Approaches to Improve the Clinical Performance of ...

54
Approaches to Improve the Clinical Performance of Genetically Engineered T Cells CAR-TCR Annual Summit Pete DeMuth, PhD Vice President of Research Cambridge, Massachusetts

Transcript of Approaches to Improve the Clinical Performance of ...

Approaches to Improve the Clinical Performance of Genetically Engineered T Cells

CAR-TCR Annual Summit

Pete DeMuth, PhDVice President of ResearchCambridge, Massachusetts

What are the major challenges to improving engineered T cell therapeutic efficacy?

Tumor Specificity Normal tissue expression, immune tolerance

Antigen Escape Ag heterogeneity, loss, & presentation defects

Challenge Underlying Factor(s)

Tumor Recognition

T Cell

Tumor

Tumor Immune Micro-Environment

Tumor Specificity Normal tissue expression, immune tolerance

Antigen Escape Ag heterogeneity, loss, & presentation defects

Challenge Underlying Factor(s)

Tumor Recognition

T Cell

Tumor

Recruitment Aberrant chemokine profile

Penetration Physical barriers (peripheral, internal)

Infiltration Dysregulated vasculature (topology, adhesion)

Tumor Exclusion

Tumor Immune Micro-Environment

Tumor Specificity Normal tissue expression, immune tolerance

Antigen Escape Ag heterogeneity, loss, & presentation defects

Challenge Underlying Factor(s)

Tumor Recognition

T Cell

Tumor

Recruitment Aberrant chemokine profile

Penetration Physical barriers (peripheral, internal)

Infiltration Dysregulated vasculature (topology, adhesion)

Tumor Exclusion

Exhaustion TME-induced chronic activation

Exhaustion Tonic signalingT Cell

FitnessTumor Immune Micro-Environment

Tumor Specificity Normal tissue expression, immune tolerance

Antigen Escape Ag heterogeneity, loss, & presentation defects

Challenge Underlying Factor(s)

Tumor Recognition

T Cell

Tumor

Recruitment Aberrant chemokine profile

Penetration Physical barriers (peripheral, internal)

Infiltration Dysregulated vasculature (topology, adhesion)

Tumor Exclusion

Exhaustion TME-induced chronic activation

Exhaustion Tonic signalingT Cell

Fitness

Limited Proliferation Terminal phenotype, lack of APC & co-stim

Pro-apoptotic Factors TME-derived FasLT Cell

Proliferation

Tumor Immune Micro-Environment

Recruitment Aberrant chemokine profile

Penetration Physical barriers (peripheral, internal)

Infiltration Dysregulated vasculature (topology, adhesion)

Functional Inhibition Suppressor Cells (Treg, MDSC, TAMs)

Functional Inhibition Inhibitory Cytokines (TGFβ, IL-10)

Functional Inhibition Tumor-intrinsic Factors (PD-L1)

Functional Inhibition Hypoxia, acidosis

Metabolic Suppression Glucose limitation

Metabolic Suppression Amino acid shortage (tryptophan, arginine)

Oxidative Stress Elevated ROS production

Exhaustion TME-induced chronic activation

Exhaustion Tonic signaling

Tumor Specificity Normal tissue expression, immune tolerance

Antigen Escape Ag heterogeneity, loss, & presentation defects

Limited Proliferation Terminal phenotype, lack of APC & co-stim

Pro-apoptotic Factors TME-derived FasL

Challenge Underlying Factor(s)

Tumor Recognition

Tumor Exclusion

T Cell Fitness

Tumor Immuno-

suppression

T Cell Proliferation

T Cell

Tumor

Tumor Immune Micro-Environment

What solutions are most promising to address these challenges?

