APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA...

125
APPROXIMATE DYNAMIC PROGRAMMING A SERIES OF LECTURES GIVEN AT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based on the book: “Dynamic Programming and Optimal Con- trol: Approximate Dynamic Programming,” Athena Scientific, 2012; see http://www.athenasc.com/dpbook.html For a fuller set of slides, see http://web.mit.edu/dimitrib/www/publ.html 1 *Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Transcript of APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA...

Page 1: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

A SERIES OF LECTURES GIVEN AT

CEA - CADARACHE

FRANCE

SUMMER 2012

DIMITRI P. BERTSEKAS

These lecture slides are based on the book:“Dynamic Programming and Optimal Con-trol: Approximate Dynamic Programming,”Athena Scientific, 2012; see

http://www.athenasc.com/dpbook.html

For a fuller set of slides, see

http://web.mit.edu/dimitrib/www/publ.html

1

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Page 2: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

! Large-scale DP based on approximations andin part on simulation.

! This has been a research area of great inter-est for the last 20 years known under variousnames (e.g., reinforcement learning, neuro-dynamic programming)

! Emerged through an enormously fruitful cross-fertilization of ideas from artificial intelligenceand optimization/control theory

! Deals with control of dynamic systems underuncertainty, but applies more broadly (e.g.,discrete deterministic optimization)

! A vast range of applications in control the-ory, operations research, artificial intelligence,and beyond ...

! The subject is broad with rich variety oftheory/math, algorithms, and applications.Our focus will be mostly on algorithms ...less on theory and modeling

2

Page 3: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

! A state-of-the-art account of some of the ma-jor topics at a graduate level

! Show how the use of approximation and sim-ulation can address the dual curses of DP:dimensionality and modeling

• Our 7-lecture plan:

! Two lectures on exact DP with emphasis oninfinite horizon problems and issues of large-scale computational methods

! One lecture on general issues of approxima-tion and simulation for large-scale problems

! One lecture on approximate policy iterationbased on temporal di!erences (TD)/projectedequations/Galerkin approximation

! One lecture on aggregation methods

! One lecture on stochastic approximation, Q-learning, and other methods

! One lecture on Monte Carlo methods forsolving general problems involving linear equa-tions and inequalities

3

Page 4: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob-lems

4

Page 5: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N ! 1

! k: Discrete time

! xk: State; summarizes past information thatis relevant for future optimization

! uk: Control; decision to be selected at timek from a given set

! wk: Random parameter (also called “distur-bance” or “noise” depending on the context)

! N : Horizon or number of times control isapplied

• Cost function that is additive over time

E

!

N!1

gN (xN ) + gk(xk, uk, wk)k

"

=0

#

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)

5

Page 6: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

INVENTORY CONTROL EXAMPLE

InventorySystem

Stock Ordered atPeriod k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk + 1 = xk + uk - wk

ukCos t of P e riod k

c uk + r (xk + uk - wk)

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk ! wk

• Cost function that is additive over time

E

!

N!1

gN (xN ) + gk(xk, uk, wk)k

N

"

=0

#

= E

!

!1

cuk + r(xk + uk

k=0

! wk)

#

"

$ %

6

Page 7: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ADDITIONAL ASSUMPTIONS

• Optimization over policies: These are rules/functions

uk = µk(xk), k = 0, . . . , N ! 1

that map states to controls (closed-loop optimiza-tion, use of feedback)

• The set of values that the control uk can takedepend at most on xk and not on prior x or u

• Probability distribution of wk does not dependon past values wk!1, . . . , w0, but may depend onxk and uk

! Otherwise past values of w or x would beuseful for future optimization

7

Page 8: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N!1

• Control contraints uk " Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies ! = {µ0, . . . , µN!1}, where µk mapsstates xk into controls uk = µk(xk) and is suchthat µk(xk) " Uk(xk) for all xk

• Expected cost of ! starting at x0 is

N!1

J!(x0) = E

!

gN (xN ) +"

gk(xk, µk(xk), wk)k=0

#

• Optimal cost function

J"(x0) = min J!(x0)!

• Optimal policy !" satisfies

J!!(x0) = J"(x0)

When produced by DP, !" is independent of x0.

8

Page 9: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PRINCIPLE OF OPTIMALITY

• Let !" = {µ", µ" "0 1, . . . , µN!1} be optimal policy

• Consider the “tail subproblem” whereby we areat xk at time k and wish to minimize the “cost-to-go” from time k to time N

E

!

N!1

gN (xN ) +"

g"$

x", µ"(x"), w"

"=k

#

%

and the “tail policy” {µ"k, µ

"k+1, . . . , µ

"N!1}

• Principle of optimality: The tail policy is opti-mal for the tail subproblem (optimization of thefuture does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob-lems of a given time length, using the solution ofthe tail subproblems of shorter time length

9

Page 10: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DP ALGORITHM

• Jk(xk): opt. cost of tail problem starting at xk

• Start with

JN (xN ) = gN (xN ),

and go backwards using

Jk(xk) = min E gk(xk, uk, wk)uk#Uk(xk)wk

+ Jk+1 fk(xk, u

&

k, wk) , k = 0, 1, . . . , N ! 1

i.e., to solve ta

$

il subproblem a

%'

t time k minimize

Sum of kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equalto the optimal cost J"(x0). Also, the policy

!" = {µ"0, . . . , µ

"N!1}

where µ"k(xk) minimizes in the right side above for

each xk and k, is optimal

Proof by induction•10

Page 11: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

! Exponential growth of the computational andstorage requirements as the number of statevariables and control variables increases

! Quick explosion of the number of states incombinatorial problems

! Intractability of imperfect state informationproblems

• The curse of modeling

! Sometimes a simulator of the system is easierto construct than a model

• There may be real-time solution constraints

! A family of problems may be addressed. Thedata of the problem to be solved is given withlittle advance notice

! The problem data may change as the systemis controlled – need for on-line replanning

• All of the above are motivations for approxi-mation and simulation

11

Page 12: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equationwhere the optimal cost-to-go function Jk+1 is re-placed by an approximation Jk+1.

• Apply µk(xk), which attains the minimum in

min E(

g ( Jk xk, uk, wk)+ k+1

$

fk(xk, uk, wk)uk#Uk(xk)

%

)

• Some approaches:

(a) Problem Approximation: Use Jk derived froma related but simpler problem

(b) Parametric Cost-to-Go Approximation: Useas Jk a function of a suitable parametricform, whose parameters are tuned by someheuristic or systematic scheme (we will mostlyfocus on this)

! This is a major portion of ReinforcementLearning/Neuro-Dynamic Programming

(c) Rollout Approach: Use as Jk the cost ofsome suboptimal policy, which is calculatedeither analytically or by simulation

12

Page 13: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)that minimizes in

min E g ˜k(xk, uk, wk)+Jk+1

uk#Uk(xk)

where J

&

is the cost-to-go of so

$

fk(xk, uk, wk)%'

,

k+1 me heuristic pol-icy (called the base policy).

• Cost improvement property: The rollout algo-rithm achieves no worse (and usually much better)cost than the base policy starting from the samestate.

• Main di"culty: Calculating Jk+1(x) may becomputationally intensive if the cost-to-go of thebase policy cannot be analytically calculated.

! May involve Monte Carlo simulation if theproblem is stochastic.

! Things improve in the deterministic case.

! Connection w/ Model Predictive Control (MPC)

13

Page 14: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

! The number of stages is infinite.

! The system is stationary.

• Total cost problems: Minimize

N!1

J k!(x0) = lim E " g xk, µk(xk), wk

N$% wkk=0,1,...

!

k

"

=0

#

$ %

! Discounted problems (" < 1, bounded g)

! Stochastic shortest path problems (" = 1,finite-state system with a termination state)- we will discuss sparringly

! Discounted and undiscounted problems withunbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

! Challenging analysis, elegance of solutionsand algorithms

! Stationary policies ! = {µ, µ, . . .} and sta-tionary forms of DP play a special role

14

Page 15: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy ! = {µ0, µ1, . . .}

N!1

J k!(x0) = lim E " g xk, µk(xk), wk

N$% wkk=0,1,...

!

k

"

=0

#

$ %

with " < 1, and g is bounded [for some M , wehave |g(x, u, w)| # M for all (x, u, w)]

• Boundedness of g guarantees that all costs arewell-defined and bounded: J!(x) # M

1!#

• All spaces are arbitrary

*

*

- only

*

*

boundedness ofg is important (there are math fine points, e.g.measurability, but they don’t matter in practice)

• Important special case: All underlying spacesfinite; a (finite spaces) Markovian Decision Prob-lem or MDP

• All algorithms essentially work with an MDPthat approximates the original problem

15

Page 16: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x

(TJ)(x) = min E&

g(x, u, w) + !J$

f(x, u, w)u!U(x) w

%'

, ! x

• TJ is the optimal cost function for the one-stage problem with stage cost g and terminal costfunction "J .

• T operates on bounded functions of x to pro-duce other bounded functions of x

• For any stationary policy µ

(TµJ)(x) = E&

g$

x, µ(x), w%

+ !J$

f(x, µ(x), w)%'

, ! xw

• The critical structure of the problem is cap-tured in T and Tµ

• The entire theory of discounted problems canbe developed in shorthand using T and Tµ

• This is true for many other DP problems

16

Page 17: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy !N0 = {µ0, µ1, . . . , µN!1}

with a terminal cost J :

!

N!1

J!N (x0) = E "NJ(xk) +"

""g$

x", µ"(x"), w"0

"=0

#

%

= E(

g$

x0, µ0(x0), w0

%

+ "J!N (x1)1

= (Tµ0J!N )(x0)

)

1

where !N1 = {µ1, µ2, . . . , µN!1}

• By induction we have

J!N (x) = (Tµ0Tµ1 · · ·TµN"1J)(x),0

$ x

• For a stationary policy µ the N -stage cost func-tion (with terminal cost J) is

J!N = TNµ J

0

where TNµ is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function(with terminal cost J) is TNJ

TNJ = T (TN!1J) is just the DP algorithm•17

Page 18: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [withJ0(x) % 0]

J!(x) = lim (T Nµ · · ·0Tµ1 TµN J0)(x), Jµ(x) = lim (Tµ J0)(x)

N"# N"#

• Bellman’s equation: J" = TJ", Jµ = TµJµ

• Optimality condition:

µ: optimal <==> T "µJ = TJ"

• Value iteration: For any (bounded) J

J"(x) = lim (T kJ)(x),k$%

$ x

• Policy iteration: Given µk,

! Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

! Policy improvement : Find µk+1 such that

Tµk+1Jµk = TJµk

18

Page 19: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

TWO KEY PROPERTIES

• Monotonicity property: For any J and J & suchthat J(x) # J &(x) for all x, and any µ

(TJ)(x) # (TJ &)(x), $ x,

(T J)(x) # (T J &µ µ )(x), $ x.

