Applications of Group Theory to...

59
1 © K. S. Suslick, 2013 Applications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus and Concept Selection Rules (Allowedness) Symmetry of Vibrational Modes Normal mode analysis Raman, Resonance Raman, CARS Electron Energy Loss Spectroscopy (EELS) (Rotational Spectroscopy: not to be covered in class) © K. S. Suslick, 2013 Comparison between IR and Raman light scattering is a 2 photon event! “virtual levels”

Transcript of Applications of Group Theory to...

Page 1: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

1

© K. S. Suslick, 2013

Applications of Group Theory to Spectroscopy

Vibrational Spectroscopy

Raman & IR Apparatus and Concept

Selection Rules (Allowedness)

Symmetry of Vibrational Modes

Normal mode analysis

Raman, Resonance Raman, CARS

Electron Energy Loss Spectroscopy (EELS)

(Rotational Spectroscopy: not to be covered in class)

© K. S. Suslick, 2013

Comparison between IR and Raman

light scattering is a 2 photon event!

“virtuallevels”

Page 2: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

2

© K. S. Suslick, 2013

Comparison between IR and Ramanlight scattering is a 2 photon event:

© K. S. Suslick, 2013

2 Kinds of Light Scattering

John William Strutt, 3rd Baron Rayleigh, Nobel Prize

for Physics in 1904, for Ar discovery. 1842-1919.

Sir ChandrasekharaVenkata Rāman,

1888-1970. Nobel in Physics 1930.

Page 3: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

3

© K. S. Suslick, 2013

Infrared Spectroscopy : Absorbance of IR light.

Dispersive (dual beam)

FTIR: Fourier TransformInfraRed

Infrared Vibrational Spectroscopy

Michelsoninterferometer

© K. S. Suslick, 2013

An FTIR interferogram converts wavelength into mirror position (i.e. energy into time). The central peak is at the ZPD position ("Zero Path Difference") where the maximum amount of light passes through the interferometer to the detector.

FTIR Interferogram

The interferogram is then fast Fourier transformed (FFT) back into the wavelength regime: i.e., the IR absorbance spectrum.

Page 4: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

4

© K. S. Suslick, 2013

• Speed: all frequencies measured simultaneously, FT-IR scans in sec. rather than several minutes. Felgett Advantage.

• Sensitivity: Sensitivity dramatically improved with FT-IR. The detectors are much more sensitive. Optical throughput is much higher (Jacquinot Advantage, better S/N).Fast scans enable co-addition of several scans (signal averaging).

• Internally Calibrated: HeNe laser used as internal wavelength calibration (Connes Advantage).

FTIR Advantages

© K. S. Suslick, 2013

Raman: Scattering of visible light with loss (or gain)of frequency corresponding to vibrational quanta.

Raman Spectroscopy

laser beam

sample

grating

resolution slit

CCD

Page 5: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

5

© K. S. Suslick, 2013

Monochromator

© K. S. Suslick, 2013

Raman Microscope

Page 6: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

6

© K. S. Suslick, 2013

Raman Sample Handling

© K. S. Suslick, 2013

Raman Spectroscopy

Page 7: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

7

© K. S. Suslick, 2013

Molecular Vibrations: 3N-6 (5) Rule

© K. S. Suslick, 2013

Infrared Absorption Selection Rule

IR Selection Rule: For any IR absorption,

the vibrational excitation must change

the dipole moment of the molecule

in order for radiation absorption to occur.

Page 8: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

8

© K. S. Suslick, 2013

Infrared Absorption Selection Rule

The Dipole Moment (M) must change during vibration

© K. S. Suslick, 2013

Group Theory View of Selection Rules

Page 9: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

9

© K. S. Suslick, 2013

All f2(x) will/must include an A1g (totally symmetric) function.

Group Theory View of Selection Rules

© K. S. Suslick, 2013

Infrared Absorption Selection Rule

The ground vibrational state is alwaystotally symmetric (A1g): i.e., the atoms aren’t “moving” (sorta…)

And dipole moments are just vectors:i.e., they transform as x, y and z.

18

The Dipole Moment (M) must change during vibration

Page 10: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

10

© K. S. Suslick, 2013

Infrared Absorption Selection Rule

In GT terms: must contain an A1g to be non-zero:

i.e., ( Γ x A1g = Γ )

must be x, y, or z symmetryfor allowed IR band!