T Cell

Tumor

TIME

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

Therapeutic Engineering Strategies Clinical Practice Strategies

Early Line & Combinations

• Opportunity to maximize efficacy & durable response

• Potential to treat lower tumor burden

• Prevent sequential lines of therapy with little marginal effect on disease

• Minimize opportunity for tumor-intrinsicacquired mechanisms of resistance

• Minimize potential for T cell-intrinsic acquired mechanisms of resistance

T Cell

Tumor

TIME

Resist TIME Inhibition

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

Therapeutic Engineering Strategies Clinical Practice Strategies

Early Line & Combinations

• Opportunity to maximize efficacy & durable response

• Potential to treat lower tumor burden

• Prevent sequential lines of therapy with little marginal effect on disease

• Minimize opportunity for tumor-intrinsicacquired mechanisms of resistance

• Minimize potential for T cell-intrinsic acquired mechanisms of resistance

T Cell

Tumor

TIME

Resist TIME Inhibition

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

Resist TIME Inhibition

Promote Antigen

Spreading

Multi-Antigen targeting Strategies

Ectopic Chemokine

Receptor Expression

ECM Disruption

Local Delivery

Cytokine / Co-stimulator Armoring

CAR / TCR Optimization

Cytokine / Co-stimulator Armoring

Infusion Product

OptimizationCPI

Combination (genetic, biologic)

Cytokine / Co-stimulator Armoring

Metabolic Reprogramming

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

Resist TIME Inhibition

T Cell

Tumor

TIME

Promote Antigen

Spreading

T

Ectopic Chemokine Receptors

T

Cytokine / Co-stimulator

Armoring

TInfusion Product

Optimization

TCPI Combination

(genetic, biologic)

T TuTIME

T TuTIME

ECM Disruption

T

CAR / TCR Optimization

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

T Tu

Multi-Antigen Targeting

TIME

Cytokine / Co-stimulator

Armoring

TTIME

Cytokine / Co-stimulator

Armoring

TTIME

Local Delivery

TTIME

T TuTIME

Metabolic Reprogramming

T TuTIME

T Cell

TumorImmuneMicroEnvironment

Tumor

Strategy Targets:

Resist TIME Inhibition

What role can the lymphatics play in promoting T cell activity and therapeutic

efficacy?

T Cell

Tumor

TIME Lymph Nodes

1) Designing a system to target immune agents to lymph nodes

2) Boosting TCR-T Cell therapeutic responses

3) Boosting CAR-T Cell therapeutic responses

Lymph Nodes are Where the Immune Response is Orchestrated

15

Lymph Nodes are Where the Immune Response is Orchestrated

Response Coordination

The Immune “School House”

Numerous Immune Cells

APC : T Cell Interaction

Lymph Node

• Expansion• Persistence• Solid tumor infiltration• Anti-tumor effector function• Antigen spreading

The AMP Platform - Designing a Lymph Node Targeted Booster for TCR-T Cell Therapy

16

(1) AMP-Peptide Peptide Antigen

• Cognate peptide target for cancer antigen-specific TCR

• AMP modification gives >10-fold improved lymph node targeting

(2) AMP-CpG Adjuvant

AMP Modification: Albumin Binding Lipid for Lymph Node Targeting

CpG DNA: TLR-9 Agonist

• Potent TLR-9 immuno-activator

• AMP modification gives >10-fold improved lymph node targeting

AMP Modification: Albumin Binding Lipid for Lymph Node Targeting

Peptide: Cognate TCR EpitopePEG Linker

The AMP Platform - Designing a Lymph Node Targeted Booster for TCR-T Cell Therapy

17

1 Subcutaneous Injection

Lymph Node

3 Lymph Node Targeting

Albumin Binding

Albumin

AMP-CpG

A

B

Tissue Injection Site

2

AMP-Peptide

• Uptake in resident APCs• Potent APC activation • TCR T cell activation

4 Immune Activation

Tumor

18

1T Cell Collection

2TCR Engineering

3Adoptive Cell Transfer

4 TCR T Cell Migration to Lymph Node

6TCR T Cell Infiltration and

Elimination of Tumor

The AMP Platform - Designing a Lymph Node Targeted Booster for TCR-T Cell Therapy

Lymph Node

• Interaction with activated APCs presenting cognate peptide

• TCR T cell activation, expansion

5 TCR-T Activation / Expansion

0 20 40 600

20

40

60

80

100

Days after Tumor

Perc

ent s

urvi

val

0 20 40 600

200

400

600

800

1000

Days after Tumor

Tum

or V

olum

e (m

m3 )

AMP-Boosting Potently Enhances TCR-T Therapy to Eliminate Established Solid Tumors