• Constant Shift property: For any J , any scalarr, and any µ

$

T (J + re)%

(x) = (TJ)(x) + "r, $ x,

Tµ(J + re) (x) = (TµJ)(x) + "r, $ x,

whe

$

re e is the u

%

nit function [e(x) % 1].

• Monotonicity is present in all DP models (undis-counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another propertyof major importance: T and Tµ are contractionmappings (we will show this later)

19

Page 20: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

CONVERGENCE OF VALUE ITERATION

• If J0 % 0,

J"(x) = lim (T kJ0)(x), for all xk$%

Proof: For any initial state x0, and policy ! ={µ0, µ1, . . .},

J!(x0) = E

!

%"

""g$

x", µ"(x"), w"

"=0

#

%

= E

!

k!1"

""g$

x", µ"(x"), w"

"=0

#

%

+E

!

%"

""g x", µ"(x"), w"

"=k

#

$ %

The tail portion satisfies

*

*

*

$

*E

!

%" "kM

""g x", µ"(x"), w"

#*

%

*

* # ,* 1

"=k! "

where M & |g(x, u, w)

*

|. Take the

*

min over ! ofboth sides. Q.E.D.

20

Page 21: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

BELLMAN’S EQUATION

• The optimal cost function J" satisfies Bellman’sEq., i.e. J" = TJ".

Proof: For all x and k,

"kM "kMJ"(x)! # (T kJ0)(x) # J"(x) + ,

1! " 1! "

where J0(x) % 0 and M & |g(x, u, w)|. ApplyingT to this relation, and using Monotonicity andConstant Shift,

"k+1M(TJ")(x)! # (T k+1J0)(x)

1! ""k+1M

# (TJ")(x) +1! "

Taking the limit as k ' ( and using the fact

lim (T k+1J0)(x) = J"(x)k$%

we obtain J" = TJ". Q.E.D.

21

Page 22: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-tions J and J &, and any µ,

max*

*(TJ)(x)! (TJ &)(x)x

*

# "max J(x) J &(x) ,x

*

!*

max*

*(TµJ)(x)

*

"

* *

!(TµJ &)(x) # max J(x)!J &(x) .x x

Proof: Denote c = maxx#

*

*

S

*

J(x)

*

*

*

! J &(x)

*

*

. Then

J(x)! c # J &(x) # J(

*

x) + c, $

*

x

Apply T to both sides, and use the Monotonicityand Constant Shift properties:

(TJ)(x)!"c # (TJ &)(x) # (TJ)(x)+"c, $ x

Hence

*

*(TJ)(x)! (TJ &)(x)*

* # "c, $ x.

Q.E.D.

22

Page 23: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only ifµ(x) attains the minimum in Bellman’s equationfor each x; i.e.,

TJ" = TµJ".

Proof: If TJ" = T "µJ , then using Bellman’s equa-

tion (J" = TJ"), we have

J" = TµJ",

so by uniqueness of the fixed point of Tµ, we obtainJ" = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,we have J" = Jµ, so

J" = TµJ".

Combining this with Bellman’s Eq. (J" = TJ"),we obtain TJ" = TµJ". Q.E.D.

23

Page 24: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• A more abstract view of DP

• Extensions of discounted DP

• Value and policy iteration

• Asynchronous algorithms

24

Page 25: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy ! = {µ0, µ1, . . .}

N!1

J k!(x0) = lim E

N$% wkk=0,1,...

!

k

"

" g=0

$

xk, µk(xk), wk

#

%

with " < 1, and for someM , we have |g(x, u, w)| #M for all (x, u, w)

• Shorthand notation for DP mappings (operateon functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + !J f(x, u, w) , ! xu!U(x) w

& $ %'

TJ is the optimal cost function for the one-stageproblem with stage cost g and terminal cost "J .

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + !J f(x, µ(x), w) , ! xw

& $ % $ %'

25

Page 26: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) % 0]

J!(x) = lim (Tµ0Tµ · · ·1 TµkJ0)(x), Jµ(x) = lim (Tk

µJ0)(x)k"# k"#

• Bellman’s equation: J" = TJ", Jµ = TµJµ or

J"(x) = min E&

g(x, u, w) + "J"$

f(x, u, w)%'

, $ xu#U(x) w

Jµ(x) = E&

g$

x, µ(x), ww

%

+ "Jµ$

f(x, µ(x), w)%'

, $ x

• Optimality condition:

µ: optimal <==> TµJ" = TJ"

i.e.,

µ(x) " arg min E&

g(x, u, w) + "J" fu#U(x) w

$

(x, u, w)%'

, $ x

• Value iteration: For any (bounded) J

J"(x) = lim (T kJ)(x), xk$%

$

26

Page 27: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MAJOR PROPERTIES

• Monotonicity property: For any functions J andJ & on the state space X such that J(x) # J &(x)for all x " X, and any µ

(TJ)(x) # (TJ &)(x), (TµJ)(x) # (TµJ &)(x), $ x " X

• Contraction property: For any bounded func-tions J and J &, and any µ,

max*

*(TJ)(x)! (TJ &)(x)*

# "max*

J(x)! J &(x)x x

*

,

max*

*(T µJ &µJ)(x)!(T )(x

*

)

* *

x

*

* # "maxx

*

*J(x)!J &(x)*

*.

• Compact Contraction Notation:

)TJ!TJ &) # ")J!J &), )TµJ!TµJ &) # ")J!J &),

where for any bounded function J , we denote by)J) the sup-norm

)J) = max J(x) .x#X

.

*

*

*

*

27

Page 28: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J"(x) = lim (T kJ)(x),k$%

$ x

• Policy iteration: Given µk

! Policy evaluation: Find Jµk by solving

Jµk (x) = E&

g$

x, µ(x), w%

+ !Jµk

$

f(x, µk(x), w)w

%'

, ! x

or Jµk = TµkJµk

! Policy improvement: Let µk+1 be such that

µk+1(x) " arg min E g(x, u, w) + !Jµk f(x, u, w) , ! xu!U(x) w

& $ %'

or Tµk+1Jµk = TJµk

• For finite state space policy evaluation is equiv-alent to solving a linear system of equations

• Dimension of the system is equal to the numberof states.

• For large problems, exact PI is out of the ques-tion (even though it terminates finitely)

28

Page 29: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

INTERPRETATION OF VI AND PI

0 Prob. = 1

0 Prob. = 1

!

Prob. = 1 Prob. =

!

Prob. = 1 Prob. =

1

TJ

Prob. = 1 Prob. =

0 Prob. = 1

1

Exact Policy Evaluation Approximate PolicyEvaluation

Exact Policy Evaluation Approximate PolicyEvaluation

TJ

Policy Improvement Exact (Exact if

Do not Replace S

=

Do not Replace S

=

n

29

0 Prob. = 1

1

J J! = TJ!

0 Prob. = 1

J J! = TJ!

0 Prob. = 1

! TJ

Prob. = 1 Prob. =

! TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree LineProb. = 1 Prob. =

J J! = TJ!

0 Prob. = 1

1 J J

J Jµ1 = Tµ1Jµ1

Policy Improvement Exact Policy Evaluation Approximate PolicyEvaluation

Policy Improvement Exact Policy Evaluation Approximate PolicyEvaluation

TJ Tµ1J J

Policy Improvement Exact Policy Evaluation (Exact if

J0

J0

J0

J0

= TJ0

= TJ0

= TJ0

Do not Replace Set S

= T 2J0

Do not Replace Set S

= T 2J0

n Value Iterations

Page 30: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

JUSTIFICATION OF POLICY ITERATION

• We can show that Jµk+1 # Jµk for all k

• Proof: For given k, we have

Tµk+1Jµk = TJµk # TµkJµk = Jµk

Using the monotonicity property of DP,

Jµk & T 2 Nµk+1Jµk & T

µk+1Jµk & · · · & lim Tµk+1Jµk

N$%

• Sincelim TN

µk+1Jµk = Jµk+1

N$%

we have Jµk & Jµk+1 .

• If Jµk = Jµk+1 , then Jµk solves Bellman’s equa-tion and is therefore equal to J"

• So at iteration k either the algorithm generatesa strictly improved policy or it finds an optimalpolicy

• For a finite spaces MDP, there are finitely manystationary policies, so the algorithm terminateswith an optimal policy

30

Page 31: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE PI

• Suppose that the policy evaluation is approxi-mate,

)Jk ! Jµk) # #, k = 0, 1, . . .

and policy improvement is approximate,

)Tµk+1Jk ! TJk) # $, k = 0, 1, . . .

where # and $ are some positive scalars.

• Error Bound I: The sequence {µk} generatedby approximate policy iteration satisfies

$+ 2"#lim sup

$%)Jµk

k! J") #

(1! ")2

• Typical practical behavior: The method makessteady progress up to a point and then the iteratesJ llate within a neighborhood of J"µk osci .

• Error Bound II: If in addition the sequence {µk}terminates at µ,

)Jµ ! J") #$+ 2"#

1! "31

Page 32: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

OPTIMISTIC POLICY ITERATION

• Optimistic PI (more e"cient): This is PI, wherepolicy evaluation is done approximately, with afinite number of VI

• So we approximate the policy evaluation

Jµ * Tmµ J

for some number m " [1,()

• Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

• If mk % 1 it becomes VI

• If mk = ( it becomes PI

• Can be shown to converge (in an infinite numberof iterations)

32

Page 33: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

Q-LEARNING I

• We can write Bellman’s equation as

J"(x) = min Q"(x, u),u#U(x)

$ x,

where Q" is the unique solution of

Q"(x, u) = E

+

g(x, u, w) + " min Q"(x, v)v#U(x)

,

with x = f(x, u, w)

• Q"(x, u) is called the optimal Q-factor of (x, u)

• We can equivalently write the VI method as

Jk+1(x) = min Qk+1(x, u),u#U(x)

$ x,

where Qk+1 is generated by

Qk+1(x, u) = E

+

g(x, u, w) + " min Qk(x, v)v#U(x)

,

with x = f(x, u, w)

33

Page 34: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

Q-LEARNING II

• Q-factors are no di!erent than costs

• They satisfy a Bellman equation Q = FQ where

(FQ)(x, u) = E

+

g(x, u, w) + " min Q(x, v)v#U(x)

,

where x = f(x, u, w)

• VI and PI for Q-factors are mathematicallyequivalent to VI and PI for costs

• They require equal amount of computation ...they just need more storage

• Having optimal Q-factors is convenient whenimplementing an optimal policy on-line by

µ"(x) = min Q"(x, u)u#U(x)

• Once Q"(x, u) are known, the model [g andE{·}] is not needed. Model-free operation.

