Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of...

117
Applications of projective geometry January 2009 Applications of projective geometry

Transcript of Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of...

Page 1: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Applications of projective geometry

January 2009

Applications of projective geometry

Page 2: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Euclid (Elements, Book I)

Applications of projective geometry

Page 3: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

An old result

Dans certains pays d’Europe, dont la France, le theoreme deThales designe un theoreme de geometrie qui affirme que, dans unplan, une droite parallele a l’un des cotes d’un triangle sectionne cedernier en un triangle semblable. Dans d’autres langues,notamment en anglais, ce resultat est connu sous le nom detheoreme d’intersection.

En anglais et allemand, le theoreme de Thales designe un autretheoreme de geometrie qui affirme qu’un triangle inscrit dans uncercle et dont un cote est un diametre est un triangle rectangle.

Le “theoreme de Thales suisse” exprime par contre le carre de lahauteur dans un triangle rectangle.

Applications of projective geometry

Page 4: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

An old result

Dans certains pays d’Europe, dont la France, le theoreme deThales designe un theoreme de geometrie qui affirme que, dans unplan, une droite parallele a l’un des cotes d’un triangle sectionne cedernier en un triangle semblable.

Dans d’autres langues,notamment en anglais, ce resultat est connu sous le nom detheoreme d’intersection.

En anglais et allemand, le theoreme de Thales designe un autretheoreme de geometrie qui affirme qu’un triangle inscrit dans uncercle et dont un cote est un diametre est un triangle rectangle.

Le “theoreme de Thales suisse” exprime par contre le carre de lahauteur dans un triangle rectangle.

Applications of projective geometry

Page 5: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

An old result

Dans certains pays d’Europe, dont la France, le theoreme deThales designe un theoreme de geometrie qui affirme que, dans unplan, une droite parallele a l’un des cotes d’un triangle sectionne cedernier en un triangle semblable. Dans d’autres langues,notamment en anglais, ce resultat est connu sous le nom detheoreme d’intersection.

En anglais et allemand, le theoreme de Thales designe un autretheoreme de geometrie qui affirme qu’un triangle inscrit dans uncercle et dont un cote est un diametre est un triangle rectangle.

Le “theoreme de Thales suisse” exprime par contre le carre de lahauteur dans un triangle rectangle.

Applications of projective geometry

Page 6: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

An old result

Dans certains pays d’Europe, dont la France, le theoreme deThales designe un theoreme de geometrie qui affirme que, dans unplan, une droite parallele a l’un des cotes d’un triangle sectionne cedernier en un triangle semblable. Dans d’autres langues,notamment en anglais, ce resultat est connu sous le nom detheoreme d’intersection.

En anglais et allemand, le theoreme de Thales designe un autretheoreme de geometrie qui affirme qu’un triangle inscrit dans uncercle et dont un cote est un diametre est un triangle rectangle.

Le “theoreme de Thales suisse” exprime par contre le carre de lahauteur dans un triangle rectangle.

Applications of projective geometry

Page 7: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

An old result

Dans certains pays d’Europe, dont la France, le theoreme deThales designe un theoreme de geometrie qui affirme que, dans unplan, une droite parallele a l’un des cotes d’un triangle sectionne cedernier en un triangle semblable. Dans d’autres langues,notamment en anglais, ce resultat est connu sous le nom detheoreme d’intersection.

En anglais et allemand, le theoreme de Thales designe un autretheoreme de geometrie qui affirme qu’un triangle inscrit dans uncercle et dont un cote est un diametre est un triangle rectangle.

Le “theoreme de Thales suisse” exprime par contre le carre de lahauteur dans un triangle rectangle.

Applications of projective geometry

Page 8: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Multiplication

Applications of projective geometry

Page 9: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 10: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 11: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 12: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 13: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 14: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 15: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

More on projective geometry: axiomatization

Steiner 1832: Durch gehorige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht,

wie alle Theile naturgemass ineinander greifen, in schonster

Ordnung sich in Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbststandigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projectivegeometry from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is,

analytically, the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start

axiomatizing.

Applications of projective geometry

Page 16: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Fano plane

Applications of projective geometry

Page 17: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Universality theorems

Configuration spaces: moduli of finitely many points with specifiedalignments.

Mnev 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some modulispaces arising in the Geometric Langlands Program, e.g.,compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g.,Hilbert schemes of smooth curves in projective space, surfacesin P4, etc.

Applications of projective geometry

Page 18: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Universality theorems

Configuration spaces: moduli of finitely many points with specifiedalignments.

Mnev 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some modulispaces arising in the Geometric Langlands Program, e.g.,compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g.,Hilbert schemes of smooth curves in projective space, surfacesin P4, etc.

Applications of projective geometry

Page 19: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Universality theorems

Configuration spaces: moduli of finitely many points with specifiedalignments.

Mnev 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some modulispaces arising in the Geometric Langlands Program, e.g.,compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g.,Hilbert schemes of smooth curves in projective space, surfacesin P4, etc.

Applications of projective geometry

Page 20: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Universality theorems

Configuration spaces: moduli of finitely many points with specifiedalignments.

Mnev 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some modulispaces arising in the Geometric Langlands Program, e.g.,compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g.,Hilbert schemes of smooth curves in projective space, surfacesin P4, etc.

Applications of projective geometry

Page 21: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Universality theorems

Configuration spaces: moduli of finitely many points with specifiedalignments.

Mnev 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some modulispaces arising in the Geometric Langlands Program, e.g.,compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g.,Hilbert schemes of smooth curves in projective space, surfacesin P4, etc.