19

day 0

day 7

day -1 AMP-Boosting

AMP-Boosting

TCR-T Cells

day -10 Tumor Injection

day 10 AMP-Boostingday 14 AMP-Boosting

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP- Boost:10 µg gp100 Peptide

1 nmol CpG

day 3 AMP-Boosting

Dylan Drakes, PhD, Abdul Abbas, MS

TCR-T Cells TCR-T Cells + AMP Boost

n = 24n = 10

TCR-T Cells: 0/10 cured

TCR-T Cells + AMP Boost: 7/24 cured

0 20 40 60Days after Tumor

B16F10 Melanoma

0 10 20 30 40 500

20

40

60

80

100

Days after Rechallenge

Perc

ent s

urvi

val

0 10 20 30 40 50Days after Rechallenge

0 10 20 30 40 500

200

400

600

800

1000

Days after Tumor

Tum

or V

olum

e (m

m3 )

AMP-Boosting Induces Durable TCR-T Cell Responses, Protection Against Secondary Tumor Challenge

20

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

Control

Control: 0/5 protected

TCR-T Cells + AMP Boost: 4/4 protected

n = 4n = 5

day 75 Tumor Injection

TCR-T Cells + AMP Boost

0

2

4

6pm

el T

Cel

ls /

uL b

lood

TCR-T Cells: Blood

T Cellsday 5

+AMPday 5

+AMPday 75

Dylan Drakes, PhD, Abdul Abbas, MS

>10x

day 0

day 7

day -1 AMP-Boosting

AMP-Boosting

TCR-T Cells

day -10 Tumor Injection

day 10 AMP-Boostingday 14 AMP-Boosting

day 3 AMP-Boosting

B16F10 Melanoma

0

50

100

150

pmel

T C

ells

in L

N (x

103 )

0

100

200

300

pmel

T C

ells

/mg

of tu

mor

0

1

2

3

4pm

el T

Cel

ls/u

L bl

ood

AMP-Boosting Expands TCR-T Cells in Blood, Lymph Nodes, and Enhances Tumor Infiltration

21

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

TCR-T Cells: Blood TCR-T Cells: TumorTCR-T Cells: Lymph Node

T Cells +AMP

6.5x 46x

Dylan Drakes, PhD, Abdul Abbas, MS

T Cells +AMP

day 0

day 5

day -1 AMP-Boosting

Blood Assay

TCR-T Cells

day -10 Tumor Injection

day 7 Tumor and Lymph Node Assay

day 3 AMP-Boosting

T Cells +AMP

21x

B16F10 Melanoma

0

100

200

300

pmel

T C

ells

/mg

of tu

mor

AMP-Boosting Enhances TCR-T Cell Tumor Infiltration, Functionality, and Proliferation

22

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

TCR-T Cells: Tumor T Cell Activation: Tumor

gp100 T Cell Cytokines: Tumor T Cell Proliferation: Tumor

Dylan Drakes, PhD, Abdul Abbas, MS

T Cells +AMP

day 0

day 5

day -1 AMP-Boosting

Blood Assay

TCR-T Cells

day -10 Tumor Injection

day 7 Tumor and Lymph Node Assay

day 3 AMP-Boosting

21x

T Cells +AMP0

100

200

300

400

# of

CD

25+ C

D8+ T

Cel

ls/m

g tu

mor

6.8x

0

20

40

60

80

100

# of

Ki6

7+ , CD

8+ T C

ells

/m

g tu

mor

T Cells +AMP

3.5x

IFNγ+ TNFα+

TNFα+

IFNγ+

0

100

200

300

# of

CD

8 T

Cel

ls/m

g tu

mor

T Cells +AMP

3x

B16F10 Melanoma

0

50

100

150

# of

CD

8 T

Cel

ls/m

g tu

mor

0

100

200

300

# of

CD

8 T

Cel

ls/m

g tu

mor

0

50

100

150

# of

CD

8 T

Cel

ls/m

g tu

mor

AMP-Boosting Induces Rapid and Potent Antigen Spreading Against Diverse Tumor Targets