• Later we will see how stochastic/sampling meth-ods can be used to calculate (approximations of)Q"(x, u) using a simulator of the system (no modelneeded)

34

Page 35: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

A MORE GENERAL/ABSTRACT VIEW

• Let Y be a real vector space with a norm ) · )

• A function F : Y +' Y is said to be a contrac-tion mapping if for some % " (0, 1), we have

)Fy ! Fz) # %)y ! z), for all y, z " Y.

% is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., statespace in DP), v : X +' , be a positive-valuedfunction. Let B(X) be the set of all functionsJ : X +' , such that J(x)/v(x) is bounded overx.

• We define a norm on B(X), called the weightedsup-norm, by

)J|J(x)|

) = max .x#X v(x)

• Important special case: The discounted prob-lem mappings T and Tµ [for v(x) % 1, % = "].

35

Page 36: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

A DP-LIKE CONTRACTION MAPPING

• Let X = {1, 2, . . .}, and let F : B(X) +' B(X)be a linear mapping of the form

(FJ)(i) = bi +j

"

aij J(j),#X

$ i = 1, 2, . . .

where bi and aij are some scalars. Then F is acontraction with modulus % if and only if

-

j#X |aij | v(j)# %, $ i = 1, 2, . . .

v(i)

• Let F : B(X) +' B(X) be a mapping of theform

(FJ)(i) = min(FµJ)(i), $ i = 1, 2, . . .µ#M

where M is parameter set, and for each µ " M ,Fµ is a contraction mapping from B(X) to B(X)with modulus %. Then F is a contraction mappingwith modulus %.

• Allows the extension of main DP results frombounded cost to unbounded cost.

36

Page 37: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: IfF : B(X) +' B(X) is a contraction with modulus% " (0, 1), then there exists a unique J" " B(X)such that

J" = FJ".

Furthermore, if J is any function in B(X), then{F kJ} converges to J" and we have

)F kJ ! J") # %k)J ! J"), k = 1, 2, . . . .

• This is a special case of a general result forcontraction mappings F : Y +' Y over normedvector spaces Y that are complete: every sequence{yk} that is Cauchy (satisfies )ym ! yn) ' 0 asm,n ' () converges.

• The space B(X) is complete (see the text for aproof).

37

Page 38: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

GENERAL FORMS OF DISCOUNTED DP

• We consider an abstract form of DP based onmonotonicity and contraction

• Abstract Mapping: Denote R(X): set of real-valued functions J : X +' ,, and let H : X -U -R(X) +' , be a given mapping. We consider themapping

(TJ)(x) = min H(x, u, J),u#U(x)

$ x " X.

• We assume that (TJ)(x) > !( for all x " X,so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli-cies”, i.e., functions µ such that µ(x) " U(x) forall x " X.

• For each µ " M, we consider the mappingTµ : R(X) +' R(X) defined by

(TµJ)(x) = H$

x, µ(x), J%

, $ x " X.

• Find a function J" " R(X) such that

J"(x) = min H(x, u, J"), Xu#U( )

$ xx

"

38

Page 39: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EXAMPLES

• Discounted problems (and stochastic shortestpaths-SSP for " = 1)

H(x, u, J) = E&

g(x, u, w) + "J$

f(x, u, w)%'

• Discounted Semi-Markov Problems

n

H(x, u, J) = G(x, u) +"

mxy(u)J(y)y=1

where mxy are “discounted” transition probabili-ties, defined by the transition distributions

• Shortest Path Problems

+

axu + J(u) if u = d,H(x, u, J) =

axd if u = d

where d is the destination. There is also a stochas-tic version of this problem.

• Minimax Problems

H(x, u, J) = max g(x, u, w)+"J f(x, u, w)w#W (x,u)

.

. $ %/

39

Page 40: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ASSUMPTIONS

• Monotonicity assumption: If J, J & " R(X) andJ # J &, then

H(x, u, J) # H(x, u, J &), $ x " X, u " U(x)

• Contraction assumption:

! For every J " B(X), the functions TµJ andTJ belong to B(X).

! For some " " (0, 1), and all µ and J, J & "B(X), we have

)T J ! T J & &µ µ ) # ")J ! J )

• We can show all the standard analytical andcomputational results of discounted DP based onthese two assumptions

• With just the monotonicity assumption (as inthe SSP or other undiscounted problems) we canstill show various forms of the basic results underappropriate assumptions

40

Page 41: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T areweighted sup-norm contraction mappings with mod-ulus " over B(X), and have unique fixed pointsin B(X), denoted Jµ and J", respectively (cf.Bellman’s equation).

Proof: From the contraction property of H.

• Proposition 2: For any J " B(X) and µ " M,

lim T kµJ = Jµ, lim T kJ = J"

k$% k$%

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ andT .

• Proposition 3: We have T J" "µ = TJ if and

only if Jµ = J" (cf. optimality condition).

Proof: T J" = TJ", then T J" = J"µ µ , implying

J" = Jµ. Conversely, if J "µ = J , then TµJ" =

TµJµ = Jµ = J" = TJ".

41

Page 42: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J"(x) = min Jµ(x), x Xµ#M

$ "

• Furthermore, for every $ > 0, there exists µ$ "M such that

J"(x) # Jµ!(x) # J"(x) + $, $ x " X

• Nonstationary policies: Consider the set # ofall sequences ! = {µ0, µ1, . . .} with µk " M forall k, and define

J!(x) = lim inf(Tµ0Tµ1 · · ·TµkJ)(x), xk$%

$ " X,

with J being any function (the choice of J doesnot matter)

• We have

J"(x) = min J!(x), x X!#!

$ "

42

Page 43: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J"(x) = lim (T kJ)(x),k$%

$ x

• Policy iteration: Given µk

! Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

! Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk

• Optimistic PI: This is PI, where policy evalu-ation is carried out by a finite number of VI

! Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

! If mk % 1 it becomes VI

! If mk = ( it becomes PI

! For intermediate values of mk, it is generallymore e"cient than either VI or PI

43

Page 44: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

! Faster convergence

! Parallel and distributed computation

! Simulation-based implementations

• General framework: Partition X into disjointnonempty subsets X1, . . . , Xm, and use separateprocessor & updating J(x) for x " X"

• Let J be partitioned as

J = (J1, . . . , Jm),

where J" is the restriction of J on the set X".

• Synchronous algorithm:

J t+1" (x) = T (J t

1, . . . , Jtm)(x), x " X", & = 1, . . . ,m

• Asynchronous algorithm: For some subsets oftimes R",

1(( t)T J%" , . . . , J%"m(t)

J t+1" (x) = 1 m )(x) if t " R",

J t"(x) t / "

+

if " R

where t '"j(t) are communication “delays”!44

Page 45: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, aseparate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-erated in some way, possibly by simulation (eachstate is generated infinitely often)

• Asynchronous VI:

J t+1 T (J t1, . . . , J

tn)(&) if & = xt,

" =

+

J t" if & = xt,

where T (J t1, . . . , J

tn)(&) denotes the &-th compo-

nent of the vector

T (J t1, . . . , J

tn) = TJ t,

and for simplicity we write J t" instead of J t

"(&)

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

• We can show that J t ' J" under the contrac-

.

tion assumption45

Page 46: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ASYNCHRONOUS CONV. THEOREM I

• Assume that for all &, j = 1, . . . ,m, R" is infiniteand limt$% '"j(t) = (

• Proposition: Let T have a unique fixed point J",and assume that there is a sequence of nonemptysubsets

&

S(k)'

/ R(X) with S(k + 1) / S(k) forall k, and with the following properties:

(1) Synchronous Convergence Condition: Ev-ery sequence {Jk} with Jk " S(k) for eachk, converges pointwise to J". Moreover, wehave

TJ " S(k+1), $ J " S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesianproduct of the form

S(k) = S1(k)- · · ·- Sm(k),

where S"(k) is a set of real-valued functionson X", & = 1, . . . ,m.

Then for every J " S(0), the sequence {J t} gen-erated by the asynchronous algorithm convergespointwise to J".

46

Page 47: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

ASYNCHRONOUS CONV. THEOREM II

Interpretation of assumptions:•

S(0)S(k)

S(k + 1) J!

J = (J1, J2)

S1(0)

S2(0)TJ

(0)) + 1)

!

(0)

A synchronous iteration from any J in S(k) movesinto S(k + 1) (component-by-component)

Convergence mechanism:•

S(0)S(k)

S(k + 1) J!

J = (J1, J2)

J1 Iterations

J2 Iteration

(0)) + 1)

!

Iterations

Key: “Independent” component-wise improve-ment. An asynchronous component iteration fromany J in S(k) moves into the corresponding com-ponent portion of S(k + 1)

47

Page 48: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of theory and algorithms for discountedDP

• MDP and stochastic shortest path problems(briefly)

• Introduction to approximation in policy andvalue space

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy iteration and Q-factors

• Direct and indirect approximation

• Simulation issues

48

Page 49: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy ! = {µ0, µ1, . . .}

N!1

J k!(x0) = lim E " g xk, µk(xk), wk

N$% wkk=0,1,...

!

k

"

=0

#

$ %

with " < 1, and for someM , we have |g(x, u, w)| #M for all (x, u, w)

• Shorthand notation for DP mappings (operateon functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + !J f(x, u, w) , ! xu!U(x) w

& $ %'

TJ is the optimal cost function for the one-stageproblem with stage cost g and terminal cost "J

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + !J f(x, µ(x), w) , ! xw

& $ % $ %'

49

Page 50: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MDP - TRANSITION PROBABILITY NOTATION

• Assume the system is an n-state (controlled)Markov chain

• Change to Markov chain notation

! States i = 1, . . . , n (instead of x)

! Transition probabilities pikik+1(uk) [insteadof xk+1 = f(xk, uk, wk)]

! Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

• Cost of a policy ! = {µ0, µ1, . . .}!

