Aquaculture Design Project

8
Aquaculture Design Project: Black Sea Bass Brendan Luther WFB 4500 Introduction The bulk of finfish aquaculture in the United States consists of trout, tilapia and catfish. These fish, while great table fair, command a low price requiring large operations to make significant financial gains. In addition, their relative ease of cultivation allows almost unlimited entry into the market where economical. In this paper, a recirculating system is designed to produce Black Sea Bass, Centropristis striata. A popular seafood fish comparable in value to grouper and snapper, this fish is native to the east coast of the United States. The complicated nature of mariculture (marine aquaculture) and recirculating systems is inherently prohibitive to entry into the market. Also, as wild stocks are depleted and established markets wanting, Black Sea Bass have the possibility of being a very profitable species for aquaculture. Research on Black Sea Bass as a candidate for commercial aquaculture is still in its infancy, but early signs are promising. The Southern Regional Aquaculture Center has compiled data from a range of research projects to outline the diet needs, stocking densities and economics of culturing the species. It is from this document that most of the numerical values in this paper are based. Black Sea Bass, courtesy of www.chefsresources.com Goal and Scope The goal of this research project is to design a recirculating aquaculture system for Black Sea Bass in a 50’ x 30’ greenhouse. There are many calculations and consideration that need to be made before constructing a system of this nature for commercial use. Energy consumption, filtration design, feed economics, and bottom line profits are just a few of the very critical analyses that are crucial to the success

Transcript of Aquaculture Design Project

Page 1: Aquaculture Design Project

Aquaculture  Design  Project:  Black  Sea  Bass    

Brendan  Luther  WFB  4500  

 Introduction    

The  bulk  of  fin-­‐fish  aquaculture  in  the  United  States  consists  of  trout,  tilapia  and  catfish.  These  fish,  while  great  table  fair,  command  a  low  price  requiring  large  operations  to  make  significant  financial  gains.  In  addition,  their  relative  ease  of  cultivation  allows  almost  unlimited  entry  into  the  market  where  economical.  

In  this  paper,  a  recirculating  system  is  designed  to  produce  Black  Sea  Bass,  Centropristis  striata.  A  popular  seafood  fish  comparable  in  value  to  grouper  and  snapper,  this  fish  is  native  to  the  east  coast  of  the  United  States.  The  complicated  nature  of  mariculture  (marine  aquaculture)  and  recirculating  systems  is  inherently  prohibitive  to  entry  into  the  market.  Also,  as  wild  stocks  are  depleted  and  established  markets  wanting,  Black  Sea  Bass  have  the  possibility  of  being  a  very  profitable  species  for  aquaculture.    

Research  on  Black  Sea  Bass  as  a  candidate  for  commercial  aquaculture  is  still  in  its  infancy,  but  early  signs  are  promising.  The  Southern  Regional  Aquaculture  Center  has  compiled  data  from  a  range  of  research  projects  to  outline  the  diet  needs,  stocking  densities  and  economics  of  culturing  the  species.  It  is  from  this  document  that  most  of  the  numerical  values  in  this  paper  are  based.      

 Black  Sea  Bass,  courtesy  of  www.chefs-­‐resources.com  

 Goal  and  Scope    

The  goal  of  this  research  project  is  to  design  a  recirculating  aquaculture  system  for  Black  Sea  Bass  in  a  50’  x  30’  greenhouse.  There  are  many  calculations  and  consideration  that  need  to  be  made  before  constructing  a  system  of  this  nature  for  commercial  use.  Energy  consumption,  filtration  design,  feed  economics,  and  bottom  line  profits  are  just  a  few  of  the  very  critical  analyses  that  are  crucial  to  the  success  

Page 2: Aquaculture Design Project

of  a  business  raising  fish  in  recirculating  systems;  these  however  are  outside  the  scope  of  this  project.  The  focus  is  instead  on  mathematically  analyzing  feed  schedules,  stocking  densities,  and  yearly  production.      Greenhouse  Design  and  Grow  out  Dynamics      