23

day 0

day 5

day -1 AMP-Boosting

Blood Assay

TCR-T Cells

day -10 Tumor Injection

day 7 Tumor and Lymph Node Assay

day 3 AMP-Boosting

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

TRP1 T Cells: Tumor

T Cells +AMPT Cells +AMP

TRP2 T Cells: Tumor

IFNγ+ TNFα+

TNFα+

IFNγ+

7x 7x

Dylan Drakes, PhD, Abdul Abbas, MS

T Cells +AMP

B16 TAA* T Cells: Tumor

17x

B16F10 Melanoma B16F10 Melanoma NeoAg/TAA-specific T Cell Responses

*M30, p15E, M27, M47, M48, Trp1Castle, et al. Cancer Res 2012

0

50

100

150

pmel

T C

ells

in L

N (x

103 )

AMP-Boosting Expands TCR-T Cells in Lymph Nodes and Induces Dendritic Cell Activation

24

day 0

day 5

day -1 AMP-Boosting

Blood Assay

TCR-T Cells

day -10 Tumor Injection

day 7 Tumor and Lymph Node Assay

day 3 AMP-Boosting

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

DCs: Lymph Node DC CD40: Lymph Node

Dylan Drakes, PhD, Abdul Abbas, MS

TCR-T Cells: Lymph Node

46x

T Cells +AMP0

100

200

300

400

# of

Den

driti

c C

ells

in L

N (x

103 )

T Cells +AMP

25x

DC MHCII: Lymph Node

0

50

100

150

200

250

# of

MH

CII+

Den

driti

c C

ells

in L

N (x

103 )

T Cells +AMP

33x

0

50

100

150

# of

CD

40+

Den

driti

c C

ells

in L

N (x

103 )

29x

T Cells +AMP

DC CD80/86: Lymph NodeCD80+ CD86+

CD80- CD86+

CD80+ CD86-

0

20

40

60

# of

Den

driti

c C

ells

in L

N (x

103 )

T Cells +AMP

53x

B16F10 Melanoma

Evaluating Differential Gene Expression in Lymph Nodes and Tumors After TCR-T Therapy

25

day 0

day 3

day -1 AMP-Boosting

AMP-Boosting

TCR-T Cells

day -10 Tumor Injection

day 7 Tumor Nanostring

day 1 Lymph Node Nanostring

5x106 gp100-specific TCR-T CellsmCherry Transduced

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

Group TCR-T Treatment

1 5x106 TCR-T Cells Mock

2 Mock AMP-gp100 / AMP-CpG

3 5x106 TCR-T Cells AMP-gp100 / AMP-CpG

Lymph Node and Tumor Nanostring Gene Expression

B16F10 Melanoma

-2

-1

0

1

2

AMP-boosting Induces Coordinated Inflammation in Lymph Nodes

26

Gene Expression: Lymph Node Day 1

Z-score

T Cell Activation &Co-stimulation

• CD40• CD86 TLR

SignalingIFN-II

Signaling• STAT2• IL-12

ChemokineSignaling• CCL12• CXCL11• CCL2

Granzyme

Regulation of T cell Proliferation

• IL-15Ra

ADCC

MHCIPresentation• TAP1

MHCIIPresentation

T cell Anergy & Negative Activation

• FoxP3• CTLA-4• TIGIT

D Drakes, PhD, A Abbas, MS, J Shields

T cells Boost

- +AMP

5x106 -

5x106 +AMP

AMP-boosting Enhances Multiple Axes of Immune Activation in the Tumor Microenvironment

27

T cells Boost

5x106 -

5x106 +AMP

Gene Expression: Tumor Day 7

T Cell Activation &Co-stimulation

• 41BB• PD-1• CD80

TLRSignaling

IFN-II Signaling• IL-1β• IFNγ

ChemokineSignaling• CCL4• CCR5• CCL2

Granzyme

Regulation of T cell Proliferation

• IL-18• IL-15Ra

ADCC

MHCIPresentation• TAPBP

MHCIIPresentation

T cell Anergy & Negative Activation

• FoxP3• CTLA-4• TIGIT

-2

0

2

Z-score

D Drakes, PhD, A Abbas, MS, J Shields

↑ Cytotoxic Activity

Promote T cell Fitness

↑Inflammatory

Chemokine Expression

Overcome Tumor Exclusion

↑ TAA-targeting

Endogenous T Cells

Promote Tumor Recognition

↑ APC Numbers and

Activation

↑ T Cell Proliferation

in Tumor

↑ Tumor Penetration

↑ Effector Functionality

Promote T cell Proliferation

↑ Numbers in Blood, LN, and Tumor

↑Proliferative

Cytokines

↓ Inhibitory Ligands and

Cells

↑ Cytokine and Costim. Expression

↓ T Cell Exhaustion Signature

Resist TIME Inhibition

What role can the lymphatics play in promoting T cell activity and therapeutic

efficacy?