N!1

J!(i) = lim E"

"kg ik, µk(ik), ik+1 i0 = iN$% ik

k=1,2,... k=0

#

$ %

|

• Shorthand notation for DP mappings

n

(TJ)(i) = min"

pij(u)u!U(i)

j=1

$

g(i, u, j)+!J(j)%

, i = 1, . . . , n,

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +!J(j) , i = 1, . . . , nj=1

"

$ %$ $ % %

50

Page 51: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(i) % 0]

J!(i) = lim (Tµ0Tµ · · ·1 TµkJ0)(i), Jµ(i) = lim (Tk

µJ0)(i)k"# k"#

• Bellman’s equation: J" = TJ", Jµ = TµJµ or

n

J"(i) = min"

p "ij(u) g(i, u, j)+"J (j) , i

u#U(i)j=1

$ %

$

n

Jµ(i) ="

pij$

µ(i)%$

g$

i, µ(i), j%

+ "Jµ(j)j=1

%

, $ i

• Optimality condition:

µ: optimal <==> TµJ" = TJ"

i.e.,

n

µ(i) " arg min"

p "ij(u) (

u# (i)j=1

$

g i, u, j)+"J (j)%

, $ iU

51

Page 52: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J " ,n

J"(i) = lim (T kJ)(i),k$%

$ i = 1, . . . , n

• Policy iteration: Given µk

! Policy evaluation: Find Jµk by solving

n

Jµk (i) ="

p k kij

$

µ (i)%$

g$

i, µ (i), j%

+!Jµk (j)%

, i = 1, . . . , nj=1

or Jµk = TµkJµk

! Policy improvement: Let µk+1 be such that

n

µk+1(i) " arg min"

pij(u)$

g(i, u, j)+!Jµk (j)u!U(i)

j=1

%

, ! i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving ann- n linear system of equations

• For large n, exact PI is out of the question(even though it terminates finitely)

52

Page 53: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

STOCHASTIC SHORTEST PATH (SSP) PROBLEMS

• Involves states i = 1, . . . , n plus a special cost-free and absorbing termination state t

• Objective: Minimize the total (undiscounted)cost. Aim: Reach t at minimum expected cost

• An example: Tetris

53

© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Page 54: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

SSP THEORY

• SSP problems provide a “soft boundary” be-tween the easy finite-state discounted problemsand the hard undiscounted problems.

! They share features of both.

! Some of the nice theory is recovered becauseof the termination state.

• Definition: A proper policy is a stationarypolicy that leads to t with probability 1

• If all stationary policies are proper, T andTµ are contractions with respect to a commonweighted sup-norm

• The entire analytical and algorithmic theory fordiscounted problems goes through if all stationarypolicies are proper (we will assume this)

• There is a strong theory even if there are im-proper policies (but they should be assumed to benonoptimal - see the textbook)

54

Page 55: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

GENERAL ORIENTATION TO ADP

• We will mainly adopt an n-state discountedmodel (the easiest case - but think of HUGE n).

• Extensions to SSP and average cost are possible(but more quirky). We will set aside for later.

• There are many approaches:

! Manual/trial-and-error approach

! Problem approximation

! Simulation-based approaches (we will focuson these): “neuro-dynamic programming”or “reinforcement learning”.

• Simulation is essential for large state spacesbecause of its (potential) computational complex-ity advantage in computing sums/expectations in-volving a very large number of terms.

• Simulation also comes in handy when an ana-lytical model of the system is unavailable, but asimulation/computer model is possible.

• Simulation-based methods are of three types:

! Rollout (we will not discuss further)

! Approximation in value space

Approximation in policy space!55

Page 56: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION IN VALUE SPACE

• Approximate J" or Jµ from a parametric classJ(i, r) where i is the current state and r = (r1, . . . , ris a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of Jso that it is reasonably close to the true optimalJ".

• Two key issues:

! The choice of parametric class J(i, r) (theapproximation architecture).

! Method for tuning the weights (“training”the architecture).

• Successful application strongly depends on howthese issues are handled, and on insight about theproblem.

• A simulator may be used, particularly whenthere is no mathematical model of the system (butthere is a computer model).

• We will focus on simulation, but this is not theonly possibility [e.g., J(i, r) may be a lower boundapproximation based on relaxation, or other prob-lem approximation]

m)

56

Page 57: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear ornonlinear dependence of J(i, r) on r].

• Linear architectures are easier to train, but non-linear ones (e.g., neural networks) are richer.

• Computer chess example: Uses a feature-basedposition evaluator that assigns a score to eachmove/position.

FeatureExtraction

Weightingof Features

Score

Features:Material balance,Mobility,Safety, etc

Position Evaluator

• Many context-dependent special features.

• Most often the weighting of features is linearbut multistep lookahead is involved.

• In chess, most often the training is done by trialand error.

57

Page 58: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

LINEAR APPROXIMATION ARCHITECTURES

• Ideally, the features encode much of the nonlin-earity inherent in the cost-to-go approximated

• Then the approximation may be quite accuratewithout a complicated architecture.

• With well-chosen features, we can use a lineararchitecture: J(i, r) = ((i)&r, i = 1, . . . , n, or morecompactly

J(r) = $r$: the matrix whose rows are ((i)&, i = 1, . . . , n

State i Feature ExtractionMapping Mapping

Feature Vector !(i) LinearLinear Cost

Approximator !(i)!rFeature Extraction Mapping Feature VectorApproximator

i Mapping Feature VectorApproximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Costi) Cost

i)

• This is approximation on the subspace

S = {$r | r " ,s}spanned by the columns of $ (basis functions)

• Many examples of feature types: Polynomialapproximation, radial basis functions, kernels ofall sorts, interpolation, and special problem-specific(as in chess and tetris)

58

Page 59: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it at theend.

• We parameterize the set of policies by a vectorr = (r1, . . . , rs) and we optimize the cost over r

• Discounted problem example:

! Each value of r defines a stationary policy,with cost starting at state i denoted by J(i; r).

! Use a random search, gradient, or other methodto minimize over r

n

J(r) ="

piJ(i; r),i=1

where (p1, . . . , pn) is some probability distri-bution over the states.

• In a special case of this approach, the param-eterization of the policies is indirect, through anapproximate cost function.

! A cost approximation architecture parame-terized by r, defines a policy dependent on rvia the minimization in Bellman’s equation.

59

Page 60: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROX. IN VALUE SPACE - APPROACHES

• Approximate PI (Policy evaluation/Policy im-provement)

! Uses simulation algorithms to approximatethe cost Jµ of the current policy µ

! Projected equation and aggregation approaches

• Approximation of the optimal cost function J"

! Q-Learning: Use a simulation algorithm toapproximate the optimal costs J"(i) or theQ-factors

n

Q"(i, u) = g(i, u) + ""

pij(u)J"(j)j=1

! Bellman error approach: Find r to

2minEi

(

$

J(i, r)! (T J)(i, r)r

%

)

where Ei{·} is taken with respect to somedistribution

Approximate LP (we will not discuss here)!

60

Page 61: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE POLICY ITERATION

General structure•

System Simulator

Decision Generator) Decision µ(i) S

Cost-to-Go Approximatorn Generatorr Supplies Values J(j, r) D

Cost Approximationn Algorithm

J(j, r)

State i

DCost-to-Go Approx

rroximator Supplies Valur

SState Cost Approximation

ecisio

i A

C

r

• J(j, r) is the cost approximation for the pre-ceding policy, used by the decision generator tocompute the current policy µ [whose cost is ap-proximated by J(j, r) using simulation]

• There are several cost approximation/policyevaluation algorithms

• There are several important issues relating tothe design of each block (to be discussed in the

˜

future).61

r) Samples

Page 62: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY EVALUATION APPROACHES I

• Direct policy evaluation

• Approximate the cost of the current policy byusing least squares and simulation-generated costsamples

• Amounts to projection of Jµ onto the approxi-mation subspace

Subspace S = {!r | r ! "s}

= 0

!Jµ

Direct Method: Projection ofcost vector Jµ

Set

Direct Method: Projection of cost vector !

µ

cost vectorDirect Method: Projection of

• Solution of the least squares problem by batchand incremental methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may alsobe used 62

Page 63: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY EVALUATION APPROACHES II

Indirect policy evaluation•

S: Subspace spanned by basis functions

T(Φrk) = g + αPΦrk

0

Value Iterate

Projectionon S

Φrk+1

Simulation error

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projectionon S

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE)

Φrk

• An example of indirect approach: Galerkin ap-proximation

! Solve the projected equation $r = #Tµ($r)where # is projection w/ respect to a suit-able weighted Euclidean norm

! TD()): Stochastic iterative algorithm for solv-ing$ r = #Tµ($r)

! LSPE()): A simulation-based form of pro-jected value iteration

$rk+1 = #Tµ($rk) + simulation noise

! LSTD()): Solves a simulation-based approx-imation w/ a standard solver (Matlab)63

Page 64: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY EVALUATION APPROACHES III

• Aggregation approximation: Solve

$r = $DTµ($r)

where the rows of D and $ are prob. distributions(e.g., D and $ “aggregate” rows and columns ofthe linear system J = TµJ).

pij(u),

dxi !jy

i

x y

OriginalSystem States

Aggregate States

pxy(u) =n!

i=1

dxi

n!

j=1

pij(u)!jy ,

Disaggregation

Probabilities

Aggregation

Probabilities

g(x, u) =n!

i=1

dxi

n!

j=1

pij(u)g(i, u, j)

, g(i, u, j)according to with cost

S

= 1

), ),

System States Aggregate States

!

Original Aggregate States

!

|

Original System States

Probabilities

!

AggregationDisaggregation Probabilities

ProbabilitiesDisaggregation Probabilities

!

AggregationDisaggregation Probabilities

Matrix

• Several di!erent choices of D and $.

