APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal...

31

Transcript of APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal...

Page 1: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Problems of Informatics. 2017. � 4

APPLICATION OF WIRELESS SENSOR NETWORKS INPRECISION AGRICULTURE

O.Y. Tarhanova

Novosibirsk State University,630090, Novosibirsk, Russia

The paper gives an overview of the agricultural application of wireless sensor networks. It is one ofthe promising tools that allows to increase productivity per unit of resources expended andto ensure thereduction of unit cost of production.Nowadays, prices for seeds, fertilizers, equipment, plant protectionproducts and other means of production in agriculture are rising. This leads to the need to improvethe e�ciency of their use.

The paper notes that wireless sensor networks (WSN) are currently developing intensively asan important segment of wireless networks and as the global Internet in general. This circumstancemakes it possible to position technologies of WSN and the networks themselves as one of the system-forming components of the concept of

”Internet-things“ and other technologies of digitalization of the

agrarian sector, the constructive implementation of which in turn is a prerequisite for a”second green

revolution“ � transition to”precision agriculture“. The agricultural domain is studied with respect to

the application of WSNs in improving the traditional methods of farming. The ubiquitous nature ofwork and self-organizing small-sized nodes make it possible to use WSN as a potential tool for achievingthe goal of automation in agriculture.More attention is paid to one of the most importantagriculturalareas �

”precision agriculture“.Precisionagriculturecan be considered as an integrated high-tech crop

management system that takes into account the variability of the plant habitat in the �eld.This systemprovides advanced means of recording and collecting data for monitoring the technological processand evaluating performance, automation and intellectualization of decision-making.On the example of

”precision agriculture“ together with the WSN, the paper provides a list of other more commonly usedbasic tools (global positioning and geographic information systems, spatial information collection andsatellite monitoring, remote sensing, data analysis, etc.).

It is emphasizedthat the miniaturization of electronic systems and development of wirelesstechnologies contribute to the active implementation of the WSN. Modern technology can reduce thecost of miniature sensors with low power consumption and the possibility of extracting energy from theenvironment, while maintaining the required functionality. The WSNis characterized as a multi-nodesystem where each node is an inexpensive device equipped with one or more sensors, a processor, amemory, a power supply and a transceiver. These nodes are able to perform preprogrammed algorithms,exchange data with other nodes and interact with the master node. The architecture of the sensornetwork depends on many factors, such as fault tolerance, working environment, scalability, productioncosts, hardware limitations, transmission facilities and power consumption. The paper deals withoptions for ground and underground wireless sensor networks, their opportunities for the developmentof various types of agriculture. In addition, there are discussed the sensor architectures and varioussensors used in the applications. There are sensors that are used to record and control parameters suchas temperature, humidity, soil moisture, soil acidity, barometric pressure and illumination, and othercharacteristics. The analysis of various variants of the classi�cation of WSN architectures that arepossible for agricultural application is given: a) relative to the movement of network devices and nodes(stationary, mobile and hybrid architectures); b) by the type of used sensory nodes and associated

Page 2: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

2 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

devices (homogeneous and heterogeneous architectures); c) by the type of hierarchy (single-level andmulti-level architecture).

The paper gives a brief overview of wireless technologies and standards that can be applied inagriculture (ZigBee � with network and application protocols based on IEEE 802.15.4 standards forwireless networks using low-power devices, WiMAX � a wireless standard related to Interoperationalimplementations of the IEEE 802.16 family of standards and others).

The paper also analyzes the main characteristics of the WSN, which enabled them to become apotential instrument of automation in the �eld of agriculture: the intellectual ability to make decisions;con�guration of dynamic topology; fault tolerance; contextual awareness; scalability; tolerance tocommunication failures in harsh environmental conditions, heterogeneity of nodes, autonomousoperation.

The �nal section of paper examines the existing examples of the application of wireless sensornetworks in the world for various agricultural needs.

Key words: wireless sensor network, precision agriculture, sensor nodes, architecture,monitoring, agricultural applications.

References

1. Chen, N., Zhang, X., Wang, C. Integrated open geospatial web service enabled cyber-physicalinformation infrastructure for precision agriculture monitoring // Comput. Electron. Agric. 2015. N111, P. 78�91.

2. Misra, S., Krishna, P.V., Saritha, V., Agarwal, H., Shu, L., Obaidat, M. S. E�cient mediumaccess control for cyber-physical systems with heterogeneous networks // IEEE Syst. J. 2015. N 9 (1),P. 22�30.

3. Gonzalez-de-Soto, M., Emmi, L., Benavides, C., Garcia, I., Gonzalez-de-Santos, P. Reducingair pollution with hybrid-powered robotic tractors for precision agriculture //Biosystems Engineering,2016. V. 143, P. 79�94.

4. Maurya, S., Jain, V. 2016. Fuzzy based energy e�cient sensor network protocol for precisionagriculture // Computers and Electronics in Agriculture. 2016. V. 130, P. 20�37.

5. Ngo, V., Woungang, I., Anpalagan, A., 2014. A schedule-based medium access control protocolfor mobile wireless sensor networks // Wirel. Commun. Mobile Comput. 2016. N 14 (6). P. 629�643.

6. Foughali, K., Fathalah, K., Ali, F. Monitoring system using web of things in precision agriculture// Procedia Computer Science. 2017. V. 110. P. 402�409.