T Cell

Tumor

TIME Lymph Nodes

1) Designing a system to target immune agents to lymph nodes

2) Boosting TCR-T Cell therapeutic responses

3) Boosting CAR-T Cell therapeutic responses

The AMP Platform - Designing a Lymph Node Targeted AMPlifier for CAR-T Cell Therapy

30

(1) AMP-Peptide Peptide Surrogate Ligand

• Surrogate peptide ligand (mimotope) for CAR antigen binding domain

• AMP modification gives >10-fold improved lymph node targeting

(2) AMP-CpG Adjuvant

AMP Modification: Albumin Binding Lipid for Lymph Node Targeting

CpG DNA: TLR-9 Agonist

• Potent TLR-9 immuno-activator

• AMP modification gives >10-fold improved lymph node targeting

AMP Modification: Albumin Binding Lipid for Lymph Node Targeting

Peptide: Surrogate CAR LigandPEG Linker

The AMP Platform - Designing a Lymph Node Targeted Booster for CAR-T Cell Therapy

31

Surrogate Peptide as CAR Ligands

Ma, Irvine, et al. Science 2019

AMP-Peptide on Albumin

CAR T Cells

CARAMP / CAR

Binding

AMP-Decorated APC

CAR T Cell

T CellsB CellsOther

Macrophages

DCCD11b DC

CD8 DC

0 20 40 60 80 100

% AMP Surface Display

Medullary Macrophages

AMP-FITC Decorates Lymph Node APCs to Stimulate CAR T Cell Activation

32

AMP Cell Uptake in Lymph Nodes

day 1 AnalyzeLymph NodeUptake

day 0 AMP-Boosting

anti-FITC Ab on sorted CD11c + cells: Ma, Irvine, et al. Science 2019

FITC Retargetable CAR-T Cells

AMP-BoostAMP-FITC

CDN

IFNγ

Secr

etio

n (p

g/m

L)

2000

3000

4000

1000

00 25 100 500

AMP-FITC (nM)

CAR-T Cytokine Production

AMP-Boosting Significantly Expands CAR-T Cells In Vivo

33

day 0day -1 CD45.1 CAR-T transfer

AMP-Boosting

day -2 Lymphodeplete

CD45.2 Recipient Mice

Blood Assay

FITC Retargetable CAR-T Cells

AMP-BoostAMP-FITC

CDN

day 7 AMP-Boosting

0

20

80

40

60

0 7 14 21 28Days post vaccination

10x106 CAR T50x103 CAR T + AMP-Boosting50x103 CAR T

Expansion of CAR-T Cells: Blood

Ma, Irvine, et al. Science 2019

% o

f CD3

+CD

8+T

cells

in

perip

hera

l blo

od

AMP-CAR-T Activators Enhance CAR T Cell Tumor Infiltration and Effector Function

34

day 5day 6

day 4 Lymphodepletion

AMP-BoostingCAR-T Cell Infusion

day 0 Tumor Injection

day 13 Assay Resected Tumor

EGFRvIII-specific CAR-T Cells

AMP-Boost:AMP-EGFRvIII

CDN IFN

γ

TNFα

% C

ytok

ine+

CAR-

T Ce

lls

0

25

50

75

100

IFNγ+IFNγ+ TNFα+

10x

CAR T Cell Cytokines: Tumor

T Cells +AMP

T Cells +AMP

Num

ber o

f CAR

-T

cells

per

mg

tum

or

0

10000

20000

30000

10x

CAR T Cells: Tumor

T Cells +AMP0

1000

2000

3000

4000

5000

Gran

zym

e B

MFI

2x

CAR T Cell Granzyme: Tumor

T Cells +AMP

Ma, Irvine, et al. Science 2019

EGFRvIII+ CT-2A Glioma

35

day 8day 9

day 7 Lymphodepletion

AMP-BoostingCAR-T Cell Infusion

day 0 Tumor Injection

day 16 AMP-Boosting

day 23 AMP-Boosting

Survival

EGFRvIII-specific CAR-T Cells

AMP-Boost:AMP-EGFRvIII

CDN

AMP-CAR-T Activators Potently Drive CAR-T Cells to Eradicate Large Established Tumors

