Aps_chap6 (Syn Generator)

67
Basics of Electric Machines (Rotating field) Rotating field fundamental space mmf established by a single phase winding with a current, i=I a cosωt , is F a1 =F m1 cosωt cosθ a , where F m1 is the peak value of fundamental mmf  F m1 = ( 4 / π) k w ( N p h /P ) I a F a1 is the combination of two counter-revolving mmf  waves F a1 =F m1 0.5cos( θ a - ωt) + F m1 0.5cos( θ a + ωt ) F b F f 

Transcript of Aps_chap6 (Syn Generator)

Page 1: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 1/67

Basics of Electric Machines (Rotating field)

Rotating field fundamental space mmf established by a single phase

winding with a current, i=Iacosωt, is Fa1=Fm1cosωt cosθa,where Fm1 is the peak value of fundamental mmf Fm1=(4/π)kw(Nph/P)Ia

Fa1 is the combination of two counter-revolving mmf waves Fa1=Fm10.5cos(θa-ωt) +F m10.5cos(θa +ωt)

FbFf 

Page 2: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 2/67

Rotating field In a three phase machine, the axes of the three phase

windings are 120o

apart, assume the phase currentia=imcosωtib=imcos(ωt-120o)ic=imcos(ωt+120o)

fundamental air gap mmf of three phases

Fa1=(1/2)Fm1{cos(θa-ωt) +cos(θa +ωt)}Fb1=(1/2)Fm1{cos(θa-ωt) +cos(θa +ωt-240o)}Fc1=(1/2)Fm1{cos(θa-ωt) +cos(θa +ωt+240o)}

Fa1 +Fb1 +Fc1 =(3/2)Fm1cos(θa-ωt)the resultant airgap mmf is a constant amplitude,

sinusoidal shape, revolving wave with a speed of ω in adirection corresponding to the sequence of the phasecurrent

it is related to the synchronous machine voltage andmechanical speed:ωe=(P/2)ωm

Page 3: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 3/67

Developed torque of a uniformairgap machine

The torque and coenergy relation

T=∂W’fld /∂θm where W

’fld =λi- Wfld

λi=LSSiS2+Lrrir

2+2Lsrircosδsr

Wfld= (1/2)LSSiS2+(1/2)Lrrir

2+Lsrisircosδsr

W’fld= λi- Wfld =(1/2)LSSiS2+(1/2)Lrrir

2+Lsrircosδsr J

Developedtorque:

the negative sign indicates the developed torque is in the direction oppositeto that of increasing δsr

m N sin2

2 ;

''

⋅−=

=∂

∂=

∂=

sr r ssr 

srmsr 

srm

sr 

sr 

  fld 

srm

  fld 

ii LP

PW W T 

δ  

δ  δ  δ  

δ  

δ  δ  

Page 4: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 4/67

FLUX LINKAGE RELATIONS

mmfs of rotor windings are along d-q axis. Axis of north

pole is in d-axis, stator internal voltage is in q-axis

Field winding is mainly in d-axis, damper winding are ind,q axis

Page 5: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 5/67

FLUX LINKAGE RELATIONS

For a phase current flowing into the stator, the a

phase mmf Fa produces flux components ψd, ψq

along the d- and q- axes

The inductance representation has θr variable

Page 6: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 6/67

MATH MODEL OF SYNCHRONOUS MACHINE (abc frame)

 Voltage equation of the stator and rotor windings

Flux linkage equation of the stator and rotor windings

Lss, Lsr, Lrr are shown in Eq.7.7 to Eq.7.9 (pp.264) Computational difficulty in abc frame

The inductances in Lss and Lsr are time dependent variablespresent computational difficulty when voltage equations are beingsolved

To obtain the phase current quantities, the inverse of the time-varying inductance matrix will have to be computed at each timestep, this would be time consuming and could produce numerical

instability

ΛΛ+

=

s

s

s

s

dt 

i

i

v

v

 0

0

[ ] r rr s

sr r 

r sr ssss

i Li L

i Li L

+=Λ

+=Λ

Page 7: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 7/67

TRANSFORMATION TO ROTOR REFERENCE FRAME

Transform the stator quantities to rotor qd0 reference

frame, then the voltage equation has time-invariantcoefficient

Rotor voltage equation already attached to q- and d- axes,qd0 transformation only need be applied to the statorwinding

For transformation, we denote

where Tqd0(θr) is as Eq. (7.11)  Apply transformation Tqd0(θr) into stator voltage equation,

the stator voltage equation becomes

)(00

)(00

)(00

)(

)(

)(

abcsr qd qd 

abcsr qd qd 

abcsr qd qd 

iT i

vT v

Λ=Λ

=

=

θ 

θ 

θ 

( ) ( ) ( )01

000

1

00)(0)(00 qd qd qd qd qd sqd abcsqd abcssqd qd  T 

dt 

d T iT r T 

dt 

d T ir T v Λ+=

 