Applications of projective geometry

Page 22: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Axioms

Definition

A projective structure is a pair (S ,L) where S is a (nonempty) set(of points) and L a collection of subsets l ⊂ S (lines) such that

P1 there exist an s ∈ S and an l ∈ L such that s /∈ l;

P2 for every l ∈ L there exist at least three distinct s, s ′, s ′′ ∈ l;

P3 for every pair of distinct s, s ′ ∈ S there exists exactly one

l = l(s, s ′) ∈ L

such that s, s ′ ∈ l;

P4 for every quadruple of pairwise distinct s, s ′, t, t ′ ∈ S one has

l(s, s ′) ∩ l(t, t ′) 6= ∅ ⇒ l(s, t) ∩ l(s ′, t ′) 6= ∅.

Applications of projective geometry

Page 23: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Axioms

A morphism of projective structures ρ : (S ,L)→(S ′,L′) is a mapof sets ρ : S → S ′ preserving lines, i.e., ρ(l) ∈ L′, for all l ∈ L.

A projective structure (S ,L) satisfies Pappus’ axiom if

PA for all 2-dimensional subspaces and every configuration of sixpoints and lines in these subspaces as below

the intersections are collinear.

Applications of projective geometry

Page 24: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Axioms

A morphism of projective structures ρ : (S ,L)→(S ′,L′) is a mapof sets ρ : S → S ′ preserving lines, i.e., ρ(l) ∈ L′, for all l ∈ L.

A projective structure (S ,L) satisfies Pappus’ axiom if

PA for all 2-dimensional subspaces and every configuration of sixpoints and lines in these subspaces as below

the intersections are collinear.

Applications of projective geometry

Page 25: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Fundamental theorem

Reconstruction

Let (S ,L) be a projective structure of dimension n ≥ 2 whichsatisfies Pappus’ axiom. Then there exists a vector space V over afield k and an isomorphism

σ : Pk(V )∼−→ S .

Moreover, for any two such triples (V , k , σ) and (V ′, k ′, σ′) thereis an isomorphism

V /k∼−→ V ′/k ′

compatible with σ, σ′ and unique up to homothety v 7→ λv ,λ ∈ k∗.

Applications of projective geometry

Page 26: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Main example

Let k be a field and Pn the usual projective space over k ofdimension n ≥ 2. Then Pn(k) carries a projective structure: linesare the usual projective lines P1(k) ⊂ Pn(k).

Let K/k be an extension of fields. Then

S := Pk(K ) = (K \ 0)/k∗

carries a natural (possibly, infinite-dimensional) projectivestructure. Multiplication in K ∗/k∗ preserves this structure.

Applications of projective geometry

Page 27: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Main example

Let k be a field and Pn the usual projective space over k ofdimension n ≥ 2. Then Pn(k) carries a projective structure: linesare the usual projective lines P1(k) ⊂ Pn(k).

Let K/k be an extension of fields. Then

S := Pk(K ) = (K \ 0)/k∗

carries a natural (possibly, infinite-dimensional) projectivestructure.

Multiplication in K ∗/k∗ preserves this structure.

Applications of projective geometry

Page 28: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Main example

Let k be a field and Pn the usual projective space over k ofdimension n ≥ 2. Then Pn(k) carries a projective structure: linesare the usual projective lines P1(k) ⊂ Pn(k).

Let K/k be an extension of fields. Then

S := Pk(K ) = (K \ 0)/k∗

carries a natural (possibly, infinite-dimensional) projectivestructure. Multiplication in K ∗/k∗ preserves this structure.

Applications of projective geometry

Page 29: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Main theorem

Reconstructing fields

Let K/k and K ′/k ′ be field extensions of degree ≥ 3 and

ψ : S = Pk(K )→Pk ′(K ′) = S ′

a bijection of sets which is an isomorphism of abelian groups andof projective structures. Then

k ' k ′ and K ' K ′.

Applications of projective geometry

Page 30: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Main theorem

Reconstructing field homomorphisms

Let K/k and K ′/k ′ be field extensions of degree ≥ 3 and

ψ : S = Pk(K )→Pk ′(K ′) = S ′

an injective homomorphism of abelian groups compatible withprojective structures. Then k ' k ′ and K is isomorphic to asubfield of K ′.

Applications of projective geometry

Page 31: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Pregeometries and geometries

A combinatorial pregeometry (finitary matroid) is a pair (P, cl)where P is a set and

cl : Subsets(P)→ Subsets(P),

such that for all a, b ∈ P and all Y ,Z ⊆ P one has:

Y ⊆ cl(Y ),

if Y ⊆ Z , then cl(Y ) ⊆ cl(Z ),

cl(cl(Y )) = cl(Y ),

if a ∈ cl(Y ), then there is a finite subset Y ′ ⊂ Y such thata ∈ cl(Y ′) (finite character),

(exchange condition) if a ∈ cl(Y ∪ {b}) \ cl(Y ), thenb ∈ cl(Y ∪ {a}).

A geometry is a pregeometry such that cl(a) = a, for all a ∈ P,and cl(∅) = ∅.

Applications of projective geometry

Page 32: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Pregeometries and geometries

A combinatorial pregeometry (finitary matroid) is a pair (P, cl)where P is a set and

cl : Subsets(P)→ Subsets(P),

such that for all a, b ∈ P and all Y ,Z ⊆ P one has:

Y ⊆ cl(Y ),

if Y ⊆ Z , then cl(Y ) ⊆ cl(Z ),

cl(cl(Y )) = cl(Y ),

if a ∈ cl(Y ), then there is a finite subset Y ′ ⊂ Y such thata ∈ cl(Y ′) (finite character),

(exchange condition) if a ∈ cl(Y ∪ {b}) \ cl(Y ), thenb ∈ cl(Y ∪ {a}).

A geometry is a pregeometry such that cl(a) = a, for all a ∈ P,and cl(∅) = ∅.