For  a  small  operation  of  this  kind,  it  is  likely  uneconomical  to  hatch  the  sea  bass  within  the  greenhouse.  Luckily,  there  are  small-­‐scale  dealers  that  sell  fingerling  Black  Sea  Bass,  such  as  University  of  North  Carolina  at  Wilmington.  Therefore  the  start  of  the  growout  process  will  begin  with  a  nursery  to  grow  the  fingerling  fish.  As  fish  inevitably  die  throughout  the  growout  process,  the  number  of  fingerlings  purchased  must  be  larger  than  the  final  harvest  number  desired.  Therefore  a  starting  number  of  fingerlings  are  back  calculated  from  the  max  number  of  fish  possible  at  harvest  for  the  12  foot  diameter  tanks  based  on  biomass  densities  (N=  813  fish).      

 Figure  1:  The  Greenhouse  recirculating  system  design  

Page 3: Aquaculture Design Project

Nursery  Raceway  System:    

The  fingerlings  begin  in  the  nursery  immediately  after  being  received  from  the  dealer.    A  25%  mortality  of  fish  post  nursery  (SRAC),  and  a  similar  mortality  rate  of  25%  (somewhat  arbitrary)  of  fingerlings  in  the  nursery  due  to  stress  and  the  cannabilistic  nature  of  their  early  life  are  assumed.  Therefore  the  number  of  fingerlings  purchased  per  batch  must  be  roughly  1450  fish.       Based  on  research,  cannibalism  can  be  reduced  by  increasing  stocking  density  between  1-­‐5  fish  per  L  (Watanabe  and  Truesdale,  2008)  and  fast  flow-­‐rates  of  between  .04-­‐.09  m/sec  in  rectangular  raceway  systems.  The  fish  will  be  moved  to  the  first  of  the  grow-­‐out  tanks  at  a  mean  weight  of  30  grams.  Subsequently,  to  keep  a  biomass  density  below  53  kg/  cubic  meter  (SRAC,  Watanabe)  a  stocking  density  of  2  fish/L  can  be  used;  within  the  desired  range  Watanabe  and  Treusdale  found.  Therefore  the  volume  needed  for  the  nursery  is  simply  the  final  weight  of  the  fish  before  transfer  to  the  next  tank,  divided  by  the  max  biomass  density.  A  raceway  tank  with  dimension  of  1.3’  x  2.3’  x  5.4’  (h,  w,  l)  satisfies  the  volumetric  requirement.  The  flowrate  for  this  tank  will  be  .09  m/sec  to  minimize  cannibalism  (SRAC).        

Black  Sea  Bass  fingerlings  can  be  raised  on  commercial  pellet  feed.  Below  is  the  feed  schedule  for  the  nursery  (dph=  days  post  harvest).    Feed  pellets  require  a  protein  composition  of  50%.  (SRAC)    60-­‐74dph:  1mm  feed  @  4%  body  weight  per  day  75-­‐95  dph:  3mm  feed  @  3%  body  weight  per  day  95-­‐124  dph:  5mm  feed,  feed  until  satiation    125  dph:  transfer  to  grow  out  tank    Grow  Out  Tanks:    

Stocking  small  fish  in  a  large  tank  and  growing  them  to  a  large  size  within  the  same  tank  is  an  inefficient  way  to  grow  fish  in  a  recirculating  aquaculture  system.  This  method  uses  an  unnecessary  amount  of  energy  to  heat  and  pump  water.  Also,  as  stated  previously,  higher  stocking  at  a  smaller  size  reduces  cannibalism.  Therefore  three  different  tank  sizes  were  designed  for  the  grow  out  process  (post  nursery)  as  can  be  seen  in  Figure  1.  This  allows  for  a  more  efficient  use  of  energy,  reducing  running  costs,  and  keeps  biomass  densities  high.  Black  Sea  Bass  are  also  resilient  when  it  comes  to  being  handled  (SRAC),  therefore  little  mortality  is  expected  when  tank  transfers  take  place.    