 

 

 Λ+= −−

[ ]

 

  

 +

 

  

 −

 

  

  + 

  

  −

=

2

2

2

3

2in 

3

2in sin

3

2cos 

3

2cos cos

3

2)(0

π θ 

π θ θ 

π θ 

π θ θ 

θ  r r r 

r r r 

r qd  ssT 

Page 8: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 8/67

TRANSFORMATION TO ROTOR REFERENCE FRAME

The first term of the transforming equation on

flux linkage (pp.266)

The second term of the transforming equation onflux linkage (pp.266)

The stator voltage equation of qd0 rotor

reference frame

00

1

00

0 0 0

0 0 1

0 1 0

qd r qd qd qd 

 

T dt 

d T  Λ

−=Λ

− ω 

00

1

00 qd qd qd qd dt 

dt 

d T T  Λ=Λ−

0000

0 0 0

0 0 1-

0 1 0

qd qd r qd sqd dt 

d ir v Λ+Λ

+= ω 

Page 9: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 9/67

FLUX LINKAGE IN TERMS OF WINDING CURRENTS

Flux linkage Λqd0 and qd0 current can be obtained from

stator quantities

The stator qd0 flux linkage equations

The rotor qd0 flux linkage equations

( ) r qd sr qd sqd qd ssqd qd s i LT iT  LT  000

1

000,  +=Λ −

00

0

0

)(2

3

)(2

3

i L

i Li Li L L L

i Li Li L L L

lss

skd skd sfd sfd d mslsds

skqskqsfqsfqqmslsqs

=

++

−+=

++

−+=

λ 

λ 

λ 

kqkqkq fq fqkqqskqkq

kq fqkq fq fqfqqsfq fq

kd kdkd  f  fkd d skd kd 

kd  fkd  f  ff d sfd  fd 

i Li Li L

i Li Li L

i Li Li L

i Li Li L

++=

++=

++=

++=

2

3

2

3

2

32

3

λ 

λ 

λ 

λ 

Page 10: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 10/67

 VOLTAGE EQUATIONS IN ROTOR REFERENCE FRAME

 Voltage equations of 

synchronous machine

dt 

ir v

dt 

d ir v

dt d ir v

dt 

d ir v

dt 

d ir v

dt 

dt 

d ir v

dt 

dt 

d ir v

kq

kqkqkq

  fq

  fq  fq  fq

kd kd kd kd 

  fd 

  fd   fd   fd 

s

r q

d d sd 

r d 

q

qsq

'

'''

'

'''

'

'''

'

'''

000

λ 

λ 

λ 

λ 

λ 

θ  λ 

λ 

θ  λ 

λ 

+=

+=

+=

+=

+=

−+=

++=

Flux linkage equations

in terms of L and i

where

''''

''''

''''

''''

00

''

''

kqkqkq fqmqqmqkq

kqmq fq fqfqqmq fq

kd kdkd  fd md d md kd 

 fd  fdfd kd md d md  fd 

ls

kd md  fd md d d d 

kqmq fqmqqqq

i Li Li L

i Li Li L

i Li Li L

i Li Li L

i L

i Li Li L

i Li Li L

++=

++=

++=

++=

=

++=

++=

λ 

λ 

λ 

λ 

λ 

λ 

λ 

md lsd 

mqlsq

 L L L

 L L L

+=

+=

Page 11: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 11/67

EQUIVALENT qd0 CIRCUIT IN ROTOR REF. FRAME

Page 12: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 12/67

CURRENT EQUATIONS IN ROTOR REFERENCE FRAME

Current equations in

terms of λs, q-axis(from Fig.7.4)

mqlkqlfqls MQ

kq

lkq

 MQ

 fq

lfq

 MQ

q

ls

 MQ

mq

kq fqqmqmq

mqkq

lkq

kq

mq fq

lfq

 fq

mqq

ls

q

 L L L L L

 L

 L

 L

 L

 L

 L

iii Lwhere

 Li

 Li

 Li

11111

)( 

)(1

)(1

)(1

''

'

'

'

'

''

'

'

'

''

'

+++=

++=

++=

−=

−=

−=

λ λ λ λ 

λ 

λ λ 

λ λ 

λ λ 

Current equations in

terms of λs, d-axis(from Fig.7.4)

md lkd lfd ls MD

kd 

lkd 

 MD f 

lfd 

 MDd 

ls

 MDmd 

kd  fd d md md 

md kd 

lkd 

kd 

md  fd 

lfd 

 fd 

md d 

ls

 L L L L L

 L

 L

 L

 L

 L

 L

iii Lwhere

 Li

 Li

 Li

11111

)( 

)(1

)(1

)(1

''