Days post tumor inoculation

% S

urvi

val

0

50

100

20 40 600

25

75Tu

mor

size

(mm

2 )

0

50

200

100

150

0 7 10 20 30

250

Days post tumor inoculation

Anti-tumor Activity

1x106 CAR T

1x106 CAR T + AMP Boost

10x106 Control CAR T

3/5 cured

0/5 cured 0/5 cured

Ma, Irvine, et al. Science 2019

EGFRvIII+ CT-2A Glioma

AMP Boosted Responses Provide Durable Protection From Relapse and Antigen-loss

36

day 8day 9

day 7 Lymphodepletion

AMP-BoostingCAR-T Cell Infusion

day 0 Tumor Injection

day 16 AMP-Boostingday 23 AMP-Boosting

day 75 Tumor Injection

100% Protection

Tum

or si

ze (m

m2 )

0

50

200

100

150

0 4010 20 30

AMP-CAR-T CuredNaive

Challenged with EGFRvIII-expressing

tumor

Mediated by Memory EGFRvIII-CAR-T Response

AMP-CAR-T CuredNaive

Challenged with EGFRvIII-negative tumor

Mediated by Endogenous Memory T

cell Response

Days post tumor inoculation

Tum

or si

ze (m

m2 )

0

50

200

100

150

0 4010 20 30

EGFRvIII-specific CAR-T Cells

AMP-Boost:AMP-EGFRvIII

CDN

100% Protection

Ma, Irvine, et al. Science 2019

EGFRvIII+ CT-2A Glioma

Lymph Node APC Co-stimulation Drives CAR T Cell Expansion and Effector Function Enhancements

37

# of

CAR

-T c

ells

per L

ymph

Nod

e

400

800

1200

CAR-T Expansion: Lymph Node

% IF

Nγ+

amon

g CA

R-T

cells

10

20

50

CAR-T Function: Lymph Node

30

40

APC Depletion Co-stimulatory Signal Blockade

Ma, Irvine, et al. Science 2019

CAR T + + +

AMP + + +

Depletion - Mϕ DC

0CAR T + +

AMP + +

Blockade - Costim

# of

CAR

-T c

ells

per L

ymph

Nod

e

200

400

600

CAR-T Expansion: Lymph Node

% IF

Nγ+

amon

g CA

R-T

cells

0

10

20

50

CAR-T Function: Lymph Node

30

40

Anti- 41BBL, ICOSL, OX40L,CD80, CD86

0+ +

+ +

- Costim

0+ + +

+ + +

- Mϕ DC

↑ Cytotoxic Activity

Promote T cell Fitness

↑ Clearance of Metastases

Overcome Tumor Exclusion

↑ TAA-targeting

Endogenous T Cells

Promote Tumor Recognition

↑ Lymph Node APC Activation

↑ T Cell Proliferation

in Tumor

↑ Tumor Penetration

↑ Effector Functionality

Promote T cell Proliferation

↑ Numbers in Blood and

Tumor ↑ Co-

stimulatory APC Support

?

?

?

Resist TIME Inhibition

• Tumor infiltration• Effector function

T Cell

Tumor

TIME Lymph Nodes

What lessons can we learn?How should this inform our strategy?

↑ T Cell Number and Function

• Expansion• Persistence• Effector function

• APC Activation• Antigen Presentation

• Tumor infiltration• Effector function

T Cell

Tumor

TIME Lymph Nodes

What lessons can we learn?How should this inform our strategy?

