April 17-19 Gary Loh, Joseph A Creazzo & Mark L Robin Ph · • Gary Loh, Joseph A Creazzo & Mark L...

18
UTECH EUROPE 2012, Maastricht, the Netherlands Advancements in Zero ODP and Low GWP Foam Expansion Agent April 17-19 Gary Loh, Joseph A Creazzo & Mark L Robin Ph.D

Transcript of April 17-19 Gary Loh, Joseph A Creazzo & Mark L Robin Ph · • Gary Loh, Joseph A Creazzo & Mark L...

UTECH EUROPE 2012, Maastricht, the Netherlands

Advancements in Zero ODP and Low GWP

Foam Expansion Agent

• April 17-19

• Gary Loh, Joseph A Creazzo & Mark L Robin Ph.D

2

Outline

• Customer evaluation of Formacel® 1100 (FEA-1100)

• Foam expansion agent level (FEA) optimization

• Recent property data and update

• Summary

3

Customer Evaluation – Physical & Chemical Stability

Stability in spray foam formulation (6 month storage at room temperature)

Stability in appliance formulation (6 month storage at room temperature)

Stability in Panel formulation (changes relative to day 0 after 14 day storage at 20C)

Equal weight FEA in appliance formulation HFC-245fa Formacel 1100

Reaction profile and flow

Cream time (second) 12 Identical to HFC-245fa

Gel Time (second) 85 Identical to HFC-245fa

Flow index 1.3 Identical to HFC-245fa

b-side system stability

Physical stability No phase separation Identical to HFC-245fa

Chemical stability No reactivity and density change Identical to HFC-245fa

Equal weight FEA in spray foam formulation HFC-245fa Formacel 1100

FEA and water level (pbw)

FEA (pbw ) 9 9

Water (pbw ) 1.8 1.8

Foam System Stability

(6 months at room temperature)

Physical Stability No separation Identical to HFC-245fa

Chemical Stability Stable Identical to HFC-245fa

Equal weight FEA in panel

formulationHCFC-141b HFC-245fa HFC-365mfc Formacel 1100

Cream time 5.9% 7.7% 12.5% -5.9%

Gel time 1.3% -1.2% -1.3% 1.3%

Rise time 1.6% 4.9% 2.5% -4.1%

Density -1.0% -2.6% -9.6% -0.6%

4

• Customer results confirm DuPont’s lab study

• Formacel® 1100 (FEA-1100) is stable in

foam formulations

DuPont’s Previous Lab Study - Stability

Reference: Blowing Agents & Foaming Processes 2010 Cologne, Germany

5

• Equal-weight drop-in to compare with HCFC-141b and HFCs (10% overpack)

• Improved initial and 28 day k-factors

Customer Evaluation – Panel Foam

Dimensional Stability (% volume change)

Cold(-30oC/48H) - parallel -0.10% -0.07% -0.02% -0.21%

Cold(-30oC/48H) - perpendicular -0.32% -0.10% -0.05% -0.02%

Hot(70oC/48H) - parallel -0.38% 0.0% 0.00% 0.07%

Hot(70oC/48H) - perpendicular 0.75% 0.2% 0.52% 0.72%

Hot Humid (70oC/95%RH/48H) - parallel 4.6% 5.0% 4.4% 4.3%

Hot Humid (70oC/95%RH/48H) - perpendicular 12.4% 9.1% 8.5% 10.0%

Mechanical Properties

Compressive strength -parallel (kPa) 87 156 117 134

Bending strength (kPa) 347 420 353 368

HCFC-141b HFC-245fa HFC-365mfcFormacel

1100

Foam Properties

Foam density (kg/m3) 40.1 40.3 40.2 39.8

Core density (kg/m3) 37.6 39.0 38.7 38.4

k-factor at 23 oC (mW/mK) - initial 20.5 20.8 21.2 19.9

Relative k-factor vs HCFC-141b control -initial Control 1% 3% -3%

k-factor at 23 oC (mW/mK) - 28 days 23.1 22.3 22.9 21.3

Relative k-factor vs HCFC-141b control -28 days Control -3% -1% -8%

Closed cell % 91% 93% 93% 94%

6

DuPont’s Previous Lab Study - Panel & PIR Formulations

• Equal mole drop-in (DuPont’s lab study) vs equal–weight drop-in (customer results)