'

'

'

'

''

'

'

'

''

'

+++=

++=

++=

−=

−=

−=

λ λ λ λ 

λ 

λ λ 

λ λ 

λ λ 

Page 13: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 13/67

CURRENT EQUATIONS IN ROTOR REFERENCE FRAME

Matrix current equations in terms of flux linkage

the above matrix can be substituted into voltage and torqueequation to obtain the math model of synchronous machine

the synchronous machine model derived from above use fluxlinkages of rotor windings as state variables

−−

=

'

'

'''''

'''''

''

'

'

1)1( - -

- 1

)1( 

- - 1

)1(

kd 

 fd 

lfd lfd 

 MD

lkd lfd 

 MD

lkd ls

 MD

lkd lfd 

 MD

lfd lfd 

 MD

lfd ls

 MD

lkd ls

 MD

lfd ls

 MD

lsls

 MD

kd 

 fd 

 L L

 L

 L L

 L

 L L

 L

 L L

 L

 L L

 L

 L L

 L

 L L

 L

 L L

 L

 L L

 L

i

i

i

λ 

λ 

λ 

Page 14: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 14/67

ELECTROMAGNETIC TORQUE

Electromagnetic torque is obtained from the component

of input power that transferred across airgap Stating from the input power into the machine:

Pin=vaia+ vbib +vcic+ vfdifd+ vfqifq

Stator quantities transformed into qd0 reference frame

Pin=(3/2)(vqiq+ vdid)+3v0i0+ vfdifd+ vfqifq

Eliminating ohmic losses and rate of change of magneticenergy (Eq.7.33 in pp.271) Pem=(3/2)ωr(λdiq - λqid) W

For a P-pole machine, ωr=(P/2)ωrm

Pem=(3/2)(P/2)ωrm(λdiq - λqid) W

Dividing the Pem by ωrm, the torque developed by P-polemachine

Tem=(3/2)(P/2)(λdiq - λqid) N.m

Page 15: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 15/67

SIMULATIONS OF 3 PHASE SYNCHRONOUS MACHINE

The winding equation of Syn. mach. model could useterminal voltage as input and currents as output

Main inputs: stator abc phase voltage, excitation voltage tofield winding, applied mechanical torque (load)

Main outputs: stator abc phase current

Modeling procedure Stator winding voltage must be transformed to qd0 reference

frame attached to rotor

)(3

1

)70.7( )(3

13

1

3

1

3

2

0 cba

bc

s

cba

s

q

vvvv

vvv

vvvv

StepFirst 

++=

−=

−−=

(7.72) rad.elect. )0()()(

)(cos)(sin

(7.71) )(sin)(cos

 

0∫ +=

+=

−=

r r r 

s

d r 

s

a

s

d r 

s

q

q

dt t t 

where

t vt vv

t vt vv

StepSecond 

θ ω θ 

θ θ 

θ θ 

Page 16: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 16/67

SIMULATION OF A SYNCHRONOUS MACHINE

Overall Diagram

Page 17: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 17/67

SIMULATION OF A SYNCHRONOUS MACHINE

abc to rotor qd0 block from oscillator block 

Page 18: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 18/67

SIMULATION OF A SYNCHRONOUS MACHINE

 Variable-frequency oscillator the equation of the oscillator

convert 2nd-order equation to 2 1st-orderequation:

rewrite the above equations into integral forms:

assume y1 is sinωt, y2 is cosωt

1

2

2

1

2

 ydt 

 yd ω −=

∫∫ =−= dt  y ydt  y y 2112  , ω ω 

121

2  ,1

 ydt 

dy

dt 

dy y ω 

ω −==

Page 19: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 19/67

MODEL OF VARIABLE FREQUENCY OSCILLATOR 

The cosωt, sinωt signals could be

obtained by integrating each other  Variable y1 , y2 could be obtained

by variable ωt The variable oscillation block is

shown as below

( )br r  ω ω θ  /cos ×br  ω ω  /

( )br r  ω ω θ  /sin ×

r r  ω θ  ×− sinr θ cos

r θ sin

Page 20: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 20/67

SIMULINK RESULT OF OSCILLATOR 

plot result: y1 and y2 (from oscillator block), ω isconstant

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05-5

0

5

 

  y  1

  a  n   d

  y   2

y2

y1

starting reference

Page 21: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 21/67

TERMINAL VOLTAGE AND FLUX LINKAGE EQUATIONS

Modeling procedure (relate input variables to state variables) Stator: relate terminal voltages (input variables) with flux linkage of 

stator and rotor windings (state variables) (Eq.7.74) Rotor: In this case, only flux linkages of field winding in d-axis and a

pair of damper windings in d- and q- axes are related together(Eq.7.74)