Applications of projective geometry

Page 33: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Pregeometries and geometries

A combinatorial pregeometry (finitary matroid) is a pair (P, cl)where P is a set and

cl : Subsets(P)→ Subsets(P),

such that for all a, b ∈ P and all Y ,Z ⊆ P one has:

Y ⊆ cl(Y ),

if Y ⊆ Z , then cl(Y ) ⊆ cl(Z ),

cl(cl(Y )) = cl(Y ),

if a ∈ cl(Y ), then there is a finite subset Y ′ ⊂ Y such thata ∈ cl(Y ′) (finite character),

(exchange condition) if a ∈ cl(Y ∪ {b}) \ cl(Y ), thenb ∈ cl(Y ∪ {a}).

A geometry is a pregeometry such that cl(a) = a, for all a ∈ P,and cl(∅) = ∅.

Applications of projective geometry

Page 34: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Examples

1 P = V /k , a vector space over a field k and cl(Y ) the k-spanof Y ⊂ P

2 P = Pk(V ), the usual projective space over a k

3 P = Pk(K ), a field K containing an algebraically closedsubfield k and cl(Y ) - the normal closure of k(Y ) in K ; ageometry is obtained after factoring by x ∼ y iff cl(x) = cl(y).

Applications of projective geometry

Page 35: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Examples

1 P = V /k , a vector space over a field k and cl(Y ) the k-spanof Y ⊂ P

2 P = Pk(V ), the usual projective space over a k

3 P = Pk(K ), a field K containing an algebraically closedsubfield k and cl(Y ) - the normal closure of k(Y ) in K ; ageometry is obtained after factoring by x ∼ y iff cl(x) = cl(y).

Applications of projective geometry

Page 36: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Examples

1 P = V /k , a vector space over a field k and cl(Y ) the k-spanof Y ⊂ P

2 P = Pk(V ), the usual projective space over a k

3 P = Pk(K ), a field K containing an algebraically closedsubfield k and cl(Y ) - the normal closure of k(Y ) in K ;

ageometry is obtained after factoring by x ∼ y iff cl(x) = cl(y).

Applications of projective geometry

Page 37: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Examples

1 P = V /k , a vector space over a field k and cl(Y ) the k-spanof Y ⊂ P

2 P = Pk(V ), the usual projective space over a k

3 P = Pk(K ), a field K containing an algebraically closedsubfield k and cl(Y ) - the normal closure of k(Y ) in K ; ageometry is obtained after factoring by x ∼ y iff cl(x) = cl(y).

Applications of projective geometry

Page 38: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Combinatorial geometries of field extensions

Evans–Hrushovski 1991 / Gismatullin 2008

Let k and k ′ be algebraically closed fields, K/k and K ′/k ′ fieldextensions of transcendence degree ≥ 5 over k , resp. k ′. Then,every isomorphism of combinatorial geometries

Pk(K )→ Pk ′(K ′)

is induced by an isomorphism of purely inseparable closures

K → K ′.

Applications of projective geometry

Page 39: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-theory

Let KMi (K ) be i-th Milnor K-group of a field K . Recall that

KM1 (K ) = K ∗

and that there is a canonical surjective homomorphism

σK : KM1 (K )⊗KM

1 (K )→KM2 (K )

whose kernel is generated by symbols (x , 1− x), for x ∈ K ∗ \ 1.Let

KMi (K ) := KM

i (K )/infinitely divisible, i = 1, 2,

be the component generated by nondivisible elements.

Applications of projective geometry

Page 40: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-theory

Let KMi (K ) be i-th Milnor K-group of a field K . Recall that

KM1 (K ) = K ∗

and that there is a canonical surjective homomorphism

σK : KM1 (K )⊗KM

1 (K )→KM2 (K )

whose kernel is generated by symbols (x , 1− x), for x ∈ K ∗ \ 1.

LetKM

i (K ) := KMi (K )/infinitely divisible, i = 1, 2,

be the component generated by nondivisible elements.

Applications of projective geometry

Page 41: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-theory

Let KMi (K ) be i-th Milnor K-group of a field K . Recall that

KM1 (K ) = K ∗

and that there is a canonical surjective homomorphism

σK : KM1 (K )⊗KM

1 (K )→KM2 (K )

whose kernel is generated by symbols (x , 1− x), for x ∈ K ∗ \ 1.Let

KMi (K ) := KM

i (K )/infinitely divisible, i = 1, 2,

be the component generated by nondivisible elements.

Applications of projective geometry

Page 42: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing fields

Let K and L be function fields of algebraic varieties of dimension≥ 2 over algebraically closed fields k and l , respectively. Assumethat there exist isomorphisms

ψi : KMi (K )→ KM

i (L), i = 1, 2,

of abelian groups with a commutative diagram

KM1 (K )⊗KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Applications of projective geometry

Page 43: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing fields

Bogomolov-T. 2008

Then there exists an isomorphism of fields

ψ : K → L,

compatible with ψ1.

Applications of projective geometry

Page 44: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing fields

Assume that there exist isomorphisms

ψi : KMi (K )→ KM

i (L), i = 1, 2,

of abelian groups with a commutative diagram

KM1 (K )⊗ KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗ KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Then there exists a (compatible) isomorphism of fields

ψ : K → L.

Applications of projective geometry

Page 45: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing fields

Assume that there exist isomorphisms

ψi : KMi (K )→ KM

i (L), i = 1, 2,

of abelian groups with a commutative diagram

KM1 (K )⊗ KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗ KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Then there exists a (compatible) isomorphism of fields

ψ : K → L.

Applications of projective geometry

Page 46: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-groups of function fields

Let K and L be function fields of transcendence degree ≥ 2 overan algebraically closed field k , resp. l . Let

ψ1 : KM1 (K )→KM

1 (L)

be an injective homomorphism.