19

The Dipole Moment (M) must change during vibration

© K. S. Suslick, 2013

Infrared absorption:(1 photon process)

Raman Scattering:(2 photon process)

The polarizability tensor goes as the quadratics of xyz.

polarizabilitytensor

dipole moment vector

Raman vs. Infrared Selection Rules

Page 11: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

11

© K. S. Suslick, 2013

Infrared Absorbance & Dipole Moment Changes

© K. S. Suslick, 2013

Vibrational Selection Rules

Selection Rules:

IR active modes must have IrrReps that go as x, y, z.

Raman active modes must go as quadratics (xy, xz, yz, x2, y2, z2)(Raman is a 2-photon process: photon in, scattered photon out)

IRActive

RamanActive

22

Page 12: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

12

© K. S. Suslick, 2013

Vibrational Selection Rules

Selection Rule Summary:

IR active modes must have IrrReps that go as x, y, z.

Raman active modes must go as quadratics (xy, xz, yz, x2, y2, z2)

IRActive

RamanActive

© K. S. Suslick, 2013

The Centrosymmetric Rule

If a molecule has an inversion center(i.e., is “centrosymmetric”), thenno vibration can be both IR and Raman allowed (active, absorbing).

x, y, z symmetries must have

i = -1 (for IR activity)

Quadratic symmetries must have

i = +1 (for Raman activity)

Page 13: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

13

© K. S. Suslick, 2013

The Centrosymmetric Rule: CO2

© K. S. Suslick, 2013

Normal Modes of H2O

= A1 + B2 => z & y

= A1 => z

Accounting Rule: stretches/bends behave as double headed arrows, counted individually only if they stay in the same place after symmetry operation.

H2O Bend: θ | 1 1 1 1 |

Both O-H Stretches: O-H | 2 0 0 2 |

For H2O (because the H’s are light),stretching frequencies are much higher than bending frequencies.

i.e., very little mixing of stretches and bends; we can consider stretches and bends separately.

Page 14: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

14

© K. S. Suslick, 2013

Normal Modes of H2O

= A1 + B2 => z & y

= A1 => zH2O Bend: θ | 1 1 1 1 |

Both O-H Stretches: O-H | 2 0 0 2 |

O

H H

A1: 3657 cm-1 B2: 3756 cm-1

O

H H

O

H H

A1: 1595 cm-1

© K. S. Suslick, 2013

Symmetry Effects on Infrared Active Vibrations

28

Non-coordinated: Td

Unidentate: C3v

Bidendate: C2v

M' & M same atom, chelated: "η2-"M' & M different, bridging: "μ-"

Sulfate (SO42- ) can be ligated in several ways:

Page 15: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

15

© K. S. Suslick, 2013

Symmetry Effects on Infrared Active Vibrations

S-O | 4 1 2 | All S-O Stretches

Accounting Rule: stretches are double headed arrows,counted individually only if they stay on the same bond.

© K. S. Suslick, 2013

Irreducible Representations (IrR):

Order = 1+2+3 = 6 = h

# of A1 = 1/h ( 1*1*4 + 2*1*1 + 3*1*2) = 1/6 (12) = 2 A1

# of A2 = 1/h ( 1*1*4 + 2*1*1 + 3*-1*2) = 1/6 (0) = 0 A2

# of E = 1/h ( 1*2*4 + 2*-1*1 + 3*0*2) = 1/6 (6) = 1 E

1

Page 16: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

16

© K. S. Suslick, 2013

Symmetry Effects on Infrared Active Vibrations

ICBST: For Td symmetry, only 1 IR Active stretch,

For C2v symmetry, 4 IR Active stretches.

31

Thus, ΓS-O = 2 A1 + E for C3v (unidentate)

A1 and E are both IR active ( i.e., z and (xy) )

Therefore: 3 IR bands expected for C3v unidentate SO42-

© K. S. Suslick, 2013

For S-O stretches (1000 – 1200 cm-1):“Descent in Symmetry”

1 IR Band Non-coordinated (Td)3 IR bands Unidentate (C3v)4 IR bands Bidentate (C2v)

Symmetry Effects on Infrared Active Vibrations

SO4-2 can be ligated in several ways:

Non-coordinated: Td

Unidentated: C3v

Bidentate: C2v

M & M’ same atom:chelated, “2-”