)74.7( 

)(

 )(

000 dt  x

r v

dt  x

r v

dt  x

r v

ls

sb

d md 

ls

sq

b

r d bd 

qmq

ls

sd 

b

r qbq

Ψ−=Ψ

Ψ−Ψ+Ψ−=Ψ

Ψ−Ψ+Ψ−=Ψ

ω 

ω 

ω 

ω 

ω 

ω 

ω 

(7.74) 

)}({

 )(

 )(

'

'

'

'

'

'

'

'

'

'

''

dt  x

 x E 

 x

dt  x

dt  x

 fd md 

lf 

md 

 f 

md 

kqb

 fd 

kd md 

lkd 

kd b

kd 

kqmq

lkq

kqb

kq

Ψ−Ψ+=Ψ

Ψ−Ψ=Ψ

Ψ−Ψ=Ψ

ω 

ω 

ω 

Page 22: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 22/67

SIMULATION OF A SYNCHRONOUS MACHINE

qd0 stator and rotor block 

Page 23: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 23/67

SIMULATION OF A SYNCHRONOUS MACHINE

q-axis stator block 

Page 24: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 24/67

STATOR AND ROTOR FLUX LINKAGE

whererotor flux linkage stator flux linkage

mqkqlkqkq

md kd lkd kd 

md  fd lf  fd 

 f 

 f 

md  f 

 fd kqd md 

kqqmq

i x

i x

i x

v x E 

iii x

ii x

Ψ+=Ψ

Ψ+=ΨΨ+=Ψ

=

++=Ψ

+=Ψ

'''

'''

'''

'

'

''md 

'mq 

)(

)(

00 i x

i x

i x

ls

md d lsd 

mqqlsq

=ΨΨ+=Ψ

Ψ+=Ψ

Page 25: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 25/67

WINDING CURRENTS

Modeling procedure (relate state variables to outputvariables)

relate flux linkages (state variables) with windingcurrents (output variables)

Stator winding current Rotor winding current

ls

md d d 

ls

mqq

q

 xi

 xi

Ψ−Ψ=

Ψ−Ψ=

'

'

'

'

'

'

'

'

'

lfd 

md   fd 

  fd 

lkq

mqkq

kq

lkd 

md kd kd 

 x i

 x i

 x i

Ψ−Ψ=

Ψ−Ψ

=

Ψ−Ψ=

Page 26: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 26/67

WINDING CURRENTS

Modeling procedure (dq0 to abc transformation) transform qd0 rotor frame currents to stationery frame

transform stationery qd0 currents to abc currents

)(cos)(sin

)(sin)(cos

t it ii

t it ii

d r 

q

s

d r 

q

s

q

θ θ 

θ θ 

+−=

+=

0

0

0

3

1

2

1

31

21

iiii

iiii

iii

s

s

qc

sd 

sqb

s

qa

++−=

+−−=

+=

Page 27: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 27/67

TORQUE EXPRESSION

Electromechanical torque developed with P-polesin motoring or generating

The net accelerating torque:

generatingfor (-)motoring,for )(:Therew

m N )(22

m N )(22

3

em +

⋅−=

⋅−==

d qqd 

b

d qqd 

rm

emem

iiP

iiPP

ψ ψ ω 

λ λ ω 

( )

( )∫ −+=−

−===−+

dampmechemer 

er r rmdampmechem

dt T T T  J 

Pwt 

dt 

wt d 

P

 J 

dt 

t d 

P

 J 

dt 

t d  J T T T 

02)(

)(2)(2)(

ω 

ω ω ω 

Page 28: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 28/67

SIMULATION OF A SYNCHRONOUS MACHINE

Rotor block 

Tem ωr

Page 29: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 29/67

PER-UNIT EXPRESSION FOR TORQUE AND SPEED

Per-unit variables:

( ){ }bbm

ber 

b

 pudamp pumech puem

S  J  H dt 

wt d  H 

dt t d 

P J 

T T T T 

2

)()()(

2

1 where pu, 

/)(2

 pu )(21

ω ω ω 

ω 

=−

=

=−+

P

S T 

 I 

V  Z 

S  I V V  bbm

bm

bb

b

bb

b

bblinetolineb

2 , , ,

3

2 ,

3

2ω ω 

ω ===== −−

Page 30: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 30/67

SIMULATION OF A SYNCHRONOUS MACHINE

qd0 rotor frame to abc block 

Page 31: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 31/67

SIMULATION OF A SYNCHRONOUS MACHINE

 VIPQ block 

( )( ){ }

( )( ){ }qd d qd qd q

d d qqd qd q

iviv jii jvvQ

iviv jii jvvP

−=−−=

+=−−=

*

*

Im

Re

22

22

dsqst 

dsqst 

 I  I  I 

V V V 

+=

+=

Page 32: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 32/67

MINIMIZE STARTUP TRANSIENTS

Startup transient occurs whenever the state variables of 

simulation (such as ψ’s) are not properly initialized To wait for the startup transient is rather time consuming

especially when the time constants of field and machineryare high

To minimize startup transients, we need to initialize the

corresponding states with good estimates The initial values of integrators in the model should be set

close to the desired operating condition to minimize theinitial simulation transients