64

, j = 1

Page 65: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY EVALUATION APPROACHES IV

pij(u),

dxi !jy

i

x y

OriginalSystem States

Aggregate States

pxy(u) =n!

i=1

dxi

n!

j=1

pij(u)!jy ,

Disaggregation

Probabilities

Aggregation

Probabilities

g(x, u) =n!

i=1

dxi

n!

j=1

pij(u)g(i, u, j)

, g(i, u, j)according to with cost

S

= 1

), ),

System States Aggregate States

!

Original Aggregate States

!

|

Original System States

Probabilities

!

AggregationDisaggregation Probabilities

ProbabilitiesDisaggregation Probabilities

!

AggregationDisaggregation Probabilities

Matrix

• Aggregation is a systematic approach for prob-lem approximation. Main elements:

! Solve (exactly or approximately) the “ag-gregate” problem by any kind of VI or PImethod (including simulation-based methods)

! Use the optimal cost of the aggregate prob-lem to approximate the optimal cost of theoriginal problem

• Because an exact PI algorithm is used to solvethe approximate/aggregate problem the methodbehaves more regularly than the projected equa-tion approach

65

, j = 1

Page 66: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using anapproximation architecture such that

max |J(i, rk)! Jµk(i)i

| # #, k = 0, 1, . . .

• If policy improvement is also approximate,

max |(Tµk+1 J)(i, rk) (i

! T J)(i, rk)| # $, k = 0, 1, . . .

• Error bound: The sequence {µk} generated byapproximate policy iteration satisfies

$+ 2"#lim supmax

$

Jµk(i)ik$%

! J"(i)%

#(1! ")2

• Typical practical behavior: The method makessteady progress up to a point and then the iteratesJµk oscillate within a neighborhood of J".

66

Page 67: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE USE OF SIMULATION - AN EXAMPLE

• Projection by Monte Carlo Simulation: Com-pute the projection# J of a vector J " ,n onsubspace S = {$r | r " ,s}, with respect to aweighted Euclidean norm ) · )&.

• Equivalently, find$ r", wheren

2r" = arg min )$r!J)2 = arg min

"

*$

((i)&i& r (i#'s r#'

i=1

!J )r s

• Setting to 0 the gradient at r",

%

r" =

0 !1n n"

*i((i)((i)&

i=1

1

"

*i((i)J(i)i=1

• Approximate by simulation the two “expectedvalues”

rk =

0 !1k k"

((i (i &t)( t)

t=1

1

"

((it)J(it)t=1

• Equivalent least squares alternative:k

2r &k = arg min ((it) r J(it)

r#'s

t

!"

=1

$ %

67

Page 68: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate costsamples using that policy - this biases the simula-tion by underrepresenting states that are unlikelyto occur under µ.

• As a result, the cost-to-go estimates of theseunderrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - aparticularly acute di"culty when the randomnessembodied in the transition probabilities is “rela-tively small” (e.g., a deterministic system).

• One possibility for adequate exploration: Fre-quently restart the simulation and ensure that theinitial states employed form a rich and represen-tative subset.

• Another possibility: Occasionally generate tran-sitions that use a randomly selected control ratherthan the one dictated by the policy µ.

• Other methods, to be discussed later, use twoMarkov chains (one is the chain of the policy andis used to generate the transition sequence, theother is used to generate the state sequence).

68

Page 69: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATING Q-FACTORS

• The approach described so far for policy eval-uation requires calculating expected values [andknowledge of pij(u)] for all controls u " U(i).

• Model-free alternative: Approximate Q-factors

n

Q(i, u, r) *"

pij(u)j=1

$

g(i, u, j) + "Jµ(j)%

and use for policy improvement the minimization

µ(i) = arg min Q(i, u, r)u#U(i)

• r is an adjustable parameter vector and Q(i, u, r)is a parametric architecture, such as

s

Q(i, u, r) ="

rm(m(i, u)m=1

• We can use any approach for cost approxima-tion, e.g., projected equations, aggregation.

• Use the Markov chain with states (i, u) - pij(µ(i))is the transition prob. to (j, µ(i)), 0 to other (j, u&).

Major concern: Acutely diminished exploration.•69

Page 70: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeo!

70

Page 71: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED MDP

• System: Controlled Markov chain with statesi = 1, . . . , n and finite set of controls u " U(i)

• Transition probabilities: pij(u)

• Cost of a policy ! = {µ0, µ1, . . .} starting atstate i:

N

J!(i) = lim EN$%

!

"kg ik, µk(ik), ik+1 i = i0k

"

=0

$ %

|

#

with " " [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min"

pij(u)$

g(i, u, j)+!J(j)%

, i = 1, . . . , n,u!U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +!J(j) , i = 1, . . . , nj=1

"

$ %$ $ % %

71

Page 72: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J" = TJ", Jµ = TµJµ or

n

J"(i) = min"

pij(u)$

g(i, u, j)+"J"(j) , iu#U(i)

j=1

%

$

n

Jµ(i) ="

pij$

µ(i) i,=1

%$

g$

µ(i), j%

+ "Jµ(j)j

%

, $ i

• Optimality condition:

µ: optimal <==> T "µJ = TJ"

i.e.,

n

µ(i) " arg minu#U(i)

"

pij(u)j=1

$

g(i, u, j)+"J"(j)%

, $ i

72

Page 73: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J " ,n

J"(i) = lim (T kJ)(i),k$%

$ i = 1, . . . , n

• Policy iteration: Given µk

! Policy evaluation: Find Jµk by solving

n

Jµk (i) ="

p k kij

$

µ (i)%$

g$

i, µ (i), j%

+!Jµk (j)%

, i = 1, . . . , nj=1

or Jµk = TµkJµk

! Policy improvement: Let µk+1 be such that

n

µk+1(i) " arg min"

pij(u)$

g(i, u, j)+!Jµk (j)u!U(i)

j=1

%

, ! i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving ann- n linear system of equations

• For large n, exact PI is out of the question(even though it terminates finitely)

73

Page 74: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION IN VALUE SPACE

• Approximate J" or Jµ from a parametric classJ(i, r), where i is the current state and r = (r1, . . . , rm)is a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of Jso that it is close to the true optimal J".

• Any r " ,s defines a (suboptimal) one-steplookahead policy

n

µ(i) = arg min"

pij(u)$

g(i, u, j)+"J(j, r)u#U(i)

j=1

%

, $ i

• We will focus mostly on linear architectures

J(r) = $r

where $ is an n - s matrix whose columns areviewed as basis functions

• Think n: HUGE, s: (Relatively) SMALL

• For J(r) = $r, approximation in value spacemeans approximation of J" or Jµ within the sub-space

S = $r r s{ | " , }74

Page 75: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE VI

• Approximates sequentially Jk(i) = (T kJ0)(i),k = 1, 2, . . ., with Jk(i, rk)

• The starting function J0 is given (e.g., J0 % 0)

• After a large enough numberN of steps, JN (i, rN )is used as approximation J(i, r) to J"(i)

• Fitted Value Iteration: A sequential “fit” toproduce Jk+1 from Jk, i.e., Jk+1 * T Jk or (for asingle policy µ) Jk+1 * TµJk

! For a “small” subset Sk of states i, compute

n

(T Jk)(i) = min pu#U(i)

"

ij(u)j=1

$

g(i, u, j) + "Jk(j, r)%

! “Fit” the function Jk+1(i, rk+1) to the “small”set of values (T Jk)(i), i " Sk

! Simulation can be used for “model-free” im-plementation

• Error Bound: If the fit is uniformly accuratewithin # > 0 (i.e., maxi |Jk+1(i)! T Jk(i)| # #),

2"#lim sup max Jk(i, rk)

ik$% =1,...,n! J"(i) #

(1 ")2$ %

!

75

Page 76: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states1 and 2, and a single policy.

! Deterministic transitions: 1 ' 2 and 2" "

' 2

! Transition costs % 0, so J (1) = J (2) = 0.

• Consider approximate VI scheme that approxi-mates cost functions in S =

&

(r, 2r) | r " ,1

a weighted least squares fit; here $ =2

'

with2 3

• Given Jk = (rk, 2rk), we find Jk+1 = (rk+1, 2rk+1),where for weights *1, *2 > 0, rk+1 is obtained as

2rk+1 = argmin

4

*1$

r!(TJk)(1)%2+*2 2r!(TJk)(2)

r

• With straightforward calculation

$ %

5

rk+1 = "+rk, where + = 2(*1+2*2)/(*1+4*2) > 1

• So if " > 1/+, the sequence {rk} diverges andso does {Jk}.

• Di"culty is that T is a contraction, but# T(= least squares fit composed with T ) is not

Norm mismatch problem•76

Page 77: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

Jµ(r) = !r Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-tion approximation Jµ(r) = $r, where $ is furank n - s matrix with columns the basis func-tions, and ith row denoted ((i)&.

• Policy “improvement” to generate µ:n

µ(i) = arg min"

pij(u)$

g(i, u, j) + "((j)&ru#U(i)

j=1

%

• Error Bound: If

max |Jµk(i, rk)! Jµk(i)| # #, k = 0, 1, . . .i

The sequence {µk} satisfies

2"#lim supmax J "

µk(i)! J (i)ik$%

#(1 ")2

ll

$ %

!

77

Page 78: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY EVALUATION

• Let’s consider approximate evaluation of thecost of the current policy by using simulation.

! Direct policy evaluation - Cost samples gen-erated by simulation, and optimization byleast squares

! Indirect policy evaluation - solving the pro-jected equation$ r = #Tµ($r) where # isprojection w/ respect to a suitable weightedEuclidean norm

S: Subspace spanned by basis functions0

ΠJµ

Projectionon S

S: Subspace spanned by basis functions

Tµ(Φr)

0

Φr = ΠTµ(Φr)

Projectionon S

Direct Mehod: Projection of cost vector Jµ Indirect method: Solving a projected form of Bellman’s equation

• Recall that projection can be implemented bysimulation and least squares

78

Page 79: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

)J)& =

6

7 n7

8

"

*ii=1

$

J(i)%2,

where * is a vector of positive weights *1, . . . , *n.

• Let # denote the projection operation onto

S = {$r | r " ,s}

with respect to this norm, i.e., for any J " ,n,

#J = $r"

wherer" = arg min

r#'s)J ! $r)2&

79

Page 80: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

Jµ(r) = !r Using Simulation

Generate “Improved” Policy µ

• Given the current policy µ:

! We solve the projected Bellman’s equation

$r = #Tµ($r)

! We approximate the solution Jµ of Bellman’sequation

J = TµJ

with the projected equation solution Jµ(r)

80

Page 81: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping #Tµ acontraction, so #Tµ has unique fixed point?