M & M’ different:bridging, “-”

Page 17: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

17

© K. S. Suslick, 2013

Symmetry Effects on Infrared Active Vibrations

SO4-2 can be ligated in several ways:

Non-coordinated: Td

Unidentated: C3v

Bidentate: C2v

M & M’ same atom:chelated, “2-”

M & M’ different:bridging, “-”

There exist "correlation tables" for this kind of "descent in symmetry", which is easier than re-figuring out the local symmetry point group and allowed IR or Raman transitions.

e.g., http://www.staff.ncl.ac.uk/j.p.goss/symmetry/Correlation.html

© K. S. Suslick, 2013

GT & Vibrational Spectroscopy: Cisplatin

Page 18: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

18

© K. S. Suslick, 2013

GT & Vibrational Spectroscopy: Cisplatin

… etc. for B1 & B2

© K. S. Suslick, 2013

GT & Vibrational Spectroscopy: Cisplatin

symmetricstretch

anti-symmetricstretch

(w.r.t. C2 or σyz)

But actually thereis a little bit of

Pd motion, too.

Page 19: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

19

© K. S. Suslick, 2013

GT & Vibrational Spectroscopy: Cisplatin

Raman Active IR Active

ΓM-Cl 2 0 0 0 0 2 0 2

h = 8

= A1g + B2u

z y

© K. S. Suslick, 2013

GT & Vibrational Spectroscopy: Pd(NH3)2Cl2

2 bands in IR

1 band in IR

Page 20: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

20

© K. S. Suslick, 2013

IR Stretches for Metal Carbonyls# IRbands

1

3

1

4

2

3

CO

© K. S. Suslick, 2013

IR Stretches for Metal Carbonyls

Page 21: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

21

© K. S. Suslick, 2013

Polyatomic Vibrations: Normal Modes

© K. S. Suslick, 2013

Naming Normal Modes

Page 22: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

22

© K. S. Suslick, 2013

GT & Cartesian Coordinate Analysis

© K. S. Suslick, 2013

GT & Cartesian Coordinate Analysis

Raman IR IR

Page 23: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

23

© K. S. Suslick, 2013

GT & Cartesian Coordinate Analysis

But what are these vibrations (i.e., 3 Ag, Au, and 2 Bu) ?

Au is easy. By inspection:

(remember, center of mass must be preserved or it becomes a translation/rotation!)

© K. S. Suslick, 2013

GT & Cartesian Coordinate Analysis

For the 3 Ag and 2 Bu, let us use Bond Stretch Vectors and Anglesas a starting basis set:

Page 24: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

24

© K. S. Suslick, 2013

GT & Cartesian Coordinate Analysis

For the 3 Ag and 2 Bu, let us use Bond Stretch Vectors and Anglesas a starting basis set:

But in all cases, the extent of mixing (“coupling”) is NOT available from GT.

© K. S. Suslick, 2013

Alternative Method: Projection Operators

So again, the 2 Bu vibrations are a combination of the N-F asymmetric stretch and the asymmetric bend (θ1 – θ2).

E C2 i σBu = 1 -1 -1 1

form a projection operator:

Page 25: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

25

© K. S. Suslick, 2013

Extent of Mode Mixing

© K. S. Suslick, 2013

Short, Short Cut

Page 26: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

26

© K. S. Suslick, 2013

A Short, Short Cut

© K. S. Suslick, 2013

A Short, Short Cut

Page 27: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

27

© K. S. Suslick, 2013

Vibrational Group Frequencies

© K. S. Suslick, 2013

Vibrational Group Frequencies

Page 28: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

28

© K. S. Suslick, 2013

Complications: Coupling of Normal Modes

If two normal modes have the same symmetry, then they can mix (“Fermi Coupling”)

© K. S. Suslick, 2013

Harmonic vs. Anharmonic Oscillators

Page 29: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

29

© K. S. Suslick, 2013

Harmonic vs. Anharmonic OscillatorsSecond kind of anharmonicity: mixtures of normal modes.

e.g., combinations, overtones, difference bands.

Even if symmetry allowed, Anharmonic bands are usually weak.