The desired operating condition for the variables

initialization could be obtained from steady-state analysis Startup transients can also be minimized by setting high

damping coefficient Dω, until steady-state is established,then Dω is reset to the previous value

Page 33: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 33/67

Project. 6-1 Project homework 

(Homework): With the same machine parameters givenin Table 7.2 (pp.317), you are asked to build up asynchronous generator model has the following source:v1=1√2sin(120πt+0) puv2=1√2sin(120πt-2π /3) pu

v3=1√2sin(120πt+2π /3) pu1) With source voltage connected in 1pu, excitation voltage Ef =

1pu, change the mechanical torque from 1pu to 0 pu at t=10 sec,and then change the mechanical torque again from 0pu to -1puat t=15 sec. Observe and plot the following responses from 0~20

sec1) the Pgen, Tem, ω, δ, in one figure2) Qgen, If ’, id, iq in one figure3) ia, ib, ic in one figure4) discuss what you see on the plots (ex. observe transient in

field current, 3 phase current, Q, ω, etc)

h k

Page 34: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 34/67

Project. 6-1 Project homework 

2. With Excitation voltage = 1pu, Tmech = 0.5 pu (mechanicaltorque), short the 3-phase source terminal voltage toground from 1pu to 0 pu at t=10 sec, fault clear att=10.25 sec, observe and plot

1) vq, vd, iq, id, in one figure

2) ia, ib, ic in one figure3) Pgen, Tem, δ, ω in one figure4) Qgen, If ’, in one figure5) discuss what you see on the plots (ex.observe transient in field

current and qd, abc current)6) calculate the critical clearing time that machine could run out of 

synchronism, observe your result

Suggestion:In the case 2, the figure time scale can be shown starting from t=9 secthrough the time when system becomes stable after the fault cleared

Page 35: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 35/67

MACHINE PARAMETER 

Machine data from manufacturers are in form of  reactance time constants resistances they are derived from measurement of stator windings

The parameters of the rotor winding from statormeasurements are taken from a method of shortcircuited oscillogram Short circuited oscillogram: stator is initially open-

circuited, keep field excitation constant, then applythree phase short-circuit ground on stator and observe3 phase stator current decay period

The rate of stator current decay could tell usinformation of machine’s time constant, reactance, etc.

Page 36: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 36/67

SYNCHRONOUS INDUCTANCES

Inductance is defined as L=λ /I Peak of rotating mmf aligned with d-axis, then

Ld= λd /I, same manner as Lq= λq /I, Ld and Lqcould be obtained in the synchronous operation.

Page 37: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 37/67

SYNCHRONOUS INDUCTANCE AND TRANSIENTINDUCTANCE

Balanced steady state operation rotor and stator mmf are in synchronous speed, relative

speed of mmf=0, flux linkage does not vary with time,no voltage is induced in rotor circuits

generator is represented with a constant emf behindsynchronous reactance Xs=Xd, as figure below

Transient operation short circuit at the generator terminal will result in

varying flux linkages with rotor, induce rotor transientcurrent and in turn reacts on stator armature transient analysis must use transient machine

parameters transient parameters must be obtained by test of 

oscillogram

Efd

Page 38: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 38/67

MACHINE PARAMETER 

Short circuit oscillogram the stator’s short-circuited transient current decay

exhibits two distinctly different decay period

sub-transient: the first few cycles of short circuit whencurrent decay is fast, mainly attribute from the changes

of currents in damper winding transient: rate of current decay is slower and attribute

to the current changes in field winding

Oscillogram cause

sub-transient: change of current in the outer damperwinding limit the stator-induced flux from penetratingthe rotor

transient: change of current in the field winding reactthe same manner

SYNCHRONOUS MACHINE TRANSIENT

Page 39: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 39/67

SYNCHRONOUS MACHINE TRANSIENT ANALYSIS

Generator transient behavior sub-transient analysis: lasting for only a few cycles right after the

disturbance

transient analysis: lasting longer time than sub-transient period

steady state analysis: transient phenomena die out

SYNCHRONOUS MACHINE TRANSIENT

Page 40: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 40/67

SYNCHRONOUS MACHINE TRANSIENT ANALYSIS

Generator transient behavior sub-transient,

transient,

steady state

Page 41: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 41/67

TRANSIENT INDUCTANCES

Induced current in the damper decay is more rapid the damper winding resistance >> field winding resistance