• Formacel®1100(FEA-1100) shows improved initial and aged k-factors

• Customer results confirms DuPont’s study

Aged K-factor for PIR Foam

0.018

0.019

0.020

0.022

0.023

0.024

0 30 60 90 120 150 180 210 240 270 300

daysK

-fa

cto

r (W

/mK

)

FEA-1100 HFC-245faPower (FEA-1100) Power (HFC-245fa)Relative k-factor vs HCFC-141b -4.1% control 4.3% 3.8%

Ingredients (pbw)FEA-1100 HCFC-141b HFC-245fa HFC-365mfc

Sucrose- based polyol 100 100 100 100

Surfactant 2.00 2.00 2.00 2.00

Catalysts 4.00 4.00 4.00 4.00

water (moles) 0.08 0.08 0.08 0.08

FEA (moles) 0.20 0.20 0.20 0.20

Isocyanate 121 121 121 121

Foam Index 1.1 1.1 1.1 1.1

Cream time(s) 7 6 6 7

Rise time(s) 120 120 120 130

Tack free time(s) 140 150 140 140

Foam density (kg/m3) 31.1 32.7 32.0 29.6

K-factor (W/mK) @ 23.9oC 0.0205 0.0214 0.0223 0.0222

Reaction Profile

Foam Initial Properties

Reference: Blowing Agents & Foaming Processes 2010 Cologne, Germany

7

• Foam sprayed using Graco H2035 with Fusion spray gun

• Process temperature = 54 oC

• Lower k-factor than HFC-245fa (equal weight substitution at 9 pbw FEA)

• Improved mechanical properties

Customer Evaluation – Spray Foam

HFC-245fa Formacel 1100Formacel 1100

relative to HFC-245fa

Foam Properties

Density (kg/m3) 44.2 45.6 3%

k-factor at 23oC (mW/mK) 23.0 22.6 -2%

Close cell % 98% 99%

Dimensional stability (% volume change)

Cold (-29oC/14 days) 0.17% 0.23%

Hot (93oC/28 days) 5.9% 1.8%

Hot and Humid (70oC/95%RH/28 days) 19% 17%

Mechanical Properties

Compressive strength - parallel(kPa) 179 273 52%

Tensile strength (kPa) 430 507 18%

8

• Equal weight drop-in to HFC-245fa and HCFC-141b formulations

• More significant k-factor improvement at higher FEA level

• Flexibility to use higher level for significant k-factor improvement without vapor pressure concern

Customer Evaluation – Spray Foam (FEA Level Impact)

HCFC-141b

formulation

(High level FEA)

Formacel 1100

in HCFC-141b

formulation

(High Level FEA)

HFC-245fa

formulation

(Low level FEA)

Formacel 1100

in HFC-245fa

formulation

(Low level FEA)

FEA and water level (pbw) based on 100 pbw Polyol

FEA (pbw) 19 19 9 9

H2O (pbw) 0.30 0.30 1.8 1.8

Foam Properties

Foam density (kg/m3) 43.4 38.5 44.2 45.6

Initial k-factor at 23 oC (mW/mK) 20.1 19.3 23.0 22.6

Relative k-factor (equal weight FEA) Control -4% Control -2%

Relative k-factor (FEA-1100 high level vs HFC-245fa low level) --- -16% Control ---

Closed cell % 93% 94% 98% 99%

Compressive strength -parallel(kPa) 232 232 179 273

9

• Equal mole drop-in (DuPont’s lab study) vs. equal–weight drop-in (customer results)

• Formacel®1100(FEA-1100) shows more significant k-factor improvement at higher level

• Customer results confirm DuPont’s previous study

DuPont’s Previous Lab Study - Spray Foam Formulation

Ingredients (pbw)

HFC-245fa

(low FEA level)

FEA-1100

(low FEA level)

HFC-245fa

(high FEA level)*

FEA-1100

(high FEA level)