© K. S. Suslick, 2013

Normal Coordinate Analysis

Page 30: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

30

© K. S. Suslick, 2013

Normal Coordinate Analysis

Molecular Vibrations: The Theory of Infrared and Raman Vibrational, by E. B. Wilson, J. C. Decius, P. C. GrossInfrared Spectra of Inorganic and Coordination Compounds, by K. Nakamoto

F11 = force along L1F12 = force between L1 and L2F13 = force between L1 and θF22 = force along L2F33 = force along θ ….

© K. S. Suslick, 2013

Normal Coordinate Analysis

(GF = distance x force = energy)

Page 31: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

31

© K. S. Suslick, 2013

Normal Coordinate Analysis

GF matrices seldom are solvable due to lack of sufficient νso we make simplifications or we calculate potentials from ab initio or DFT:

© K. S. Suslick, 2013

Example: GVFF

But even 16 forceconstants out-numbers the numberof observablesconsiderably!

Page 32: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

32

© K. S. Suslick, 2013

Applications of Group Theory to Spectroscopy

Vibrational Spectroscopy

Raman & IR Apparatus and Concept

Selection Rules (Allowedness)

Symmetry of Vibrational Modes

Return to vibrations and normal mode analysis

Raman, Resonance Raman, CARS

Electron Energy Loss Spectroscopy (EELS)

Rotational Spectroscopy

© K. S. Suslick, 2013

Complications: Anharmonicity

The Harmonic Oscillator

Hook’s Law

ICBST: For a HO, only Δn = ±1 is IR allowed.

all same energy

Page 33: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

33

© K. S. Suslick, 2013

Complications: Anharmonicity

The Harmonic Oscillator

relevant toelectronic spectra, too.

© K. S. Suslick, 2013

Complications: Anharmonicity

Bonds can never break for any HO!

For any non-HO, |Δn| > ±1 are allowed (but weak).

Page 34: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

34

© K. S. Suslick, 2013

Complications: Anharmonicity

Morse Potential hard to solve Schroedinger Eqn.Easier to do a Cubic Perturbation:

k = force constant (Hook’s Law)l = cubic correction

© K. S. Suslick, 2013

Consequences of Anharmonicity:Coupling of Normal Modes

Page 35: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

35

© K. S. Suslick, 2013

Consequences of Anharmonicity:Coupling of Normal Modes

© K. S. Suslick, 2013

Even if symmetry allowed, coupled bands are usually weak.

Consequences of Anharmonicity:Coupling of Normal Modes

Page 36: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

36

© K. S. Suslick, 2013

Consequences of Anharmonicity:Coupling of Normal Modes

© K. S. Suslick, 2013

The Force Constant

Force Constant, k, measures the curvature of the bottom of the potential energy well.k is a measure of the stiffness of internal motions.

Page 37: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

37

© K. S. Suslick, 2013

How much force to break?280 J / 0.5 m = 560 Nt ~ 100 Lbf

Sinclair’s Monofilament (a la Larry Niven)aka Shigawire (Dune by Frank Herbert), monomolecular filament (Johnny Mnemonic

by William Gibson) and The Space Elevator (of Arthur C. Clarke)

What’s the ultimate strength of a monomolecular chain of macroscopic length?

How much energy?

~ 280 J

Strength of 1 cm2 rope?1014 nm2/cm2 / 1 nm2 / chain

~ 1016 Lbf(= 5x106 Empire State Buildings)

© K. S. Suslick, 2013

Isotope Effects on Vibrations

Remember the problem in polyatomicsof not enough frequencies vs.too many force constants?

Isotopic labeling gives you more observables,but same force constants.

(constant vs. isotope)

(changes vs.isotope)µ

C-H vs. C-D

Page 38: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

38

© K. S. Suslick, 2013

Isotope Effects on Vibrations

© K. S. Suslick, 2013

Correlations between k and Physical Properties

Page 39: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

39

© K. S. Suslick, 2013

Correlations between k and Physical Properties

© K. S. Suslick, 2013

Correlations between k and Physical Properties

Fo

rce

Co

nst

ant

Badger’s Rule

CO adsorbed on Pt and Ir

as function of electrode potentials.