↑ T Cell Number and Function

• Expansion• Persistence• Effector function

TIME Reprogramming↑ Tumor Killing

↑ Antigen Spreading, Endogenous T cell Activation

• APC Activation• Antigen Presentation

41

Dylan Drakes PhD, Abdul Abbas MS, Jackie Shields, Chris Haqq MD PhD

Darrell Irvine PhD, Leyuan Ma PhD

Ma, Irvine, et al. Science 2019

Recruitment Aberrant chemokine profile Ectopic chemokine receptor engineering;

ECM or stromal cell disruptionPenetration Physical barriers (peripheral, internal)

Infiltration Dysregulated vasculature (topology, adhesion)

Functional Inhibition Suppressor Cells (Treg, MDSC, TAMs)

CPI blockade (genetic, biologic);

Metabolic reprogramming;

Armoring (cytokines, co-stimulators);

Functional Inhibition Inhibitory Cytokines (TGFβ, IL-10)

Functional Inhibition Tumor-intrinsic Factors (PD-L1)

Functional Inhibition Hypoxia, acidosis

Metabolic Suppression Glucose limitation

Metabolic Suppression Amino acid shortage (tryptophan, arginine)

Oxidative Stress Elevated ROS production

Exhaustion TME-induced chronic activation Armoring (cytokines, co-stimulators); CAR optimizationExhaustion Tonic signaling

Tumor Specificity Normal tissue expression, immune tolerance Promote antigen spreading; multi-targetingAntigen Escape Ag heterogeneity, loss, & presentation defects

Limited Proliferation Terminal phenotype, lack of APC & co-stim Armoring (cytokines, co-stimulators)Pro-apoptotic Factors TME-derived FasL

Challenge Underlying Factor(s) Goal / Potential Solution

Tumor Recognition

Tumor Exclusion

T Cell Fitness

Tumor Immuno-

suppression

T Cell Proliferation

Promote Antigen

Spreading

T

T

Tu

Multi-Antigen Targeting

Promote Tumor Recognition

TIME

Mixed CARsTandem CARs

Dual CARsBITEs

Universal CARsγδ CARs

FAP TargetingTGFβ Targeting

Antigen / CAR Adapters

T Cell

Tumor

TIME

Armored CARs (CD40L)

Chemokines (CCL19)

ü CD19/20 Bispecific CARsü CD19/22 Bispecific CARs

ü Sequential CD19 / CD22 CARs

Local Delivery

Ectopic Chemokine &

Receptors

T

T

T TuTIME

ECM Disruption

Overcome Tumor Exclusion

TIME

Local Tumor InfusionSupportive Matrices

Hypoxia SensingProtease Sensing

CSF-1RCCR4

CCR2b

CCL19

FAP Targeting CARs

Heparinase

Hyaluronidase Combo

T Cell

Tumor

TIME

Cytokine / Co-stimulator

Armoring

T

T

CAR / TCR Optimization

Promote T cell Fitness

TIME

IL-12IL-15IL-18

CD40L41BB

IL-12IL-15IL-18

CD40L41BB

T Cell

Tumor

TIME

Affinity TuningCo-stimulatory Optimization

scFv SelectionHinge / TM Domain

Cytokine / Co-stimulator

Armoring

Infusion Product

Optimization

T

Promote T cell Proliferation

IL-12IL-1541BB

Kinase ConditioningCytokine Supplementation

Nutrient InclusionPhenotype Selection T

T Cell

Tumor

TIME

Cytokine / Co-stimulator

Armoring

Metabolic Reprogramming

CPI Combination

(genetic, biologic)

T

T

T

TuTIME

Resist TIME Inhibition

TIME

Glucose PathwayAA Supplementation

Catalase (ROS)

HIF Inhibition

CPI TransgeneDNR

Switch ReceptorsPD-1 KO

CPI Combo

TuTIME

IL-12IL-15IL-18

CD40L41BB

IL-12IL-15IL-18

CD40L41BB

T Cell

Tumor

TIME

ü HPV-E6 TCR +/- aPD-1 Transgeneü NY-ESO-1 TCR + TGFβ DNR

ü MSLN CAR + PD-1 KOü MUC-1 CAR + PD-1 KOü MSLN CAR + aPD-1ü CD19 CAR + aPD-L1

Local Delivery

Promote Antigen

Spreading

Cytokine / Co-stimulator

Armoring

Cytokine / Co-stimulator

Armoring

Cytokine / Co-stimulator

Armoring

Ectopic Chemokine Receptors

CPI Combination

(genetic, biologic)