Mannich polyol 50 50 50 50

Polyester polyol 50 50 50 50

Surfactant 0.25 0.25 0.25 0.25

Flame retardant and additives 24.50 24.50 24.50 24.50

Catalysts 1.22 1.22 1.22 1.22

FEA (moles) 0.045 0.045 0.179 0.179

Water (moles) 0.169 0.169 0.035 0.035

Isocyanate 138 138 97 97

Foam index 1.1 1.1 1.1 1.1

Cream time(s) 8 8 7 7

Rise time(s) 70 67 85 71

Tack free time(s) 70 70 90 85

Foam density (kg/m3) 41.97 42.13 40.69 44.21

K-factor (W/mK) @ 23.9oC 0.0237 0.0231 0.0200 0.0188

Foam initial properties

Reaction profile

Reference: Blowing Agents & Foaming Processes 2010 Cologne, Germany

* Pressure may exceed drum pressure rating

Relaive k-factor (equal mole basis) Control -2.5% control -5.8%

Relative k-factor (FEA-1100 high level vs HFC-245fa low level) Control --- --- -21%

10

Customer Evaluation – Appliance

• Equal weight drop-in to the same HFC-245fa formulation

• High pressure machine at 10% overpacking

• Slightly better k-factor with improved other foam properties

HFC-245fa

Formacel 1100 relative to

HFC-245fa

Foam Properties (10% Overpacking)

Mold density (kg/m3) Control 1.5%

Compressive strength (kPa) Control 6.4%

Adhesion (kPa) Control 16.4%

Dimensional Stability(% volume change) Control -13.3%

k-factor @ 10oC (mW/mK) Control -1.4%

k-factor @ 23oC (mW/mK) Control -1.3%

11

• Formacel® 1100 at 54 mole% is more comparable with HFC-245fa at 75 mole%

• There is an optimal level for FEA efficiency and insulation performance

Customer Evaluation – Appliance (FEA Level Impact)

HFC-245fa

(54 mole% FEA)

Formacel 1100

(54 mole% FEA)

FEA and water level (same formulation)

FEA (pbw ) 23.9 29.9

H2O (pbw ) 2.75 2.81

Mole% FEA in FEA and H2O 54% 54%

% Overpacking 9-12 % 9-12 %

Foam Properties

Packed density (kg/m3) 28.5 29.4

k-factor @ 23.9 oC (mW/mK) 20.2 19.3

k-factor @ 1.7 oC(mW/mK) 17.4 17.6

Average k-factor (mW/mK) 18.8 18.4

Compressive strength (kPa) 124.1 125.5

Closed cell% 92.0 92.0

HFC-245fa

(75 mole % FEA)

Formacel 1100

(75 mole% FEA)

29.5 36.8

1.28 1.31

76% 75%

9-12 % 9-12 %

31.5 31.7

19.6 19.3

17.0 18.6

18.3 19.0

93.1 105.5

93.5 86.6

Formacel 1100 relative to HFC-245fa (equal mole basis)

FEA usage (pbw ) Control 25% Control 25%

k-factor @ 23.9 oC (mW/mK) Control -4% Control -1%

k-factor @ 1.7 oC(mW/mK) Control 1% Control 9%

Average k-factor (mW/mK) Control -2% Control 4%

Compressive strength (kPa) Control 1% Control 13%

Formacel 1100 (54 mole%) relative to HFC-245fa (75 mole%)

FEA usage (pbw ) 2% Control

k-factor @ 23.9 oC (mW/mK) -1% Control

k-factor @ 1.7 oC(mW/mK) 3% Control

Average k-factor (mW/mK) 1% Control

Compressive strength (kPa) 35% Control

12

DuPont’s Previous Lab study – Appliance (FEA Level Impact)

• 2% average k-factor improvement with 34% less FEA usage when decreasing

Formacel ® 1100 (FEA-1100) from 0.21 moles (60 mole%) to 0.14 moles (40 mole%)

• Customer results confirm DuPont’s lab study

Reference: Proceedings of Polyurethanes 2010 Technical Conference, Houston, TX

13

• FEA level optimization is needed for

cyclopentane also

• Formacel® 1100 can improve cyclopentane

performance

• Cyclopentane performance can be

optimized by adjusting Formacel® 1100

and water levels

Impact of Cyclopentane (Cp) Level on k-factor

19.00

19.50

20.00

20.50

21.00

21.50

22.00

22.50

23.00

0 5 10 15 20 25

Temperature(C)

k-f

acto

r(m

W/m

K)