• Assuming #T "µ has unique fixed point $r , how

close is $r" to Jµ?

• Assumption: The Markov chain correspondingto µ has a single recurrent class and no transientstates, i.e., it has steady-state probabilities thatare positive

N1

*j = lim"

P (ik = jN$% N

k=1

| i0 = i) > 0

• Proposition: (Norm Matching Property)

(a) #Tµ is contraction of modulus " with re-spect to the weighted Euclidean norm ) · )&,where * = (*1, . . . , *n) is the steady-stateprobability vector.

(b) The unique fixed point $r" of #Tµ satisfies

1)Jµ ! $r")& # 0

1 "2)Jµ !#Jµ)&!

81

Page 82: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection # on Swith weighted Euclidean norm ) · )&. For all J ",n, J " S, the Pythagorean Theorem holds:

)J ! J)2& = )J !#J)2& + )#J ! J)2&

Proof: Geometrically, (J !#J) and ( #J! J) areorthogonal in the scaled geometry of the norm) , where two vectors x, y " ,n

) ·& are orthogonalif-n

i=1 *ixiyi = 0. Expand the quadratic in theRHS below:

)J ! J)2& = )(J !#J) + (#J! J))2&

• The Pythagorean Theorem implies that the pro-jection is nonexpansive, i.e.,

)#J !#J)& # )J ! J)&, for all J, J " ,n.

To see this, note that

9

#(J ! J)92 #

9 2 2#(J ! J)

&

9

+&

9

(I !#)(J ! J)9

&

= J J 2&

9 9 9 9 9 9

) ! )82

Page 83: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

)Pz)& # )z)&, z " ,n

Proof: Let pij be the components of P . For allz " ,n, we have

n n

)Pz)2& ="

*i

: 2n n

;

"

pijz

n

"

2j

i=1 =1

<

= #"

*i pijzjj i=1 j=1

n n

="

j=1

"

*ipijz2j =i=1

"

*jz2j =j=1

)z)2& ,

where the inequality follows from the convexity ofthe quadratic function, and the next to last equal-ity follows from the defining property

-ni=1 *ipij =

*j of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of #,and the definition TµJ = g + "PJ , we have

#!TµJ$!TµJ#" % #TµJ$TµJ#" = !#P (J$J)#" % !#J$J#"

for all J, J " ,n. Hence #Tµ is a contraction ofmodulus ".

83

Page 84: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PROOF OF ERROR BOUND

• Let$ r" be the fixed point of #T . We have

1)J "

µ ! $r )& # 0 )J J!

µ !# µ)&.1 "2

Proof: We have

) 2J " 2 2 "µ ! $r )& = )Jµ !#Jµ)& +

9

#Jµ ! $r

9

&

= )Jµ !# ) 22& +

9 9

9

9#TJµ !#T ($r")&

# )Jµ !#Jµ)2& + "2)Jµ ! $r")2& ,

9

9

where

! The first equality uses the Pythagorean The-orem

! The second equality holds because Jµ is thefixed point of T and $r" is the fixed pointof #T

! The inequality uses the contraction propertyof #T .

Q.E.D.

84

Page 85: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MATRIX FORM OF PROJECTED EQUATION

• Its solution is the vector J = $r", where r"

solves the problem

2min

9

9$r ! (g + "P$r")r#'s

9

9 .&

• Setting to 0 the gradient with respect to r ofthis quadratic, we obtain

$&%$

$r" ! (g + "P$r") = 0,

where % is the diagonal matrix wi

%

th the steady-state probabilities *1, . . . , *n along the diagonal.

• This is just the orthogonality condition: Theerror$ r" ! (g + "P$r") is “orthogonal” to thesubspace spanned by the columns of $.

• Equivalently,Cr" = d,

where

C = $&%(I ! "P )$, d = $&%g.

85

Page 86: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PROJECTED EQUATION: SOLUTION METHODS

• Matrix inversion: r" = C!1d

• Projected Value Iteration (PVI) method:

$rk+1 = #T ($rk) = # (g + "P$rk)

Converges to r" because# T is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projectionon S

• PVI can be written as:

rk+1 = arg minr#'s

9

9

2$r ! (g + "P$rk)

9

&

By setting to 0 the gradient with respect

9

to r,

$&%$

$rk+1 ! (g + "P$rk)%

= 0,

which yields

r = r ($&%$)!1(Cr d)k+1 k ! k !86

Page 87: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-mations based on k samples

Ck * C, dk * d

• Matrix inversion r" = C!1d is approximatedby

rk = C!1k dk

This is the LSTD (Least Squares Temporal Dif-ferences) Method.

• PVI method rk+1 = rk ! ($&%$)!1(Crk ! d) isapproximated by

rk+1 = rk !Gk(Ckrk ! dk)

whereG * ($& !

k %$) 1

This is the LSPE (Least Squares Policy Evalua-tion) Method.

• Key fact: Ck, dk, and Gk can be computedwith low-dimensional linear algebra (of order s;the number of basis functions).

87

Page 88: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)of the Markov chain, so states i and transitions(i, j) appear with long-term frequencies *i and pij .

• After generating the transition (it, it+1), wecompute the row ((i )&t of $ and the cost com-ponent g(it, it+1).

• We form

k1

Ck ="

$"(i (i $

t)$

"(it)$!" t+1) &+ 1

=0

%

" #(I$!P )"k

t

k1

dk ="

((it)g(it, it+1)k + 1

t=0

* $&%g

Also in the case of LSPE

k1

Gk ="

((i t)&t)((i * $&%$k + 1

t=0

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.Also can be written using the formalism of tem-poral di!erences (this is just a matter of style)

88

Page 89: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-tions Ck * C and dk * d, we do a less accurateapproximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do apolicy improvement

• This often leads to faster computation (as op-timistic methods often do)

• Very complex behavior (see the subsequent dis-cussion on oscillations)

• The matrix inversion/LSTD method has seriousproblems due to large simulation noise (because oflimited sampling)

• LSPE tends to cope better because of its itera-tive nature

• A stepsize , " (0, 1] in LSPE may be useful todamp the e!ect of simulation noise

rk+1 = rk ,Gk(Ckrk dk)! !

89

Page 90: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-tion J = T (')J , where for ) " [0, 1),

%

T (') = (1! ))"

)"T "+1

"=0

Geometrically weighted sum of powers of T .

• Note that T " is a contraction with modulus"", with respect to the weighted Euclidean norm)·)&, where * is the steady-state probability vectorof the Markov chain.

• Hence T (') is a contraction with modulus

%

"' = (1! ))" "(1

""+1)" =! ))

1 ")"=0

!

Note that "' ' 0 as ) ' 1

• T t and T (') have the same fixed point Jµ and

1)Jµ ! $r"')& # > )J !#J )

!µ µ &

1 "2'

where $r"' is the fixed point of #T (').

The fixed point $r" depends on ).• '

90

Page 91: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

BIAS-VARIANCE TRADEOFF

Subspace S = {!r | r ! "s} Set

Slope Jµ

Simulation errorSimulation error !Jµ

Simulation error Bias

) ! = 0

= 0 ! = 1 0

. Solution of projected equation !

Simulation error Solution of

! !r = "T (!)(!r)

• Error bound )Jµ!$r")& # 0 12)Jµ µ' 1!#

#

!#J )&

• As ) 1 1, we have "' 2 0, so error bound (andthe quality of approximation) improves as ) 1 1.In fact

lim$r"' = #Jµ'(1

• But the simulation noise in approximating%

T (') = (1! )) )"T "+1

"=0

increases

"

Choice of ) is usually based on trial and error•91

Page 92: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

$r = #T (')($r)

• In matrix form: C(')r = d('), where

C(') = $&%$

I ! "P (')%

$, d(') = $&%g('),

with% %

P (') = (1! ))"

"")"P "+1, g(') ="=0

"

"")"P "g"=0

• The LSTD()) method is(C ') !1 (k d ')

k ,

( ) ( )where C ' and d 'k k

$

are

%

simulation-based approx-imations of C(') and d(').

• The LSPE()) method is

! (') ! (')rk+1 = rk ,Gk Ck rk dk

whereGk is a simulation-b

$

ased approx. to

%

($&%$)!1

• TD()): An important simpler/slower iteration[similar to LSPE()) with Gk = I - see the text].

92

Page 93: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MORE ON MULTISTEP METHODS

• ( ) ( )The simulation process to obtain C 'k and d '

k

is similar to the case ) = 0 (single simulation tra-jectory i0, i1, . . . more complex formulas)

k k(C ') 1

="

&((i )

"

"m!ttk )m!t

$

((im)!"((im+1) ,k + 1

t=0 m=t

%

k k(d ') 1

="

((i m!t m!tt ik ) "

k + 1t m

"

) g m

=0 =t

• In the context of approximate policy iteration,we can use optimistic versions (few samples be-tween policy updates).

• Many di!erent versions (see the text).

• Note the )-tradeo!s:

! As ) 1 (1, C ') (k and d ')

k contain more “sim-ulation noise”, so more samples are neededfor a close approximation of r' (the solutionof the projected equation)

! The error bound )Jµ!$r')& becomes smaller

! As ) 1 1,# T (') becomes a contraction forarbitrary projection norm

93

Page 94: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI

• Review of approximate policy evaluation basedon projected Bellman equations

• Exploration enhancement in policy evaluation

• Oscillations in approximate PI

• Aggregation – An alternative to the projectedequation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

94

Page 95: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED MDP

• System: Controlled Markov chain with statesi = 1, . . . , n and finite set of controls u " U(i)

• Transition probabilities: pij(u)

• Cost of a policy ! = {µ0, µ1, . . .} starting atstate i:

N

J!(i) = lim EN$%

!

"kg ik, µk(ik), ik+1 i = i0k

"

=0

$ %

|

#

with " " [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min"

pij(u)$

g(i, u, j)+!J(j)%

, i = 1, . . . , n,u!U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +!J(j) , i = 1, . . . , nj=1

"

$ %$ $ % %

95

Page 96: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

Jµ(r) = !r Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-tion approximation

Jµ(r) = $r

where $ is full rank n - s matrix with columnsthe basis functions, and ith row denoted ((i)&.