Infusion Product

Optimization

T

T

T

T

T

T

T

T

T

T

T

T

Tu

Tu

Tu

Tu

TIME

TIME

TIMEECM

Disruption

CAR / TCR Optimization

Multi-Antigen Targeting

Promote T cell Fitness

Overcome Tumor Exclusion

Promote Tumor Recognition

Promote T cell Proliferation

Resist TIME Inhibition

TIME TIME

TIME

TIME

TuTIME

Metabolic Reprogramming

Promote T cell FitnessPromote Tumor Recognition

Promote T cell Proliferation

Resist TIME Inhibition

Overcome Tumor Exclusion

-2

-1

0

1

2

AMP-boosting Induces Coordinated Expression of Costimulation, Cytokine and Trafficking Genes without Negative Coregulation

9/9/21 51

T Cell Activation &Co-stimulation

• CD40• CD86 TLR

SignalingIFN-II

Signaling• STAT2• IL-12

ChemokineSignaling• CCL12• CXCL11• CCL2

Granzyme

Regulation of T cell Proliferation

• IL-15Ra

ADCC

MHCIPresentation• TAP1

MHCIIPresentation

T cell Anergy & Negative Activation

• FoxP3• CTLA-4• TIGIT

Z-score

D Drakes, PhD, A Abbas, MS, J Shields

Gene Expression: Lymph Node, Day 7T cells Boost

- AMP

5x106 -

5x106 AMP

AMP-Boosted Lymph Nodes Enhance TCR-T Activation and Proliferation

9/9/21 52

0

200

400

600

800

1000IF

Ng

(pg/

mL)

TCR-T Cytokines

day 3-9

day 2 Lymph Node Collection;Culture with TCR-T Cells

Proliferation Assay

day 0 Dosing In Vivo

day 9 Killing Assay, Cytokine Assay

day 3 Cytokine Assay

Lymph Node - + +

In Vivo Boost - - AMP

2 3 4 5 6 7 8 9 100

1

2

Day

# of

pm

el T

cel

ls (x

106 )

TCR-T Proliferation

TCR-T TCR-T + PBS / Lymph Node

TCR-T + AMP / Lymph Node

Dylan Drakes, PhD, Abdul Abbas, MS

AMP Boost:10 µg gp100 Peptide

1 nmol CpG

>700x

Lymph Node

3x

AMP-Boosted Lymph Nodes Enhance TCR-T Killing and Cytokine Secretion In Culture with Tumor Cells

9/9/21 53

2.1 1.1 1.2 1.5 1.10 1.200

10

20

30

40

50

Effector:Target Ratio

Perc

ent L

ysis

TCR-T Tumor Killing

0

500

1000

1500

IFNg

(pg/

mL)

0

100

200

300

400

IL-2

(pg/

mL)TCR-T

TCR-T + PBS / Lymph Node

TCR-T + AMP / Lymph Node

TCR-T: IFNγ

TCR-T: IL-2

Lymph Node - + +

In Vivo Boost - - AMPDylan Drakes, PhD, Abdul Abbas, MS

day 3-9

day 2 Lymph Node Collection;Culture with TCR-T Cells

Proliferation Assay

day 0 Dosing In Vivo

day 9 Killing Assay, Cytokine Assay

day 3 Cytokine Assay

AMP-Boost:10 µg gp100 Peptide

1 nmol CpG

6x

33x

Lymph Node

>40x

9/9/21 Elicio Confidential 54

AMP-Boosting in the Lymph Nodes Enhances Activation and Functionality of TCR-T Cells

Murine Syngeneic Pmel TCR T Cell / B16F10 Melanoma

• Lymph Nodes from AMP-boosted mice potently stimulate TCR-T Cells

• Enhanced proliferation

• 700-fold enhanced cytokine secretion

• Enhanced functional and cytotoxic interaction with tumor targets

• Increased killing efficiency

• >6-30-fold increased cytokine secretion