Just  as  was  done  with  the  nursery  system,  numbers  of  fish  in  each  tank  are  back  calculated  from  the  final  harvest  number  and  the  tank  volume  needed  to  satisfy  the  max  biomass  density.  Based  on  the  numbers  found  in  the  SRAC  document,  fish  at  UNCW  took  20  months  post  hatch  to  grow  to  an  average  weight  of  over  500  g  on  commercial  feed.  The  20  months  (600  days)  minus  the  time  spent  in  the  nursery  

Page 4: Aquaculture Design Project

gives  the  grow  out  time  for  the  fish.  Each  batch  of  fish  will  spend  1/3  of  the  grow  out  time  in  each  tank  (approximately  160  days).  Assuming  a  linear  growth  rate  between  an  initial  weight  of  27g  and  a  final  weight  900g  (based  on  fish  fed  tilapia  in  unpublished  data  from  Richard  Lee,  Skidaway  institute  of  Oceanography),  the  mean  weight  at  transfer  for  tanks  5  &6  ,  and  tanks  3&4  are  .332  kg  and  .662  kg  respectively.  The  growth  estimates  are  conservatively  based  on  the  grow  out  time  of  commercial  pellet  fed  fish  with  no  culling.  If  slow  growing  fish  are  culled,  the  growth  rate  will  likely  be  faster  (SRAC).  Justification  for  the  tank  sizes,  based  on  biomass  density  at  transfer,  is  given  below  for  each  of  the  4ft  deep  tanks.  Each  tank’s  pump  systems  would  be  set  to  make  a  10%  water  exchange  per  day.         Fish  will  be  fed  pellet  commercial  feed  until  they  reach  a  mean  weight  of  100  grams.  A  study  performed  by  Richard  Lee  at  the  Skidaway  Institute  of  Oceanography  compared  growth  rates  of  fish  fed  commercial  feed  versus  live  tilapia  beginning  at  100  grams.  The  difference  was  drastic.  With  the  commercial  feed,  the  fish  grew  to  500  grams  while  the  tilapia  fed  fish  grew  to  900  grams  in  the  same  length  of  time  (270  days).  Therefore  in  this  designed  system,  the  fish  will  be  fed  live  fingerling  tilapia  once  they  reach  a  mean  weight  of  100  grams.  The  fish  will  be  fed  0.75%  of  their  body  weight  in  tilapia  each  day.  This  feeding  rate  is  based  on  calculations  using  the  feed  conversion  ratio  of  1.12  (SRAC)  over  the  grow-­‐out  period.  Justifications  are  listed  in  the  Calculations  section.      

 Photo  of  tilapia  fingerlings,  courtesy  of  www.alohaecowas.com  

      While  neither  the  economics  of  using  live  tilapia,  or  the  size  of  the  tilapia  hatchery  production  system  needed  is  calculated  in  this  design  project,  it  is  likely  feasible.  Tilapia  reproduce  rapidly  and  grow  fast.  Therefore  with  a  large  enough  broodstock,  and  they  right  sized  system,  a  huge  number  of  small  tilapia  could  be  

Page 5: Aquaculture Design Project

grown  to  feed  the  sea  bass.  This  is  attractive  for  many  reasons.  On  environmental  front,  tilapia  can  be  raised  on  pellets  that  contain  no  fishmeal.  Therefore  the  net  use  of  wild  caught  fishmeal  after  the  sea  bass  reach  100  g  is  0.  Secondly  the  sea  bass  grow  much  more  rapidly  to  a  large,  highly  marketable  size  allowing  for  more  production  per  year.  Thirdly,  the  process  can  be  considered  organic,  an  important  factor  potentially  for  sushi  niche  markets  (Skidaway  institute  of  Oceanography  website).         Production  per  year,  with  8  separate  batches  at  different  life  stages  grown  at  a  time,  could  reasonably  produce  4  batches  of  market  size  fish.  This  should  roughly  be  3252  Black  Sea  Bass  per  year.  At  a  market  gate  price  of  $11.20  per  kg  (SRAC),  total  yearly  revenue  before  operation  and  feed  costs  is  $32,780,  using  the  mean  harvest  weight  of  .9  kg.      

 Photo  courtesy  of  www.hungrynative.com  

 Additional  Design  Considerations:    

While  calculating  the  scale  and  flow  rate  numbers  for  the  filtration  system  was  outside  the  scope  of  this  project,  a  sketch  of  the  ones  that  would  likely  be  used  were  included.  There  would  be  two  large  microbial  mat  solid  filtration  beds;  one  for  each  side  of  the  greenhouse.  There  would  also  be  a  fluidized  sand  filter  column  for  each  of  the  two  solid  filtration  beds.  This  design  is  based  off  the  one  used  at  the  Skidaway  Institute  for  Oceanography  research  center  raising  Black  Sea  Bass.  A  smaller  version  of  this  filtration  system  would  be  used  for  each  of  the  nursery  raceways  as  can  be  seen  in  the  diagram.    

         

 

Page 6: Aquaculture Design Project

Calculations:  Nursery  Tank  Calculations  

Nn = NT1,2/.75 =1084

N0 = Nn /.75 =1445  

       

 Vn=  Volume  of  nursery  N(T  1,2)=Number  of  fish  at  harvest  Nn=  Number  of  fish  transferred  from  nursery  raceway  N0=  Number  of  fish  places  in  nursery  

 Tank  5,6  Calculations:  

NT5,6=NT1.2

.75− (1/3)(Nn − NT1,2

) = 994    N(T  5,6)=  Number  of  fish  at  transfer  from  tanks  5  and  6    

VT5,6 = NT5,6(ρb

−1)(mfish ) = (994)(53kgm−3)−1(.332kg) = 6.22m3    V(T  5,6)=  volume  of  tanks  5  and  6  ρb=max  biomass  density  mfish=  mass  per  fish  at  transfer  (based  on  interpolating  linear  growth  per  time)    Tank  5,6  Dimensions:  D=8ft,  h  =  4ft  

 Tank  3,4  Calculations:  

NT3,4=NT1.2

.75− (2 /3)(Nn − NT1,2

) = 904  

VT3,4 = NT3,4(ρb

−1)(mfish ) = (994)(53kgm−3)−1(.662kg) =10.5m3    

Tank  3,4  Dimensions:  D=10ft,  h=4  ft    Number  of  fish  at  harvest:    

NT1,2=VT1,2 (ρb

−1)(mfish ) = (13.8m3)(53kgm−3)−1(.9kg) = 813 fish          

Vn = (1084 fish)(.027kgfish

)( m3

53kg) = .55m3

Page 7: Aquaculture Design Project

   Grow  Out  Feed  Schedule  Determination      *This  calculation  shows  how  a  single  number  for  feed  required  as  a  function  on  body  mass  per  fish  per  day  was  determined.  A  function,  f(t),  was  created  to  show  the  fishes  body  mass  as  a  function  of  time.  This  function  was  then  integrated  over  270  days  with  a  coefficient  β  to  represent  the  growth  per  day  as  a  percentage  of  body  weight.  Once  β  was  found,  it  was  simply  multiplied  by  the  FCR  to  find    the  feed  needed  per  fish,  per  day,  as  a  function  of  total  body  weight.    

f (t) = xt +100900g = x(270d) +100x = 2.96g /day

F(t) = β f (t)dt0

270

F(t) = β (2.96t +100)dt0

270

900 = β[2.962

t 2 +100t]0270

900 = β[1.48(270)2 +100(270)]900 = β(134892)β = .00667βf = FCR × β =1.12 × .00667 = .00747βf = .75%

 

 Where:  f(t):  Body  mass  as  a  function  of  time  F(t):  Body  mass  as  a  function  of  time    t:  time  β:  Growth  per  day  as  a  function  of  body  mass  βf:  Feed  required  per  day  as  a  function  of  body  mass  FCR:  Feed  Conversion  Ratio            

Page 8: Aquaculture Design Project

References    Watanabe,  W.O.  and  S.G.  Truesdale.  2008.  Optimizing  hatchery  and  nursery  technologies  for  production  of  black  sea  bass  fingerlings  for  pilot  commercial  grow  out  projects.  Final  Report,  FRG  Project  04-­‐AM-­‐03,North  Carolina  Fishery  Resource  Grant  Program,  North  Carolina  Sea  Grant,  Raleigh,  NC.    Watanabe,  W.O..  Species  Profile:  Black  Sea  Bass.  Southern  Regional  Aquaculture  Center.  October  2011.    Skidaway  Institute  of  Oceanography,  University  of.  Georgia.  <www.skio.org>.  Accessed  November  21,  2014.