Assume that there is acommutative diagram

KM1 (K )⊗ KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗ KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Assume that ψ1(K ∗/k∗) 6⊆ E ∗/l∗, for 1-dimensional E ⊂ L.

Applications of projective geometry

Page 47: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-groups of function fields

Let K and L be function fields of transcendence degree ≥ 2 overan algebraically closed field k , resp. l . Let

ψ1 : KM1 (K )→KM

1 (L)

be an injective homomorphism. Assume that there is acommutative diagram

KM1 (K )⊗ KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗ KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Assume that ψ1(K ∗/k∗) 6⊆ E ∗/l∗, for 1-dimensional E ⊂ L.

Applications of projective geometry

Page 48: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

K-groups of function fields

Let K and L be function fields of transcendence degree ≥ 2 overan algebraically closed field k , resp. l . Let

ψ1 : KM1 (K )→KM

1 (L)

be an injective homomorphism. Assume that there is acommutative diagram

KM1 (K )⊗ KM

1 (K )ψ1⊗ψ1 //

σK

��

KM1 (L)⊗ KM

1 (L)

σL

��KM

2 (K )ψ2

// KM2 (L).

Assume that ψ1(K ∗/k∗) 6⊆ E ∗/l∗, for 1-dimensional E ⊂ L.

Applications of projective geometry

Page 49: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing field homomorphisms

Theorem

Then there exist an r ∈ Q and a homomorphism of fields

ψ : K→L

such that the induced map on K ∗/k∗ coincides with ψr1.

Outlook:

existence of sections of fibrations X → B, e.g., uniqueness ofthe Brauer obstruction to the existence of points.

birational invariants of quotients V /G , where G is a finitegroup and V its representation

Applications of projective geometry

Page 50: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing field homomorphisms

Theorem

Then there exist an r ∈ Q and a homomorphism of fields

ψ : K→L

such that the induced map on K ∗/k∗ coincides with ψr1.

Outlook:

existence of sections of fibrations X → B, e.g., uniqueness ofthe Brauer obstruction to the existence of points.

birational invariants of quotients V /G , where G is a finitegroup and V its representation

Applications of projective geometry

Page 51: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Reconstructing field homomorphisms

Theorem

Then there exist an r ∈ Q and a homomorphism of fields

ψ : K→L

such that the induced map on K ∗/k∗ coincides with ψr1.

Outlook:

existence of sections of fibrations X → B, e.g., uniqueness ofthe Brauer obstruction to the existence of points.

birational invariants of quotients V /G , where G is a finitegroup and V its representation

Applications of projective geometry

Page 52: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

The ground field: Infinitely divisible elements

An element f ∈ K ∗ = KM1 (K ) is infinitely divisible if and only if

f ∈ k∗. In particular,

KM1 (K ) = K ∗/k∗.

Applications of projective geometry

Page 53: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

1-dimensional subfields

Given a nonconstant f1 ∈ K ∗/k∗, we have

Ker2(f1) = E ∗/k∗,

where E = k(f1)K

is the normal closure in K of the 1-dimensionalfield generated by f1 and

Ker2(f ) := { g ∈ K ∗/k∗ = KM1 (K ) | (f , g) = 0 ∈ KM

2 (K ) }.

Applications of projective geometry

Page 54: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Reconstructing lines: Functional equations

Assume that x , y ∈ K ∗ are algebraically independent and that ifboth xb, yb ∈ K ∗ then b ∈ Z.

Let p ∈ k(x)∗, q ∈ k(y)

∗be such

that x , y , p, q are multiplicatively independent in K ∗/k∗. Assumethat there is a nonconstant

Π ∈ k(x/y)∗ · y ∩ k(p/q)

∗ · q.

Assume moreover that this Π arises from infinitely many, moduloscalars, elements p, q as above. Then, modulo k∗,

Π = Πκ,δ(x , y) := (xδ − κy δ)δ, (1)

with κ ∈ k∗ and δ = ±1.

Applications of projective geometry

Page 55: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Reconstructing lines: Functional equations

Assume that x , y ∈ K ∗ are algebraically independent and that ifboth xb, yb ∈ K ∗ then b ∈ Z. Let p ∈ k(x)

∗, q ∈ k(y)

∗be such

that x , y , p, q are multiplicatively independent in K ∗/k∗.

Assumethat there is a nonconstant

Π ∈ k(x/y)∗ · y ∩ k(p/q)

∗ · q.

Assume moreover that this Π arises from infinitely many, moduloscalars, elements p, q as above. Then, modulo k∗,

Π = Πκ,δ(x , y) := (xδ − κy δ)δ, (1)

with κ ∈ k∗ and δ = ±1.

Applications of projective geometry

Page 56: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Reconstructing lines: Functional equations

Assume that x , y ∈ K ∗ are algebraically independent and that ifboth xb, yb ∈ K ∗ then b ∈ Z. Let p ∈ k(x)

∗, q ∈ k(y)

∗be such

that x , y , p, q are multiplicatively independent in K ∗/k∗. Assumethat there is a nonconstant

Π ∈ k(x/y)∗ · y ∩ k(p/q)

∗ · q.

Assume moreover that this Π arises from infinitely many, moduloscalars, elements p, q as above.

Then, modulo k∗,

Π = Πκ,δ(x , y) := (xδ − κy δ)δ, (1)

with κ ∈ k∗ and δ = ±1.

Applications of projective geometry

Page 57: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Reconstructing lines: Functional equations

Assume that x , y ∈ K ∗ are algebraically independent and that ifboth xb, yb ∈ K ∗ then b ∈ Z. Let p ∈ k(x)

∗, q ∈ k(y)

∗be such

that x , y , p, q are multiplicatively independent in K ∗/k∗. Assumethat there is a nonconstant

Π ∈ k(x/y)∗ · y ∩ k(p/q)

∗ · q.