100% Cp (27 mole%

H2O)

100% Cp (60 mole%

H2O)

Formacel-1100 vs Cylopentane

19.00

19.50

20.00

20.50

21.00

21.50

22.00

0 5 10 15 20 25

Temperature(C)

k-f

acto

r(w

m/m

K)

100% Cp (60 mole%

H2O)

100% Formacel-1100

(60 mole% H2O)

Improve Cylopentane (Cp) Performance

19.00

19.50

20.00

20.50

21.00

21.50

22.00

0 5 10 15 20 25

Temperature(C)

k-f

acto

r(w

m/m

K)

100% Cp (60 mole%

H2O)

20 w t% Cp-80 w t%

Formacel-1100 (60

mole% H2O)

20 w t% Cp-80 w t%

Formacel-1100 (27

mole% H2O)

40 w t% Cp-60 w t%

Formacel-1100 (no H2O)

FEA Level Optimization (DuPont’s Lab Study)

14

• US & Europe use volatile organic compounds (VOCs ) or the photochemical ozone creation

potential (POCP) to characterize ground-level ozone formation.

• Maximum Incremental Reactivity (MIR) relative to ethane is used to characterize VOC & POCP

• MIR of Formacel®1100 is 86% less than ethane (W.P.L Carter communication 2011)

• Formacel®1100 is expected to be classified as non-VOC & low POCP

Foam Expansion Agent MIR (g O3/g)

Formacel 1100 0.04

Methyl Formate 0.06

HFO-1234ze 0.10

HFO-1234yf 0.28

Ethane 0.28

Dichloroethylene 1.70

Cyclopentane 2.39

Impact of Formacel® 1100 on Ground - level Ozone Formation

Reference: The California Consumer Products Regulations 127pp. California Environmental Protection Agency, Air Resource Board, Publication November 2010.

15

Formacel® 1100 Exposure Limits

• 4-hr LC 50: Very Low acute toxicity

• Ames Test: Non - mutagenic

• Chromosomal Aberration: No genetic material damage

• Cardiac Sensitization: Favorable cardiac sensitization potential profile

• 28-Day Repeat Inhalation: Favorable repeated inhalation profile

• 90 Day/ developmental:

� Favorable repeated inhalation profile consistent with 28-day test result

� DuPont Allowable Exposure Limits (AEL) = 500 ppm (8 and 12 hr TWA)

Comparison of Exposure Limits with Commercially Available FEAs

a: DuPont Allowable Exposure Limits (8-12 hr TWA)

FEAs Formacel 1100 HCFC-141b HFC-245fa HFC-365mfc Cyclopentane Methyl Formate

TLV, OEL or

AELa (ppm)500a 500 300 1000a 600 100

16

Formacel® 1100 Property Summary

• Boiling Point = 33°C

• Nonflammable (ASTM E 681)

• AEL = 500 ppm, 8-12 hr TWA

• Vapor Thermal Conductivity = 10.7 mW/mK @ 25 °C

• Ozone Depletion Potential (ODP) = 0

• Global Warming Potential (GWP)100 yr ITH = 8.9

(NOAA)

• Atmosphere Lifetime = 22 days (NOAA)

• Maximum Incremental Reactivity (MIR) = 0.04 g O3/g

Low Conversion

Cost

Energy Efficiency

Environmental

Sustainability

CF3CH=CHCF3

17

Summary

• Environmental and physical properties indicate that Formacel®1100 is environmentally

sustainable with many desired characteristics

• Customer evaluation results showed improved benefits and confirm DuPont lab studies

• Formacel®1100 provides customers and value chain opportunity to optimize performance and

enhance economics

• DuPont is conducting further research to maximize Formacel®1100 performance

• DuPont is in the process of commercializing Formacel®1100

18

DISCLAIMER

The information set forth herein is furnished free of charge and based on technical data that

DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own

risk. Since conditions of use are outside our control, we make no warranties, expressed or

implied and assume no liability in connection with any use of this information. Nothing herein is to

be taken as a license to operate under, or a recommendation to infringe any patents or patent

applications.