In the transient period, we assume damper current decay is over induced field current still changes to opposite the change in flux

linkage by stator current

Procedure for transient inductance estimation stator initially opened, then short circuit is applied keep rotor field excitation constant

Change of flux linkage in d-axis in Stator winding Δλd=Ld Δid+Lmd Δ if ’ (7.96)

No change of flux linkage in rotor winding Δλfd= Lmd Δid+Lff 

’ Δif ’ = 0 (7.97) where Lff 

’=Lmd+L’f ’, Lkd’=Lmd+Lkd’,

Substitute Δ if ‘ in (7.96) into (7.97), we have Δλd= (Ld -Lmd

2 /Lff ) Δid

Page 42: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 42/67

TRANSIENT INDUCTANCES

d-axis and q-axis transient inductance Ld

’= Δλd/ Δid= (Ld -Lmd2 /Lff ’) (7.99)

Lq’= Δλq/ Δiq= (Lq -Lmq

2 /Lgg’) (7.100)

d,q axis transient inductance could beconsidered as Lls in series with (Lmd//Lff ’) orLls in series with (Lmq//Lgg’)

LlsLmd Llf ’Ld

Page 43: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 43/67

SUB-TRANSIENT INDUCTANCES

Procedure for sub-transient inductance estimation stator initially opened, then short circuit is applied keep rotor field excitation constant

For the sub-transient period, rotor flux linkagekeeps initially constant, thus Δλf ’ =0,  Δλkd’ = 0 Δλf ’ = Lmd Δid+Lff ’ Δif ’+Lmd Δikd’ = 0 Δλkd’ = Lmd Δid+Lmd Δif ’+Lkdkd’ Δikd’ = 0 (7.104)

Corresponding change in d-axis stator flux linkage

Δλd = Ld Δid+Lmd Δif ’+Lmd’ Δikd’ (7.106) Rearrange Δif ’ = Δikd’ in (7.104) and substitute into

(7.106), we obtain (7.107) Ld’’ = Δλd / Δid

Page 44: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 44/67

SUB-TRANSIENT INDUCTANCES

Equivalent circuit: Lls in series with (Lmd // Lff ’// Llkd’)

LlsLmd Llf ’ Llkd’Ld

TRANSIENT TIME CONSTANT

Page 45: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 45/67

TRANSIENT TIME CONSTANT

Procedure for open circuit transient time constant

estimation stator initially open circuited, then apply field excitation

voltage change

Transient time constant Tdo’

larger value observe field winding current decay

Procedure for open circuit sub-transient timeconstant estimation stator initially open circuited, then short field winding

Sub-transient time constant Tdo’’ smaller value observe damper winding current decay

Page 46: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 46/67

Open/Short Circuit Transient (Field) Time Constant

Open circuit transient (field) time constant Tdo’ observe change in field currents in response to a change in

excitation voltage when stator is open circuited

Tdo’ = Lff ’ / rf ’

Lff ’ equivalent circuit: Llf ’ in series with Lmd

Tqo’ = Lgg’ / rg’

Typically, Tdo’ is of order of 2 to 11 secs.

Short circuit transient (field) time constant Td’ observe change in field currents in response to a change in

excitation voltage when stator is short circuited, Td’

ratio of Td’ and Tdo’ equals to ratio of Ld’ and Ld, that is Td’ / Tdo’ = Ld’ / Ld

The transient time constant can also be expressed as

(7.113) 

  

 

−=

'

2

'

' )(1

d d 

lsd 

 f 

do L L

 L L

r T 

Page 47: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 47/67

Open circuit Sub-transient Time Constants

Open circuit sub-transient time constant Tdo’’

time constant of kd damper winding current when stator windings are open circuited field windings are then shorted

also defined as time in second required for d-axiscomponent of stator voltage decrease to (1/e) value

after a short circuited on the stator winding is suddenlyremoved in rated speed

During the initial decay of the sudden open circuitstator voltage, the effective inductance of kdwinding Lkdo’’=Llkd’+(Lmd Llf ’)/(Lmd + Llf ’) Lkdo

’’ equivalent circuit: Llkd’ in series with Lmd // Llf 

Therefore Tdo’’ = Lkdo’’ / rkd

’ (7.118)

By symmetry Tqo’’ => Tqo’’ = Lkqo’’ / rkq

Page 48: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 48/67

C l l ti M hi P t

Page 49: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 49/67

Calculating Machine Parameters

Procedure to calculate the parameters for the

developed model Normally, the parameters given by the

manufacturers are the stator parameters stator leakage reactance, xls

sometimes x0

= xls

is given instead of xls

d,q axis reactance, xd, xq

Rotor parameters needs to be determined Procedure 1: Calculate xmd, xmq

xmq

= xq

– xls

xmd = xd – xls

Procedure 2: Obtain transient and sub-transientparameters

C l l ti M hi P t

Page 50: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 50/67

Determine transient reactance Xd’: obtain rms steady short circuit current after

approximately the 10th cycle

use the equation: ( )( ) t mct  I  I ior 

e I  I i

d d d 

d d d 

''/ln'ln 

'