Assume moreover that this Π arises from infinitely many, moduloscalars, elements p, q as above. Then, modulo k∗,

Π = Πκ,δ(x , y) := (xδ − κy δ)δ, (1)

with κ ∈ k∗ and δ = ±1.

Applications of projective geometry

Page 58: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Reconstructing lines: Functional equations

The corresponding p and q are given by

pκx ,1(x) = x + κx , qκy ,1(y) = y + κy

pκx ,−1(x) = (x−1 + κx)−1, qκx ,−1(y) = (y−1 + κy )−1

withκxκy = κ.

Applications of projective geometry

Page 59: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Anabelian geometry

Grothendieck’s Anabelian program

The Galois group of a function field determines the field.

Two group operations, + and ·, are encoded in one group.

Let K be a field with absolute Galois group GK := Gal(K/K ).

Let GK be the pro-`-completion of GK , for ` 6= char(K ) a prime.

Uchida, Tamagawa, Mochizuki, Pop, Konigsmann, Zaidi ...:reconstruction of function fields from the full GK or GK .

Applications of projective geometry

Page 60: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Anabelian geometry

Grothendieck’s Anabelian program

The Galois group of a function field determines the field.

Two group operations, + and ·, are encoded in one group.

Let K be a field with absolute Galois group GK := Gal(K/K ).

Let GK be the pro-`-completion of GK , for ` 6= char(K ) a prime.

Uchida, Tamagawa, Mochizuki, Pop, Konigsmann, Zaidi ...:reconstruction of function fields from the full GK or GK .

Applications of projective geometry

Page 61: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Anabelian geometry

Grothendieck’s Anabelian program

The Galois group of a function field determines the field.

Two group operations, + and ·, are encoded in one group.

Let K be a field with absolute Galois group GK := Gal(K/K ).

Let GK be the pro-`-completion of GK , for ` 6= char(K ) a prime.

Uchida, Tamagawa, Mochizuki, Pop, Konigsmann, Zaidi ...:reconstruction of function fields from the full GK or GK .

Applications of projective geometry

Page 62: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Anabelian geometry

Grothendieck’s Anabelian program

The Galois group of a function field determines the field.

Two group operations, + and ·, are encoded in one group.

Let K be a field with absolute Galois group GK := Gal(K/K ).

Let GK be the pro-`-completion of GK , for ` 6= char(K ) a prime.

Uchida, Tamagawa, Mochizuki, Pop, Konigsmann, Zaidi ...:reconstruction of function fields from the full GK or GK .

Applications of projective geometry

Page 63: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Almost abelian anabelian geometry

LetGa

K := GK/[GK ,GK ], GcK := GK/[GK , [GK ,GK ]]

be the abelianization, resp. its canonical central extension.

Thegroup Ga

K is a torsion-free Z`-module of infinite rank.

Let ΣK be the set of all topologically noncyclic subgroups of GaK

that lift to abelian subgroups of GcK .

Bogomolov’s program

The pair (GaK ,ΣK ) determines K .

Applications of projective geometry

Page 64: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Almost abelian anabelian geometry

LetGa

K := GK/[GK ,GK ], GcK := GK/[GK , [GK ,GK ]]

be the abelianization, resp. its canonical central extension. Thegroup Ga

K is a torsion-free Z`-module of infinite rank.

Let ΣK be the set of all topologically noncyclic subgroups of GaK

that lift to abelian subgroups of GcK .

Bogomolov’s program

The pair (GaK ,ΣK ) determines K .

Applications of projective geometry

Page 65: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Almost abelian anabelian geometry

LetGa

K := GK/[GK ,GK ], GcK := GK/[GK , [GK ,GK ]]

be the abelianization, resp. its canonical central extension. Thegroup Ga

K is a torsion-free Z`-module of infinite rank.

Let ΣK be the set of all topologically noncyclic subgroups of GaK

that lift to abelian subgroups of GcK .

Bogomolov’s program

The pair (GaK ,ΣK ) determines K .

Applications of projective geometry

Page 66: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Almost abelian anabelian geometry

LetGa

K := GK/[GK ,GK ], GcK := GK/[GK , [GK ,GK ]]

be the abelianization, resp. its canonical central extension. Thegroup Ga

K is a torsion-free Z`-module of infinite rank.

Let ΣK be the set of all topologically noncyclic subgroups of GaK

that lift to abelian subgroups of GcK .

Bogomolov’s program

The pair (GaK ,ΣK ) determines K .

Applications of projective geometry

Page 67: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Anabelian geometry of surfaces

Theorem (Bogomolov-T. 2004)

Let K and L be function fields over algebraic closures of finite fieldsk , l of characteristic 6= `. Assume that K = k(X ) is a functionfield of a surface X/k and that there exists an isomorphism

ψ : GaK ' Ga

L

inducing a bijection of sets

ΣK = ΣL.

Then, for some c ∈ Z∗` , cψ is induced by an isomorphism of purelyinseparable closures of K and L.

Applications of projective geometry

Page 68: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof: Kummer theory

The abelianized Galois group GaK is dual to K ∗, the

pro-`-completion of K ∗, and one obtains an isomorphism

K ∗ ' L∗.

In our setup, we can interpret GaK as homomorphisms

K ∗/k∗→Z`(1),

arising from

GaK/`

n 3 γn 7→(

f 7→ γ(`n√

f )/`n√

f).

For a subfield E ⊂ K , the map GaK→Ga

E is simply restriction to E .

Applications of projective geometry

Page 69: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof: Kummer theory

The abelianized Galois group GaK is dual to K ∗, the

pro-`-completion of K ∗, and one obtains an isomorphism

K ∗ ' L∗.

In our setup, we can interpret GaK as homomorphisms

K ∗/k∗→Z`(1),

arising from

GaK/`

n 3 γn 7→(

f 7→ γ(`n√

f )/`n√

f).

For a subfield E ⊂ K , the map GaK→Ga

E is simply restriction to E .

Applications of projective geometry

Page 70: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof: Kummer theory

The abelianized Galois group GaK is dual to K ∗, the

pro-`-completion of K ∗, and one obtains an isomorphism

K ∗ ' L∗.

In our setup, we can interpret GaK as homomorphisms

K ∗/k∗→Z`(1),

arising from

GaK/`

n 3 γn 7→(

f 7→ γ(`n√

f )/`n√

f).

For a subfield E ⊂ K , the map GaK→Ga

E is simply restriction to E .

Applications of projective geometry

Page 71: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A value group, Γ, is a totally ordered (torsion-free) abelian group.

A (nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K ∗→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that Fp admits only the trivial valuation. A valuation is a flagmap on K : every finite-dimensional Fp-subspace V ⊂ K has a flagV = V1 ⊃ V2 . . . such that ν is constant on Vj \ Vj+1. Conversely,every flag map gives rise to a valuation.

Applications of projective geometry

Page 72: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A value group, Γ, is a totally ordered (torsion-free) abelian group.A (nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K ∗→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that Fp admits only the trivial valuation. A valuation is a flagmap on K : every finite-dimensional Fp-subspace V ⊂ K has a flagV = V1 ⊃ V2 . . . such that ν is constant on Vj \ Vj+1. Conversely,every flag map gives rise to a valuation.

Applications of projective geometry

Page 73: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A value group, Γ, is a totally ordered (torsion-free) abelian group.A (nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K ∗→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that Fp admits only the trivial valuation.

A valuation is a flagmap on K : every finite-dimensional Fp-subspace V ⊂ K has a flagV = V1 ⊃ V2 . . . such that ν is constant on Vj \ Vj+1. Conversely,every flag map gives rise to a valuation.

Applications of projective geometry

Page 74: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A value group, Γ, is a totally ordered (torsion-free) abelian group.A (nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K ∗→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that Fp admits only the trivial valuation. A valuation is a flagmap on K : every finite-dimensional Fp-subspace V ⊂ K has a flagV = V1 ⊃ V2 . . . such that ν is constant on Vj \ Vj+1.

Conversely,every flag map gives rise to a valuation.

Applications of projective geometry

Page 75: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A value group, Γ, is a totally ordered (torsion-free) abelian group.A (nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K ∗→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that Fp admits only the trivial valuation. A valuation is a flagmap on K : every finite-dimensional Fp-subspace V ⊂ K has a flagV = V1 ⊃ V2 . . . such that ν is constant on Vj \ Vj+1. Conversely,every flag map gives rise to a valuation.

Applications of projective geometry

Page 76: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

Denote by Kν , oν ,mν and Kν := oν/mν the completion of K withrespect to ν, the ring of ν-integers in K , the maximal ideal of oνand the residue field.

Keep in mind the exact sequences:

1→o∗ν→K ∗ → Γν→1

1→(1 + mν)→o∗ν→K∗ν→1.

Applications of projective geometry

Page 77: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

Denote by Kν , oν ,mν and Kν := oν/mν the completion of K withrespect to ν, the ring of ν-integers in K , the maximal ideal of oνand the residue field. Keep in mind the exact sequences:

1→o∗ν→K ∗ → Γν→1

1→(1 + mν)→o∗ν→K∗ν→1.

Applications of projective geometry

Page 78: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A homomorphism χ : Γν → Z`(1) gives rise to a homomorphism

χ ◦ ν : K ∗ → Z`(1),

thus to an element of GaK , an inertia element of ν. These form the

inertia subgroup Iaν ⊂ Ga

K .

The decomposition group Daν is the image of Ga

Kνin Ga

K . We havean embedding Ga

Kν↪→ Ga

K and an isomorphism

Daν/Ia

ν ' GaKν .

Applications of projective geometry

Page 79: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Valuations

A homomorphism χ : Γν → Z`(1) gives rise to a homomorphism

χ ◦ ν : K ∗ → Z`(1),

thus to an element of GaK , an inertia element of ν. These form the

inertia subgroup Iaν ⊂ Ga

K .

The decomposition group Daν is the image of Ga

Kνin Ga

K . We havean embedding Ga

Kν↪→ Ga

K and an isomorphism

Daν/Ia

ν ' GaKν .

Applications of projective geometry

Page 80: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

A dictionary

Let K be a function field over k = Fp. We have

GaK = {homomorphisms γ : K ∗→Z`(1)}Daν = {µ ∈ Ga

K |µ trivial on (1 + mν)},Iaν = {ι ∈ Ga

K | ι trivial on o∗ν}.

Inertia elements define flag maps on K .

Applications of projective geometry

Page 81: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

A dictionary

Let K be a function field over k = Fp. We have

GaK = {homomorphisms γ : K ∗→Z`(1)}Daν = {µ ∈ Ga

K |µ trivial on (1 + mν)},Iaν = {ι ∈ Ga

K | ι trivial on o∗ν}.

Inertia elements define flag maps on K .

Applications of projective geometry

Page 82: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Key fact

Let γ, γ′ ∈ GaK ' Z∞` be two nonproportional elements lifting to

commuting elements in GcK . Then, for any nonconstant f ∈ K ∗ the

restrictions of γ, γ′ to the projective line PFp (Fp ⊕ f Fp) areproportional (modulo addition of constants).

Consider the map

K ∗/k∗ = Pk(K ) → A2(Z`)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Applications of projective geometry

Page 83: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Key fact

Let γ, γ′ ∈ GaK ' Z∞` be two nonproportional elements lifting to

commuting elements in GcK . Then, for any nonconstant f ∈ K ∗ the

restrictions of γ, γ′ to the projective line PFp (Fp ⊕ f Fp) areproportional (modulo addition of constants).

Consider the map

K ∗/k∗ = Pk(K ) → A2(Z`)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Applications of projective geometry

Page 84: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Key fact

Let γ, γ′ ∈ GaK ' Z∞` be two nonproportional elements lifting to

commuting elements in GcK . Then, for any nonconstant f ∈ K ∗ the

restrictions of γ, γ′ to the projective line PFp (Fp ⊕ f Fp) areproportional (modulo addition of constants).

Consider the map

K ∗/k∗ = Pk(K ) → A2(Z`)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Applications of projective geometry

Page 85: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Lemma

A map α : P2(Fp)→Z/2 is a flag map iff the restiction to everyP1(Fp) ⊂ P2(Fp) is a flag map, i.e., constant on the complementof one point.

Counterexample: the Fano plane

(0:1:0)

(1:0:0)(1:0:1)(0:0:1)

(0:1:1) (1:1:0)

Applications of projective geometry

Page 86: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Lemma

A map α : P2(Fp)→Z/2 is a flag map iff the restiction to everyP1(Fp) ⊂ P2(Fp) is a flag map, i.e., constant on the complementof one point.

Counterexample: the Fano plane

(0:1:0)

(1:0:0)(1:0:1)(0:0:1)

(0:1:1) (1:1:0)

Applications of projective geometry

Page 87: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Projective/affine geometry considerations produce a flag map inthe Z`-linear span of γ, γ′.

Every noncyclic subgroup of GaK lifting to an abelian subgroup of

GcK contains an inertia element ι = ιν for some valuation ν of K .

The elements “commuting” with ι form Daν .

The combinatorial structure of the fan ΣK allows to reconstructthe projective structure of Pk(K ).

Applications of projective geometry

Page 88: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Projective/affine geometry considerations produce a flag map inthe Z`-linear span of γ, γ′.

Every noncyclic subgroup of GaK lifting to an abelian subgroup of

GcK contains an inertia element ι = ιν for some valuation ν of K .

The elements “commuting” with ι form Daν .

The combinatorial structure of the fan ΣK allows to reconstructthe projective structure of Pk(K ).

Applications of projective geometry

Page 89: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Projective geometry of the Galois group

Projective/affine geometry considerations produce a flag map inthe Z`-linear span of γ, γ′.

Every noncyclic subgroup of GaK lifting to an abelian subgroup of

GcK contains an inertia element ι = ιν for some valuation ν of K .

The elements “commuting” with ι form Daν .

The combinatorial structure of the fan ΣK allows to reconstructthe projective structure of Pk(K ).

Applications of projective geometry

Page 90: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

What about curves?

Let k = Fp and K = k(C ). Let GK be the absolute Galois groupof K . Let

IK := {Iaν},

the set of inertia subgroups Iaν ⊂ G a

K of nontrivial divisorialvaluations of K (i.e., points of C ).

Bogomolov-T. 2008

Assume that g(C ) > 2 and that

(G aK , IK ) ' (G a

K, IK ).

ThenJ ∼ J.

Applications of projective geometry

Page 91: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genusg(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle

Applications of projective geometry

Page 92: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genusg(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle

Applications of projective geometry

Page 93: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genusg(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle

Applications of projective geometry

Page 94: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genusg(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle

Applications of projective geometry

Page 95: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genusg(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle

Applications of projective geometry

Page 96: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Abelian varieties over finite fields

Let A be an abelian variety of dimension g over a finite field k .Recall that

A(k) = p-part⊕⊕6=p

(Q`/Z`)2g.

Tate

Hom(A, A)⊗ Z` = HomZ`[Fr](T`(A),T`(A)).

In particular, A and A are isogenous iff the characteristicpolynomials of the Frobenius coincide.

Applications of projective geometry

Page 97: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Abelian varieties over finite fields

Let A be an abelian variety of dimension g over a finite field k .Recall that

A(k) = p-part⊕⊕6=p

(Q`/Z`)2g.

Tate

Hom(A, A)⊗ Z` = HomZ`[Fr](T`(A),T`(A)).

In particular, A and A are isogenous iff the characteristicpolynomials of the Frobenius coincide.

Applications of projective geometry

Page 98: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Abelian varieties over finite fields

Let A be an abelian variety of dimension g over a finite field k .Recall that

A(k) = p-part⊕⊕6=p

(Q`/Z`)2g.

Tate

Hom(A, A)⊗ Z` = HomZ`[Fr](T`(A),T`(A)).

In particular, A and A are isogenous iff the characteristicpolynomials of the Frobenius coincide.

Applications of projective geometry

Page 99: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Divisibilities

Bogomolov-T. 2008

Let A and A be abelian varieties of dimension g over finite fields k ,resp. k . Let kn/k , resp. kn/k , be the unique extensions of degreen. Assume that

#A(kn) | #A(kn)

for infinitely many n ∈ N.

Then char(k) = char(k) and A and Aare isogenous over k .

Applications of projective geometry

Page 100: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Divisibilities

Bogomolov-T. 2008

Let A and A be abelian varieties of dimension g over finite fields k ,resp. k . Let kn/k , resp. kn/k , be the unique extensions of degreen. Assume that

#A(kn) | #A(kn)

for infinitely many n ∈ N. Then char(k) = char(k) and A and Aare isogenous over k .

Applications of projective geometry

Page 101: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Let A be an abelian variety over k1 := Fq. Let {αj}j=1,...,2g be theset of eigenvalues of Frobenius on H1

et(A,Q`), for ` 6= p, andΓA ⊂ C∗ the multiplicative subgroup spanned by α.

The sequence

R(n) := #A(kn) =

2g∏j=1

(αnj − 1).

is a simple linear recurrence with roots in Γ = ΓA.

There is an isomorphism of rings

{ Recurrences with roots in Γ} ⇔ C[Γ].

Applications of projective geometry

Page 102: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Let A be an abelian variety over k1 := Fq. Let {αj}j=1,...,2g be theset of eigenvalues of Frobenius on H1

et(A,Q`), for ` 6= p, andΓA ⊂ C∗ the multiplicative subgroup spanned by α.The sequence

R(n) := #A(kn) =

2g∏j=1

(αnj − 1).

is a simple linear recurrence with roots in Γ = ΓA.

There is an isomorphism of rings

{ Recurrences with roots in Γ} ⇔ C[Γ].

Applications of projective geometry

Page 103: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof

Let A be an abelian variety over k1 := Fq. Let {αj}j=1,...,2g be theset of eigenvalues of Frobenius on H1

et(A,Q`), for ` 6= p, andΓA ⊂ C∗ the multiplicative subgroup spanned by α.The sequence

R(n) := #A(kn) =

2g∏j=1

(αnj − 1).

is a simple linear recurrence with roots in Γ = ΓA.

There is an isomorphism of rings

{ Recurrences with roots in Γ} ⇔ C[Γ].

Applications of projective geometry

Page 104: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof: Recurrence sequences

Corvaja-Zannier 2002

Let R and R be simple linear recurrences such that

1 R(n), R(n) 6= 0, for all n, n� 0;

2 the subgroup Γ ⊂ C∗ generated by the roots of R and R istorsion-free;

3 there is a finitely-generated subring A ⊂ C withR(n)/R(n) ∈ A, for infinitely many n ∈ N.

ThenQ : N → C

n 7→ R(n)/R(n)

is a simple linear recurrence. In particular, the FQ ∈ C[Γ] and

FQ · FR = FR .

Applications of projective geometry

Page 105: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Sketch of proof: Recurrence sequences

Corvaja-Zannier 2002

Let R and R be simple linear recurrences such that

1 R(n), R(n) 6= 0, for all n, n� 0;

2 the subgroup Γ ⊂ C∗ generated by the roots of R and R istorsion-free;

3 there is a finitely-generated subring A ⊂ C withR(n)/R(n) ∈ A, for infinitely many n ∈ N.

ThenQ : N → C

n 7→ R(n)/R(n)

is a simple linear recurrence. In particular, the FQ ∈ C[Γ] and

FQ · FR = FR .

Applications of projective geometry

Page 106: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

Let C be another smooth projective curve and J its Jacobian.Isomorphism of pairs:

φ : (C , J)→(C , J)

J(k)

φ0

��

J1(k)

φ1

��

C (k)j1oo

φs

��J(k) J1(k) C (k)

j1oo

where

φ0: isomorphism of abstract abelian groups;

φ1: isomorphism of homogeneous spaces, compatible with φ0;

the restriction φs : C (k)→C (k) of φ1 is a bijection of sets.

Applications of projective geometry

Page 107: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

For all #k � 0 the group J(k) is generated by C (k).

Let

k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions. To characterize J(kn) itsuffices to characterize C (kn). Let C be a nonhyperelliptic curve ofgenus g(C ) ≥ 3.

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by c ∈ C (k) such that there exists a pointc ′ ∈ C (k) with

c + c ′ ∈ J(kn−1).

Applications of projective geometry

Page 108: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

For all #k � 0 the group J(k) is generated by C (k). Let

k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions.

To characterize J(kn) itsuffices to characterize C (kn). Let C be a nonhyperelliptic curve ofgenus g(C ) ≥ 3.

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by c ∈ C (k) such that there exists a pointc ′ ∈ C (k) with

c + c ′ ∈ J(kn−1).

Applications of projective geometry

Page 109: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

For all #k � 0 the group J(k) is generated by C (k). Let

k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions. To characterize J(kn) itsuffices to characterize C (kn).

Let C be a nonhyperelliptic curve ofgenus g(C ) ≥ 3.

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by c ∈ C (k) such that there exists a pointc ′ ∈ C (k) with

c + c ′ ∈ J(kn−1).

Applications of projective geometry

Page 110: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

For all #k � 0 the group J(k) is generated by C (k). Let

k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions. To characterize J(kn) itsuffices to characterize C (kn). Let C be a nonhyperelliptic curve ofgenus g(C ) ≥ 3.

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by c ∈ C (k) such that there exists a pointc ′ ∈ C (k) with

c + c ′ ∈ J(kn−1).

Applications of projective geometry

Page 111: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians

For all #k � 0 the group J(k) is generated by C (k). Let

k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions. To characterize J(kn) itsuffices to characterize C (kn). Let C be a nonhyperelliptic curve ofgenus g(C ) ≥ 3.

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by c ∈ C (k) such that there exists a pointc ′ ∈ C (k) with

c + c ′ ∈ J(kn−1).

Applications of projective geometry

Page 112: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry

Page 113: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry

Page 114: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry

Page 115: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry

Page 116: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry

Page 117: Applications of projective geometryjessica2.msri.org/attachments/13550/13550.pdfApplications of projective geometry An old result Dans certains pays d’Europe, dont la France, leth

Curves and their Jacobians: Torelli

Theorem

Let (C , J)→ (C , J) be an isomorphism of pairs. Then J isisogenous to J.

Proof.

1 Choose k1, k1 (sufficiently large) such that φ(J(k1)) ⊂ J(k1)

2 Define C (kn), resp. C (kn), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J(kn), for all n ∈ N.

4 #J(kn) | #J(kn)

5 Apply the result about divisibility of recurrence sequences.

Applications of projective geometry