• Policy “improvement” to generate µ:n

µ(i) = arg min pij(u) g(i, u, j) + "((j)&ru#U(i)

j=1

"

$ %

96

Page 97: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EVALUATION BY PROJECTED EQUATIONS

• We discussed approximate policy evaluation bysolving the projected equation

$r = #Tµ($r)#: projection with a weighted Euclidean norm

• Implementation by simulation ( single long tra-jectory using current policy - important to make#Tµ a contraction). LSTD, LSPE methods.

• ( )Multistep option: Solve$ r = #T 'µ ($r) with

%(T ') = (1! ))

"

)"T "+1µ µ

"=0! As ) 1 1, #T (') becomes a contraction for

any projection norm

Bias-variance tradeo!!

Subspace S = {!r | r ! "s} Set

Slope Jµ

Simulation errorSimulation error !Jµ

Simulation error Bias

) ! = 0

= 0 ! = 1 0

. Solution of projected equation !

Simulation error Solution of

! !r = "T (!)(!r)

97

Page 98: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY ITERATION ISSUES: EXPLORATION

• 1st major issue: exploration. To evaluate µ,we need to generate cost samples using µ

• This biases the simulation by underrepresentingstates that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of theseunderrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - aparticularly acute di"culty when the randomnessembodied in the transition probabilities is “rela-tively small” (e.g., a deterministic system).

• Common remedy is the o!-policy approach: Re-place P of current policy with a “mixture”

P = (I !B)P +BQ

where B is diagonal with diagonal components in[0, 1] and Q is another transition matrix.

• LSTD and LSPE formulas must be modified ...otherwise the policy P (not P ) is evaluated. Re-lated methods and ideas: importance sampling,geometric and free-form sampling (see the text).

98

Page 99: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition: Rµ is theset of parameter vectors r for which µ is greedywith respect to J(·, r) = $r

Rµ =&

r | Tµ($r) = T ($r)

• There is a finite number of possible

'

vectors rµ,one generated from another in a deterministic way

rµk

rµk+1

rµk+2

rµk+3

Rµk

Rµk+1

Rµk+2

Rµk+3k

+1

+2

+2

• The algorithm ends up repeating some cycle ofpolicies µk, µk+1, . . . , µk+m with

rµk " Rµk+1 , rµk+1 " Rµk+2 , . . . , rµk+m " Rµk ;

Many di!erent cycles are possible•99

Page 100: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif-ferent picture holds

rµ1

rµ2

rµ3

Rµ1

Rµ2

Rµ3

1

2

2

• Oscillations are less violent, but the “limit”point is meaningless!

• Fundamentally, oscillations are due to the lackof monotonicity of the projection operator, i.e.,J # J & does not imply #J # #J &.

• If approximate PI uses policy evaluation

$r = (WTµ)($r)

with W a monotone operator, the generated poli-cies converge (to a possibly nonoptimal limit).

• The operator W used in the aggregation ap-proach has this monotonicity property.

100

Page 101: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximatethe cost-to-go function of the problem with thecost-to-go function of a simpler problem.

• The simplification is often ad-hoc/problem-dependent.

• Aggregation is a systematic approach for prob-lem approximation. Main elements:

! Introduce a few “aggregate” states, viewedas the states of an “aggregate” system

! Define transition probabilities and costs ofthe aggregate system, by relating originalsystem states with aggregate states

! Solve (exactly or approximately) the “ag-gregate” problem by any kind of VI or PImethod (including simulation-based methods)

! Use the optimal cost of the aggregate prob-lem to approximate the optimal cost of theoriginal problem

• Hard aggregation example: Aggregate statesare subsets of original system states, treated as ifthey all have the same cost.

101

Page 102: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

AGGREGATION/DISAGGREGATION PROBS

dxi!jy

i

x y

OriginalSystem States

Aggregate States

Disaggregation

ProbabilitiesAggregationProbabilities

Matrix D Matrix !

according to with cost

S

= 1

), ),

System States Aggregate States

!

Original Aggregate States

!

|

Original System States

Probabilities

!

AggregationDisaggregation Probabilities

ProbabilitiesDisaggregation Probabilities

!

AggregationDisaggregation Probabilities

Matrix D

• The aggregate system transition probabilitiesare defined via two (somewhat arbitrary) choices

• For each original system state j and aggregatestate y, the aggregation probability (jy

! Roughly, the “degree of membership of j inthe aggregate state y.”

! In hard aggregation, (jy = 1 if state j be-longs to aggregate state/subset y.

• For each aggregate state x and original systemstate i, the disaggregation probability dxi

! Roughly, the “degree to which i is represen-tative of x.”

! In hard aggregation, equal dxi102

, j = 1

according to pij(u), with cost

Page 103: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate statex to aggregate state y under control u

n n

pxy(u) ="

dxi ori

"

pij(u)(jy, P (u) = DP (u)$=1 j=1

where the rows of D and $ are the disaggregationand aggregation probs.

• The expected transition cost is

n n

g(x, u) ="

dxi"

pij(u)g(i, u, j), or g = DPgi=1 j=1

• The optimal cost function of the aggregate prob-lem, denoted R, is

R(x) = min

?

g(x, u) + ""

pxy(u)R(y)u#U

y

@

, $ x

Bellman’s equation for the aggregate problem.

• The optimal cost function J" of the originalproblem is approximated by J given by

J(j) ="

(jyR(y),y

$ j

103

Page 104: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,and view each subset as an aggregate state

• Aggregation probs.: (jy = 1 if j belongs toaggregate state y.

3 4 5 6 7 8 93 4 5 6 7 8 9 6 7 8 9

1 2 6 7 8 91 2 6 7 8 91 2 9

1 2 3 4 5 91 2 3 4 5 91 2 3 4 5

1 2 3 4 5 6 7 8

• Disaggregation probs.: There are many possi-bilities, e.g., all states i within aggregate state xhave equal prob. dxi.

• If optimal cost vector J" is piecewise constantover the aggregate states/subsets, hard aggrega-tion is exact. Suggests grouping states with “roughlyequal” cost into aggregates.

• A variant: Soft aggregation (provides “softboundaries” between aggregate states).

104

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

! =

!

"

"

"

"

"

"

"

"

"

"

"

#

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

$

%

%

%

%

%

%

%

%

%

%

%

&

Page 105: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group statestogether?

• If we know good features, it makes sense togroup together states that have “similar features”

States Aggregate StatesFeatures

FeatureExtraction

Special Aggregate States Features)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping VectorFeature Mapping Feature Vector

• A general approach for passing from a feature-based state representation to an aggregation-basedarchitecture

• Essentially discretize the features and generatea corresponding piecewise constant approximationto the optimal cost function

• Aggregation-based architecture is more power-ful (nonlinear in the features)

• ... but may require many more aggregate statesto reach the same level of performance as the cor-responding linear feature-based architecture

105

Page 106: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” originalsystem states, and associate each one of them withan aggregate state

x j

j2

j3

y1 y2

y3

Original State Space

Representative/Aggregate States

x j1

j2

j3 1

2

y3

• Disaggregation probabilities are dxi = 1 if i isequal to representative state x.

• Aggregation probabilities associate original sys-tem states with convex combinations of represen-tative states

j 3y

"

(jyy#A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-cluding belief space of POMDP

106

x j1

Page 107: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty sub-sets of original system states (but need not forma partition of the state space)

• Example: Choose a collection of distinct “rep-resentative” feature vectors, and associate each ofthem with an aggregate state consisting of originalsystem states with similar features

• Restrictions:

! The aggregate states/subsets are disjoint.

! The disaggregation probabilities satisfy dxi >0 if and only if i " x.

! The aggregation probabilities satisfy (jy = 1for all j " y.

• If every original system state i belongs to someaggregate state we obtain hard aggregation

• If every aggregate state consists of a single orig-inal system state, we obtain aggregation with rep-resentative states

• With the above restrictionsD$ = I, so ($D)($D) =$D, and $D is an oblique projection (orthogonalprojection in case of hard aggregation)

107

Page 108: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATE PI BY AGGREGATION

pij(u),

dxi !jy

i

x y

OriginalSystem States

Aggregate States

pxy(u) =n!

i=1

dxi

n!

j=1

pij(u)!jy ,

Disaggregation

Probabilities

Aggregation

Probabilities

g(x, u) =n!

i=1

dxi

n!

j=1

pij(u)g(i, u, j)

, g(i, u, j)

according to with cost

S

= 1

), ),

System States Aggregate States

!

Original Aggregate States

!

|

Original System States

Probabilities

!

AggregationDisaggregation Probabilities

ProbabilitiesDisaggregation Probabilities

!

AggregationDisaggregation Probabilities

Matrix

• Consider approximate policy iteration for theoriginal problem, with policy evaluation done byaggregation.

• Evaluation of policy µ: J = $R, where R =DTµ($R) (R is the vector of costs of aggregatestates for µ). Can be done by simulation.

• Looks like projected equation $R = #Tµ($R)(but with $D in place of #).

• Advantages: It has no problem with explorationor with oscillations.

• Disadvantage: The rows of D and $ must beprobability distributions.

108

, j = 1

Page 109: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu-tion of large-scale discounted DP problems by ag-gregation.

• Partition the original system states into subsetsS1, . . . , Sm

• Each subset S", & = 1, . . . ,m:

! Maintains detailed/exact local costs

J(i) for every original system state i " S"

using aggregate costs of other subsets

! Maintains an aggregate costR(&) = i#S"d"iJ(i)

! Sends R(&) to other aggregate state

-

s

• J(i) and R(&) are updated by VI according to

Jk+1(i) = min H"(i, u, Jk, Rk),u#U(i)

$ i " S"

with Rk being the vector of R(&) at time k, and

n

H#(i, u, J,R) ="

pij(u)g(i, u, j) + !

j=1 j

"

pij(u)J(j)

!S"

+ !

j!S

"

pij(u)R("$)

"# , ##=#%

109

Page 110: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-norm contraction mapping of modulus ", so itconverges to the unique solution of the system ofequations in (J,R)

J(i) = min H"(i, u, J,R), R(&) =u#U(i)

i

"

d"iJ(i),#S"

$ i " S", & = 1, . . . ,m.

• This follows from the fact that {d"i | i =1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa-tions for an “aggregate” DP problem. The di!er-ence is that the mapping H involves J(j) ratherthan R x(j) for j " S".