Page 40: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

40

© K. S. Suslick, 2013

Correlations between k and Physical Properties

Force Constant

Badger’s Rule applied to Fe-O stretches in heme and non-heme oxygenases

X-ray crystallography

© K. S. Suslick, 2013

Correlations between k and Physical Properties

Force Constant

Lippincott’s Rule for diatomics

Page 41: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

41

© K. S. Suslick, 2013

Effects of Metal Ion Coordination on

© K. S. Suslick, 2013

Comparison between IR and Raman

light scattering is a 2 photon event:

Page 42: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

42

© K. S. Suslick, 2013

Infrared absorption:(1 photon process)

Raman Scattering:(2 photon process)

The polarizability tensor goes as the quadratics of xyz.

polarizabilitytensor

dipole moment vector

Raman vs. Infrared Selection Rules

© K. S. Suslick, 2013

2 Kinds of Light Scattering

Page 43: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

43

© K. S. Suslick, 2013

Raman Spectroscopy: Stokes v. Anti-Stokes

© K. S. Suslick, 2013

Raman Spectroscopy: Stokes v. Anti-Stokes

Page 44: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

44

© K. S. Suslick, 2013

Raman Spectroscopy

© K. S. Suslick, 2013

Raman Selection Rule

The polarizability (i.e, induced dipole created by the electromagneticradiation field) must change during the excited vibration.

Consider N2

Page 45: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

45

© K. S. Suslick, 2013

Raman Selection Rule

The polarizability goes as the quadraticswithin any point group.

And the polarizability is frequency dependent (more later).

Iraman½

© K. S. Suslick, 2013

Raman Scattering Intensities

where:

spongeanalogy:

reason sky is blue!

...

2

Page 46: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

46

© K. S. Suslick, 2013

Raman Scattering Intensities:Kramers-Heisenberg-Dirac Equation (!)

The polarizability is a function of photon frequency:

© K. S. Suslick, 2013

Raman Scattering Intensities:Kramers-Heisenberg-Dirac Equation (!)

The polarizability is a function of photon frequency:

Thus the polarizability, and therefore Iraman increase as:

1. Increases in strength of coupling of electronic-excited stateswith both ground and vibrationally excited states.

2. Closeness of incident radiation to actual electronic transition: "Resonant enhancement"i.e., "Resonance Raman Spectroscopy"

Page 47: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

47

© K. S. Suslick, 2013

Type Iscat / I incident

Fluorescence 1 – 0.01Rayleigh 10-4

Raman Fundamentals (Stokes) 10-7

Raman Overtones (Stokes 10-9

Raman Anti-Stokes Fundamentals 10-9

Resonance Raman 10-2 to 10-4

Surf. Enhanced Raman >1 (multiple scatters)

Relative Intensities of Raman Scattering

© K. S. Suslick, 2013

Raman Scattering Cross-Section

(ex) = target area presented by a

molecule for scattering

scattered flux/unit solid angle

indident flux/unit solid angle

d

d

dd

d

Process Cross-Section of (cm2)

absorption UV 10-18

absorption IR 10-21

emission Fluorescence 10-19

scattering Rayleigh 10-26

scattering Raman 10-29

scattering RR 10-24

scattering SERRS 10-15

scattering SERS 10-16 Table adapted from Aroca, Surface EnhancedVibrational Spectroscopy, 2006

Page 48: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

48

© K. S. Suslick, 2013

Resonance Raman Scattering

Advantages:1. Affected only by chromophore

(usually the metal center)2. Sensitive to small structural changes3. Unaffected by medium

(e.g., H2O, powders, glasses, …)4. High sensitivity (μM)

Disadvantages:1. Affected only by the chromophore!2. Fluorescence often interfers (impurities, …)3. Thermal and photo- stability can be problematic.4. Analysis usually by empirical correlations.

© K. S. Suslick, 2013

Uses of Resonance Raman Scattering

M1. Materials available only in low concentrations (> µM)

Especially biological chromophores.Probes changes only near the chromophore.Often hard to assign bands except emipirically

(e.g., fingerprinting oxidation states).

2. Assignment of Electronic Spectraif one already knows the vibration modes, then the coupling between the electronic absorbance bands and the vibrational modescan assign electronic states.

Page 49: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

49

© K. S. Suslick, 2013

Bioinorganic Applications of Resonance Raman

Bioinorganic systems with chromophores, e.g.,1. Heme proteins2. Photosynthetic reaction centers & antennae3. Rhodopsin & vision pigments (non metallic)4. Fe & Cu enzymes (often near UV)

Types of information obtained:a. Type of ligands (but selective, not all necessarily)

b. Oxidation state of metal (indirectly, marker bands)

c. Comparisons between proteins and synthetic analogs, or among proteins

d. Dynamics (down to ps) of photoinduced rxns.