''

/''

−=−−=∆

−=∆ −

τ 

τ 

Calculating Machine Parameters

C l l ti M hi P t

Page 51: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 51/67

Determine transient parameters

rms transient current

transient reactance

transient time constant

Determine sub-transient parameters

obtain rms short circuit current of the first 2 cycle

use the following equation

c

d  I e I  += ''

'

0'

d d   I 

 E 

 X  =

'

1'

md  =τ 

( )

( )t mct  I  I ior 

e I  I i

d d d 

d d d 

''''/ln''ln 

''

'''''

/'''''

−=−−=∆

−=∆ −

τ 

τ 

Calculating Machine Parameters

C l l ti M hi P t

Page 52: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 52/67

Determine sub-transient parameters

rms sub-transient current

sub-transient reactance

sub-transient time constant

'''''

c

d  I e I  +=

''

0''

d  I 

 E  X  =

''

1''

md  =τ 

Calculating Machine Parameters

C l l ti M hi P t

Page 53: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 53/67

Calculating Machine Parameters

Procedure 3: Calculate xlf ’

when xd’ is obtained from Procedure 2

from (7.99), calculate xlf ’

)()( '

'

'

lsd md 

lsd md lf 

 x x x x x x x−− −=

Calc lating Machine Pa amete s

Page 54: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 54/67

Calculating Machine Parameters

Procedure 4: calculate xlkd’

when xd’ is obtained from Procedure 2, from Eq. (7.107) calculate

Procedure 5: calculate xlkq’

Use Lq’’ given in Eq. (7.108) by setting Llg->∞, no fieldwinding in q axis

if xmq >> xlkq’

xlkq’≈ xq’’-xls

))((

)(''''

'''

'

lf md lsd md lf 

lf md lsd 

lkd  x x x x x x

 x x x x x

+−−

−=

'

lf md '''

'''

' xxif  

)(

)(>>

−−

−=

lsd lf 

lf lsd 

lkd 

 x x x

 x x x x

)(

)(''

'''

lsqmq

mqlsq

lkq x x x

 x x x x

−−−=

Calculating Machine Parameters

Page 55: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 55/67

Calculating Machine Parameters

Procedure 6: calculate rf ’

Use Td0’ and Eq. (7.138)

Procedure 7: calculate rkd’

Use Td0’’ and Eq. (7.141)

Procedure 8: calculate rkq

use Tq0’’ and Eq. (7.143)

)(1 ''

''

'

lsd lkd 

dob

kd  x x xT 

r  −+=ω 

)(1 '

'

'

md lf 

dob

 f  x xT 

r  +=ω 

)(1 '

''

'

mqlkq

qob

kq x xT 

r  +=ω 

Calculating Machine Parameters

Page 56: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 56/67

Calculating Machine Parameters

Or using short-circuit time constants to calculate rf ’, rkd

’,

rkq’

)(1

''

'

'

''

'

lf lslf md lsmd 

lf lsmd 

lkd 

d b

kd  x x x x x x

 x x x xr 

+++=

τ ω 

)(1 '

'

'

lsmd 

lsmd lf 

d b

 f  x x

 x x xr 

++=

τ ω 

)(1 '

''

'

lsmq

lsmq

lkq

qb

kq x x

 x x xr 

++=

τ ω 

Project 6 2: Synchronous Machine Parameter Test

Page 57: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 57/67

Project 6-2: Synchronous Machine Parameter Test

(Homework): You need to build up your

synchronous machine model according toparameters given from table 7.2 and then applythe short circuit test or open circuit test to obtain:

1) xd’, xd’’, xq’, xq’’, Td’, Td’’, rf ’, rkd’, rkq’ by short

circuit test assume only rs, xd, xq, xls areavailable from Table 7.2

2) assume Tdo’, Tdo’’ are available from Table 7.2by open circuit test, and obtain rf ’, rkd’, rkq’,

3) verify your results with parameters in Table7.2

4) you may need to calculate rotor parametersthat is similar to 7.7.1 to build up your model

Project 6-2: Synchronous Machine Parameter Test

Page 58: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 58/67

Project 6-2: Synchronous Machine Parameter Test

Table 7.2 % parameters of three-phase synchronous machine Set 1 Perunit = 1 % parameters given in per unit of machine base Frated = 60; Poles = 4; Pfrated= 0.9;  Vrated =18e3; Prated=828315e3; rs = 0.0048;

xd = 1.790; xq = 1.660; xls = 0.215; x’d = 0.355; x’q = 0.570; x”d = 0.275; x”q = 0.275; T’do = 7.9; T’qo = 0.410; T”do = 0.032; T”qo = 0.055; H = 3.77; Domega = 0; % mechanical damping coeff 

Permanent Magnet Synchronous Motors

Page 59: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 59/67

Permanent Magnet Synchronous Motors

The dc excitation field winding can be replaced with

permanent magnet Difference of replacing the dc excitation with permanent

magnet is the elimination of copper losses

Magnet arrangement:

Surface: high magnetic material, leakage of magnet is small, noteasy to demagnetize, smaller volume of permanent magnetinterior: need a longer length of magnet, flux focusing is needed

Permanent Magnet Synchronous Motors

Page 60: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 60/67

Permanent Magnet Synchronous Motors

PMSM advantage: simple construction,lower weight and size for sameperformance

PMSM disadvantage: high price, magnetchange with time

Motor start:

line-start: have a rotor cage to help start motoron a fixed frequency supply

inverter-fed: variable frequency supply to startmotor to synchronous speed

Permanent Magnet Synchronous Motors

Page 61: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 61/67

Permanent Magnet Synchronous Motors

The circuit model used is similar to the

synchronous model we had before, the differenceis the rotor field winding Rotor field winding is replaced by a permanent

magnet inductance Lrc and equivalentmagnetizing current im’ in d-axis only, no q-axis

field winding Some difference of dq0 equations between

Synchronous and PM Synchronous motors flux linkage:

λd = Ld id +Lmdikd’+Lmdim’

λkd’ = Lmd id +Lkdkdikd’+Lmdim

λmd = Lmd (id +ikd’+im

’) = LMD (λd /Lls +λkd’ /Lkd’+ im’)

Tem = (3/2)(P/2) (λd iq - λq id)

Basics of Magnetics

Page 62: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 62/67

Basics of Magnetics

Recoil line H (magnetic field) vs. B (flux density)

F (mmf) vs. φ (flux)

i (current) vs. λ (flux linkage)

φ, F relationship of the Recoil line

B, φ, λ

H, F, i(-F

o, 0)

(0, φr1)

rc

o

orcr 

rco

PF F 

F P

PF F 

φ 

φ 

φ 

−=

=

−=

1

)(

DC

Prc

FFo

φ

+

-

Basics of Magnetics

Page 63: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 63/67

Basics of Magnetics

Equivalent magnetic circuit thevenin’s equivalent

norton’s equivalent

F P

PF F 

F F P

rcr 

rc

o

r oorcr 

−=

−=

=

1

11

getwe,in

 withreplaceto

φ φ 

φ 

φ φ 

DC

Prc

FFo

φ

+

-

rc

o

orcr 

rco

PF F 

F P

PF F 

φ 

φ 

φ 

−=

=

−=

1

)(

FPrc

+

-

φr1

φ

Basics of Magnetics

Page 64: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 64/67

Basics of Magnetics

Math dual between magnetic and electric circuit norton equivalent

thevenin equivalent

DC

Prc

FFo

φ

+

-

VLrc

+

-

io

i

FPrc

+

-

φr1

φ

DC

Lrc

VVr

i

+

-

P t M t S h M t

Page 65: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 65/67

Permanent Magnet Synchronous Motors

Electric circuit on synchronous machine the permanent magnetic part will be represented by a

fixed current source im’ in parallel with inductor Lrc

DC

im’

Lrc

Lmd

equivalent electriccircuit for PM part

in rotor

stator part

P t M t S h M t

Page 66: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 66/67

Permanent Magnet Synchronous Motors

Electric circuit on synchronous machine

machine equations

Project 6-3: Simulation of Permanent MagnetS h M hi

Page 67: Aps_chap6 (Syn Generator)

7/30/2019 Aps_chap6 (Syn Generator)

http://slidepdf.com/reader/full/apschap6-syn-generator 67/67

Synchronous Machine

(Homework): You need to build up the permanent

magnet synchronous generator (PMSG) model accordingto parameters given in Table 7.6 (im

’ =1.6203pu) . ThePMSG is connected to a Y balanced resistive load(Ω=0.1pu). When a torque is applied at the generator,obtain the following simulation result for the simulation

run time of 10 sec.1)  A constant torque 0.5pu is applied to the generator,

obtain d-q terminal voltages, stator currents,electromagnetic torque, rotor speed, input power,resistive loss, and real power output.

2)  A series torque is applied as the following:[0 0 1 1 0.5 0.5 1 1] for the corresponding time [5 5.45.4 5.8 5.8 6.2 6.2 6.5], obtain d-q terminal voltages,stator currents, electromagnetic torque, rotor speed,input power resistive loss and real power output