• In an

$

asyn

%

chronous version of the method, theaggregate costs R(&) may be outdated to accountfor communication “delays” between aggregate states.

• Convergence can be shown using the generaltheory of asynchronous distributed computation(see the text).

110

Page 111: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations forQ-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Approximation in policy space

111

Page 112: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

DISCOUNTED MDP

• System: Controlled Markov chain with statesi = 1, . . . , n and finite set of controls u " U(i)

Transition probabilities: pij(u)•

• Cost of a policy ! = {µ0, µ1, . . .} starting atstate i:

N

J!(i) = lim EN$%

!

"kg ik, µk(ik), ik+1 i = i0k

"

=0

$ %

|

#

with " " [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min"

pij(u)$

g(i, u, j)+!J(j)%

, i = 1, . . . , n,u!U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +!J(j) , i = 1, . . . , nj=1

"

$ %$ $ % %

112

Page 113: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J " ,n

J"(i) = lim (T kJ)(i),k$%

$ i = 1, . . . , n

• Policy iteration: Given µk

! Policy evaluation: Find Jµk by solving

n

J k kµk (i) =

"

pij$

µ (i)%$

g$

i, µ (i), j%

+!Jµk (j)%

, i = 1, . . . , nj=1

or Jµk = TµkJµk

! Policy improvement: Let µk+1 be such that

n

k+1µ (i) " arg min pij(u) g(i, u, j)+!Jµk (j) , ! iu!U(i)

"

j=1

$ %

or Tµk+1Jµk = TJµk

• We discussed approximate versions of VI andPI using projection and aggregation

• We focused so far on cost functions and approx-imation. We now consider Q-factors.

113

Page 114: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined byn

Q"(i, u) ="

p "ij(u)

$

g(i, u, j) +"J (j)%

, $ (i, u)j=1

• Since J" = TJ", we have J"(i) = minu#U(i) Q"(i, u)so the optimal Q-factors solve the equation

n

Q"(i, u) ="

pij(u)

2

g(i, u, j) + " min Q"(j,u#

u&)#U(j)

j=1

3

• Equivalently Q" = FQ", wheren

(FQ)(i, u) ="

p &ij(u)

2

g(i, u, j) + "#

min Q(j, u )u #U(j)

j=1

3

• This is Bellman’s Eq. for a system whose statesare the pairs (i, u)

• Similar mapping Fµ and Bellman equation fora policy µ: Qµ = FµQµ

)

State-Control Pairs States

) States

)

j)

114

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)!

j, µ(j)"

State-Control Pairs: Fixed Policy µ

Page 115: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

SUMMARY OF BELLMAN EQS FOR Q-FACTORS

)

State-Control Pairs States

) States

)

j)

Case (

• Optimal Q-factors: For all (i, u)

n

Q"(i, u) ="

pij(u)

2

g(i, u, j) + "#

min Q"(j, u&)u #U(j)

j=1

3

Equivalently Q" = FQ", wheren

(FQ)(i, u) ="

pij(u)

2

g(i, u, j) + "#

min Q(j, u&)u #U(j)

j=1

3

• Q-factors of a policy µ: For all (i, u)

n

Qµ(i, u) ="

pij(u)$

g(i, u, j) + "Qµ (=1

$

j, µ j)j

%%

Equivalently Qµ = FµQµ, wheren

(FµQ)(i, u) = pij(u) g(i, u, j) + "Q j, µ(j)j=1

"

$ $ %%

115

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)!

j, µ(j)"

State-Control Pairs: Fixed Policy µ

Page 116: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costsapplies to Q-factors

! Bellman’s equations, contractions, optimal-ity conditions, convergence of VI and PI

• All the approximate theory and algorithms forcosts applies to Q-factors

! Projected equations, sampling and explorationissues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple-mentation

! Once we calculate Q"(i, u) for all (i, u),

µ"(i) = arg min Q"(i, u), iu#U(i)

$

! Similarly, once we calculate a parametric ap-proximation Q(i, u, r) for all (i, u),

µ(i) = arg min Q(i, u, r), iu#U(i)

$

• The main bad thing: Greater dimension andmore storage! [Can be used for large-scale prob-lems only through aggregation, or other cost func-tion approximation.]

116

Page 117: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

Q-LEARNING

• In addition to the approximate PI methodsadapted for Q-factors, there is an important addi-tional algorithm:

! Q-learning, which can be viewed as a sam-pled form of VI

• Q-learning algorithm (in its classical form):

! Sampling: Select sequence of pairs (ik, uk)(use any probabilistic mechanism for this,but all pairs (i, u) are chosen infinitely of-ten.)

! Iteration: For each k, select jk according topikj(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1! ,k)Qk(ik, uk)

+ ,k

0

g(ik, uk, jk) + " minu#

Qk(jk, u&)#U(jk)

1

Leave unchanged all other Q-factors: Qk+1(i, u) =Qk(i, u) for all (i, u) = (ik, uk).

! Stepsize conditions: ,k must converge to 0at proper rate (e.g., like 1/k).

.

117

Page 118: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

NOTES AND QUESTIONS ABOUT Q-LEARNIN

Qk+1(ik,uk) = (1! ,k)Qk(ik, uk)

+ ,k

0

g(ik, uk, jk) + " Q k#

min k(j , u&)u #U(jk)

1

• Model free implementation. We just need asimulator that given (i, u) produces next state jand cost g(i, u, j)

• Operates on only one state-control pair at atime. Convenient for simulation, no restrictions onsampling method.

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q"?

• Why can’t I use a similar algorithm for optimalcosts?

• Important mathematical (fine) point: In the Q-factor version of Bellman’s equation the order ofexpectation and minimization is reversed relativeto the cost version of Bellman’s equation:

n

J"(i) = min piu#U(i)

j=1

j(u) g(i, u, j) + "J"(j)

G

"

$ %

118

Page 119: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exactQ-factors (under mild assumptions).

• Proof is sophisticated, based on theories ofstochastic approximation and asynchronous algo-rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej g(i, u, j) + "minu#

Q(j, u&)

is a sup-norm contr

(

action.

)

• Generic stochastic approximation algorithm:

! Consider generic fixed point problem involv-ing an expectation:

x = Ew f(x,w)

! Assume Ew )

'

&

f(x,w

&

is a contraction withrespect to some norm

'

, so the iteration

xk+1 = Ew f(xk, w)

converges to the uniqu

&

e fixed po

'

int

! Approximate Ew f(x,w) by sampling& '

119

Page 120: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

STOCH. APPROX. CONVERGENCE IDEAS

• For each k, obtain samples {w1, . . . , wk} anduse the approximation

k1

xk+1 ="

f(xk, wt)k

t=1

* E f(xk, w)

This iteration approximates the

&

convergen

'

• t fixedpoint iteration xk+1 = Ew

&

f(xk, w)

• Amajor flaw: it requires, for each

'

k, the compu-tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iterationk

1xk+1 =

"

f(xt, wt), k = 1, 2, . . . ,k

t=1that is similar, but requires much less computa-tion; it needs only one value of f per sample wt.

• By denoting ,k = 1/k, it can also be written as

xk+1 = (1! ,k)xk + ,kf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed pointproblem is Q = FQ

(FQ)(i, u) = Ej g(i, u, j) + "minQ(j, u&)&

u#

'

120

Page 121: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

Q-FACTOR APROXIMATIONS

• We introduce basis function approximation:

Q(i, u, r) = ((i, u)&r

• We can use approximate policy iteration andLSPE/LSTD for policy evaluation

• Optimistic policy iteration methods are fre-quently used on a heuristic basis

• Example: Generate trajectory {(ik, uk) | k =0, 1, . . .}.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using thetransition probabilities pikj(uk).

(2) Generate control uk+1 from

uk+1 = arg min Q(ik+1, u, rk)u#U(ik+1)

(3) Update the parameter vector via

rk+1 = rk ! (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla-tions, etc). There is solid basis for an importantspecial case: optimal stopping (see text)

121

Page 122: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION IN POLICY SPACE

• We parameterize policies by a vector r =(r1, . . . , rs) (an approximation architecture for poli-cies).

• Each policy µ(r) =&

µ(i; r) | i = 1, . . . , ndefines a cost vector Jµ(r) ( a function of r).

'

• We optimize some measure of Jµ(r) over r.

• For example, use a random search, gradient, orother method to minimize over r

n"

piJµ(r)(i),i=1

where (p1, . . . , pn) is some probability distributionover the states.

• An important special case: Introduce cost ap-proximation architecture V (i, r) that defines indi-rectly the parameterization of the policies

n

µ(i; r) = arg min"

pij(u) i, iu#U )

j=1

$

g( u, j)+"V (j, r)(

%

,i

$

• Brings in features to approximation in policyspace 122

Page 123: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

APPROXIMATION IN POLICY SPACE METHODS

• Random search methods are straightforwardand have scored some impressive successes withchallenging problems (e.g., tetris).

• Gradient-type methods (known as policy gra-dient methods) also have been worked on exten-sively.

• They move along the gradient with respect tor of

n"

piJµ(r)(i),i=1

• There are explicit gradient formulas which havebeen approximated by simulation

• Policy gradient methods generally su!er by slowconvergence, local minima, and excessive simula-tion noise

123

Page 124: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

FINAL WORDS AND COMPARISONS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth-ods (which, however, does not provide ironcladperformance guarantees)

• There are major flaws in all methods:

! Oscillations and exploration issues in approx-imate PI with projected equations

! Restrictions on the approximation architec-ture in approximate PI with aggregation

! Flakiness of optimization in policy space ap-proximation

• Yet these methods have impressive successesto show with enormously complex problems, forwhich there is no alternative methodology

• There are also other competing ADP methods(rollout is simple, often successful, and generallyreliable; approximate LP is worth considering)

• Theoretical understanding is important andnontrivial

Practice is an art and a challenge to our cre-•ativity! 124

Page 125: APPROXIMATE DYNAMIC PROGRAMMING … · APPROXIMATE DYNAMIC PROGRAMMING ASERIESOFLECTURESGIVENAT CEA - CADARACHE FRANCE SUMMER 2012 DIMITRI P. BERTSEKAS These lecture slides are based

MIT OpenCourseWarehttp://ocw.mit.edu

6.231 Dynamic Programming and Stochastic ControlFall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.