© K. S. Suslick, 2013

Resonance Raman of Heme Proteins

π*

π

Page 50: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

50

© K. S. Suslick, 2013

Resonance Raman Scattering: Heme Proteins

© K. S. Suslick, 2013

Resonance Raman of Hb

Page 51: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

51

© K. S. Suslick, 2013

Resonance Raman Scattering: Heme Proteins

© K. S. Suslick, 2013

Low Frequency Raman Scattering:Lattice Vibrations

Whole molecules within a crystal will vibrate and partially rotatewith respect to one another: lattice vibrations and librations.a.k.a. “phonons”. Very low energy (big masses).

Very hard to do far-IR (<600 cm-1), not hard to do Raman.

Page 52: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

52

© K. S. Suslick, 2013

Surface Enhanced Raman Scattering: SERS

SERS is a surface sensitive technique that results in the enhancement of Raman scattering by molecules adsorbed on rough metal surfaces or nanoparticles.

The enhancement factor can be as much as 1012, which allows the technique to be sensitive enough to detect single molecules(through heroic efforts, multiple scatters per molecule over time).

© K. S. Suslick, 2013

How Does SERS Work?

SERS substrates commonly usedSilver (Ag), gold (Au) and copper (Cu)

The energy required to generate plasmons matches the Raman light source

Surface preparationsLargest enhancements for rough surfaces of 10 – 100 nm

metal island film roughened metal nanostructured surface

metal coatednanostructure

Base Support

metal coating

spin coatedlayer of n.p.

base support

metal coating

nanoparticle layer

Base Support

polymer layermetal nanoparticles

base support

embedded metal nanoparticle film

Page 53: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

53

© K. S. Suslick, 2013

Origins of SERS

A. Electromagnetic field enhancement mechanism• excitation of surface plasmon• tends to form spatially localized “hot areas” for adsorbates

• the magnitude of enhancement ~106- 107 times for single Ag np• ~108 for the gap between two coupled particles

B. Chemical enhancement • due to specific interactions, forming charge-transfer complexes• the magnitude of chemical enhancement ~10-100 times

Conductive Ag or Au nanofeatures concentrate oscillating electric field from light through plasmon resonance.

Even greater concentration of field at “hot spots” at small radii of curvature (sharp points)

© K. S. Suslick, 2013

CARS: Coherent Anti-Stokes Raman Spectroscopy

Raman = 2 photon process (1 laser + 1 scattered)

CARS = 4 photon Process (3 laser + 1 scattered)

non-linear optical effect, lasers must be very high flux (short pulsed)

1. When a - b = real vibration ,molecules are driven into v=1 state.

2. Then laser A photons (at a) drivev=1 molecules back to v=0, withemission of + a This is called

stimulated anti-Stokes Raman.

CARS is ~106 more efficient than Raman.

Page 54: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

54

© K. S. Suslick, 2013

EELS

Electron Energy Loss Spectroscopy

© K. S. Suslick, 2013

EELS

Page 55: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

55

© K. S. Suslick, 2013

High Resolution EELS (HREELS)

© K. S. Suslick, 2013

HREELS

Page 56: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

56

© K. S. Suslick, 2013

HREELS Selection Rule

For electron to lose/gain energy from scattering offof an adsorbate, it must interact with a surface chargeor dipole. Only adsorbate dipoles perpendicular to metallic surface will be felt by incoming e-.

adsorbate

metal surface

image dipole

No net surface dipole!

e-

© K. S. Suslick, 2013

HREELS of Adsorbates

Page 57: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

57

© K. S. Suslick, 2013

HREELS of Adsorbates

ethylene

© K. S. Suslick, 2013

Page 58: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

58

© K. S. Suslick, 2013

Rotational Spectra: Far IR-µwave, Rot. Ram.

© K. S. Suslick, 2013

Rotational Spectra: Selection Rules

Page 59: Applications of Group Theory to Spectroscopyxuv.scs.illinois.edu/516/lectures/chem516.04.pdfApplications of Group Theory to Spectroscopy Vibrational Spectroscopy Raman & IR Apparatus

59

© K. S. Suslick, 2013

Rotational Spectra: Linear Rigid Rotor

© K. S. Suslick, 2013

Rotational Spectra Informational Content

Limitations: