , RESSNER, E.G., KAIES, ) . , PAIZKE, J . V . Proc.

Natl. Acad. Sci. ISA. 7 4 : 1 8 4 1 - 1 8 4 5 , 1 9 7 7 . 2 3 8 . DLRNEORD, J.M., CIIAMPOI X, J . J . J . Biol. Chem.

2 5 3 : 1 0 8 6 - 1 0 8 9 , 1 9 7 8 .

2 3 9 . GERMOXD, )-E., ROIMERE-YANIV, J . , YANIV, M., BRI I I YG,

D. Proc. Natl. Acad. Sci. ISA. 7 6 : 3 7 7 9 - 3 7 8 3 , 1 9 7 9 . 2 4 0 . C I I A M P O I \ , ) . ) . P r o c . Nat l . A c a d . Sci . I S I ,

7 3 : 3 4 8 8 - 3 4 9 1 , 1 9 7 6 .

2 4 1 . CIIAMPOI x, J . J . P r o c . Nat l . A c a d . Sci . I S Y . 7 4 : 3 8 0 0 - 3 8 0 4 , 1 9 7 7 .

2 4 2 . CIIAMPOI x . J . J . J . Mol. Biol. 7 / 5 : 4 4 1 - 4 4 6 , 1 9 7 8 .

2 4 3 . CIIAMPOI X, J . J . , Yoi xc, L.S. BEEN, M.D. Cold Spring

Harbor Symp. Quant. Biol. 4 3 : 5 3 - 5 8 , 1 9 7 8 . 2 4 4 . FAIREIEI.D, F . R . . BALER, W . R . , SIMPSON, M . V . J . Biol.

Chem. 2 5 4 : 9 3 5 2 - 9 3 5 4 , 1 9 7 9 .

2 4 5 . ABDEE-MONEM, M., HOEEMAN-BERI.ING, H. Eur. J .

Biochem. 6 5 : 4 3 1 - 4 4 0 , 1 9 7 6 .

2 4 6 . ABDEE-MONEM, M., D i RWAID, H . , HOEEMANN-BEREIXG.

H. Eur. J . Biochein. 6 5 : 4 4 1 - 4 4 9 , 1 9 7 6 .

2 4 7 . ABDEE-MONEM, M., LAII-PE, H - F . , KARIENDEC K , J . .

Di 8KAI.II, H . , HOEEMANN-BERI INC., H. J . Mol. Biol.

/ 7 0 : 6 6 7 - 6 8 5 , 1 9 7 7 .

2 4 8 . Ki IIN, B . . ABDEE-MONEM, M.. HOI I \IANX-BI RI ING.

H. Cold Spring H a r b o r Symp. Quant . Biol. 4 3 : 6 3 - 6 7 . 1 9 7 8 .

2 4 9 . K I H N . B . . ABDEE-MONEM, M.. KREI.L, H.. HOEI-

MANN-BIRIING, H. J . Biol. Chem. 2 5 4 : 1 1 3 4 3 - 1 1 3 5 0 .

1 9 7 9 .

2 5 0 . ABDEE-MONEM, M., CHANAL, M-C., Hoi EMANN-BERI ING,

H. Eur. J . Biochem. 7 9 : 3 3 - 3 8 , 1 9 7 7 .

2 5 1 . ABDEE-MONEM, M., DIRWAI.D, H . , HOEEMANN-BEREIXG,

H. Eur. J . Biochem. 7 9 : 3 9 - 4 5 , 1 9 7 7 .

2 5 2 . Rum I . E . . KOHIYAMA, M. ) . Biol. C h e m . 2 5 / : 8 0 8 - 8 1 2 ,

1 9 7 6 .

2 5 3 . RiciiE.i, E., MOREAL, J . , KOHIYAMA, M. Cold Spring Harbor Symp. Quant. Biol. 4 3 : 3 4 5 - 3 4 8 , 1 9 7 4 .

2 5 4 . LANE, H . E . D . , DENIIARDI, D . T . J . Mol. Biol.

9 7 : 9 9 - 1 1 2 , 1 9 7 5 .

2 5 5 . DENIIARDI, D.T., IWAYA, M., LARISON, I . . L . Virology

4 9 : 4 8 6 - 4 9 6 , 1 9 7 2 .

2 5 6 . TESSM.AN, E.S., PETERSON, P . K . J . Virol. 2 0 : 4 0 0 - 4 1 2 ,

1 9 7 6 .

2 5 7 . SIMIDA-YASLMOLO, C , Y I DEEEVIGII. A . , HIRWIIZ. J .

Proc. Natl. Acad. Sci. ISA. 7 3 : 1 8 8 7 - 1 8 9 1 . 1 9 7 6 .

232 VICUÑA

258. Dfoi-iT, M., Y A R R A N T O N , G . , G E E T E R , M . Cold Spring Harbor Symp. Quant. Biol. 43:335-343, 1978.

2 5 9 . S C O T T , J . F . , K O K N B E R G , A. J . B i o l . C h e n ) . 253:3292-3297, 1978.

260. T A K A H A S H I , S. H O L ' K S , C , C H E , A., D E N H A R D T , D . T .

Can. J . Biochem. 57:855-866, 1979.

261. Y A R R A N I O N , G.T. , G E E T E R , M . L . Proc. Natl. Acad. Sci. U S A . 76:1658-1662, 1979.

262. K O R N B E R C , A., Scon, J . F . , B E R T S C H , L . L . J . Biol. Chem. 253:3298-3304, 1978.

263. C L A R C K , A.J. Ann. Rev. Genet. 7:67-86, 1973.

264. Got D M A R K , P. J . , L I N N , S. ] . B i o l . C h e m . 247:1849-1860, 1972.

265. K A R U , A.E., M A C K A V , V . G O L O M A R K , P.J., L I N N , S.J. Biol. Chem. 245:4874-4884, 1973.

266. M A C K A V , V . , ' L I N N , S . J . Biol. Chem. 249:4286-4294 , 1974.

267. K A R U , A.E., L I N N , S. P r o c Natl. Acad. Sci. U S A .

69:2855-2859, 1972.

268. M A C K A V , V . , L I N N , S . J . Biol. Chem. 257:3716-3719 , 1976.

269. R O S A M O N D , J . , E N D I . I C H , B. , T E L A N D E R , K M . , L I N N , S.

C o l d S p r i n g H a r b o r S y m p . Q u a n t . B i o l . 43:1049-1057, 1978.

270. R O S A M O N D , J . , T E L A N D E R , K . M . , L I N N , S. ] . Biol. Chem. 254:8646-8652, 1979.

271. K R E L L , H., D U R W A L O , H., H O E E M A N N - B E K I . I N C , H. Eur. J .

Biochem. 93:387-395, 1979.

272. H O M V K , T . , W E I L , J . Virology 67:505-523. 1974.

273. K O I . O D N E R , R . , R I C H A R D S O N , C.C. Proc. Natl. Acad. Sci.

I S A . 74:1525-1529, 1977.

274. R I C H A R D S O N , C . C , R O M A N O , L .J . . K O L O D N E R , R„ L E . C I . E R C .

J . E . , T A M A N O I , F . , E N G I . E R , M . J . , D E A N , F . B . .

R I C H A R D S O N , D.S. Cold Spring Harbor Symp. Quant.

Biol. 43:427-440, 1978.

275. K O L O D N E R , R . , R I C H A R D S O N , C.C. J . Biol. Chem.

253:574-584, 1978.

276. CoBIANCHI, F . , RlVA, S., M A S T R O M E I , G., S F A D A R I , S.,

P E O R A L I - N O Y , G., F A L A S C . H I , A. Cold Spring Harbor

Symp. Quant. Biol. 43:639-647, 1978.

8. APPENDIX

The following translations into Spanish for the

names of the enzymes discussed in this paper are

proposed:

primase: enzima partidora.

DNA binding protein: proteína DNA-ligante.

HDP: proteína hélice-inestabilizadora. nicking-closing enzyme: enzima de corte y sellado. gyrase: girasa. helicase: helicasa.

swivelase: enzima DNA-relajante.