7. Misra, S., Kar, P., Roy, A., Obaidat, M. S., 2014. Existence of dumb nodes in stationary wirelesssensor network // J. Syst. Softw. 2014. N 91.P. 135�146.

8. Qu, Y., Zhu, Y., Han, W., Wang, J., Ma, M. Crop leaf area index observations with a wirelesssensor network and its potential for validating remote sensing products // IEEE J. Sel. Top. Appl.Earth Observ. Rem. Sens. 2014. N 7 (2). P. 431�444.

9. Shakhov, V. Experiment Design for Parameter Estimation in Sensing Models // Springer LNCS.2013. V. 8072. P. 151�158.

10. Riquelme, J.A. L., Soto, F., Suard�iaz, J., S�anchez, P., Iborra, A., Vera, J. A. Wireless sensornetworks for precision horticulture in southern Spain // Comput. Electron. Agric. 2009. N 68 (1). P.25�35.

11. Garcia-Sanchez, A. J., Garcia-Sanchez, F., Garcia-Haro, J. Wireless sensor network deploymentfor integrating video-surveillance and data-monitoring in precision agriculture over distributed crops// Comput. Electron. Agric. 2011. N 75 (2). P. 288�303.

12. Camilli, A., Cugnasca, C. E., Saraiva, A.M., Hirakawa, A.R., Corr�ea, P. L. From wireless sensorsto �eld mapping: anatomy of an application for precision agriculture // Comput. Electron. Agric. 2007.N 58 (1). P. 25�36.

Page 3: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 3

13. Behzadan, A., Anpalagan, A., Woungang, I., Ma, B., Chao, H.C. An energy e�cient utility-based distributed data routing scheme for heterogeneous sensor networks // Wirel. Commun. MobileComput. 2014. [Electron. Res.].: http://dx.doi.org/10.1002/wcm.2474.

14. Dhurandher, S.K., Sharma, D.K., Woungang, I., Saini, A. E�cient routing based on pastinformation to predict the future location for message passing in infrastructure-less opportunisticnetworks. J. Supercomput. 2014. [Electron. Res.].: http://dx.doi.org/10.1007/s11227-014-1243-5.

15. Postel, S. L. Entering an era of water scarcity: the challenges ahead //Ecol. Appl. 1999. N 10.P. 941�948.

16. Bouwer, H. Integrated water management: emerging issues and challenges // Agric. WaterManage. 2000. N 45 (3). P. 217�228.

17. Saleth, R., Dinar, A. Institutional changes in global water sector: trends, patterns, andimplications // Water Policy. 2000. N 2 (3). P. 175�199.

18. Jury, W.A., Vaux Jr., H. J. The emerging global water crisis: managing scarcity and con�ictbetween water users // Adv. Agron. 2007. N 95. P. 1�76.

19. Falloon, P., Betts, R. Climate impacts on european agriculture and water management in thecontext of adaptation and mitigation � the importance of an integrated approach // Sci. Total Environ.2010. N 408 (23). P. 5667�5687.

20. Mueller, N.D., Gerber, J. S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A. Closingyield gaps through nutrient and water management // Nature. 2012. N 490. P. 254�257.

21. J'son&PartnersConsulting, 2017. Communication technologies for the Internet of things inagriculture and the role of telecom operators. [El. Res.].: https://clck.ru/CBqQd.

22. Suprem, A., Mahalik, N., Kim, K. A review on application of technology systems, standard sandinterfaces for agriculture and food sector // Comput. Stand. Interfaces. 2013. N 35 (4). P. 355�364.

23. Wang, N., Zhang, N., Wang, M. Wireless sensors in agriculture and food industry � recentdevelopment and future perspective // Comput. Electron. Agric. 2006. N 50 (1). P. 1�14.

24. Hart, J.K., Martinez, K. Environmental sensor networks: a revolution in the earth systemscience // Earth Sci. Rev. 2006. N 78 (3�4). P. 177�191.

25. Burrell, J., Brooke, T., Beckwith, R. Vineyard computing: sensor networks in agriculturalproduction // IEEE Pervasive Comput. 2004. N 3 (1). P. 38�45.

26. Diallo, O., Rodrigues, J. J. P.C., Sene, M., Mauri, J. L. Distributed database managementtechniques for wireless sensor networks // IEEE Trans. Parallel Distrib. Syst. 2015. N 26 (2). P.604�620.

27. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., Borozan, V. Environmentalparameters monitoring in precision agriculture using wireless sensor networks // J. Clean. Prod. 2015.N 88. P. 297�307.

28. Zhao, L., He, L., Jin, X., Yu, W. Design of wireless sensor network middleware for agriculturalapplications // Proc. IFIP Adv. Inform. Commun. Technol. 2013. N 393. P. 270�279.

29. Karim, L., Anpalagan, A., Nasser, N., Almhana, J. Sensor-based M2M agriculture monitoringsystems for developing countries: state and challenges // Netw. Protoc. Algor. 2013. N 5 (3). P. 68�86.

30. Zhang, H., Shu, L., Rodrigues, J. J., Chieh Chao, H. Solving network isolation problem in duty-cycled wireless sensor networks // Proceeding of the International Conference on Mobile Systems,Applications, and Services (MobiSys). 2013. P. 543�544.

31. Krishna, P.V., Saritha, V., Vedha, G., Bhiwal, A., Chawla, A. S., 2012. Quality-of-service-enabled ant colony-based multipath routing for mobile ad hoc networks // IET Commun. 2012. N6 (1). P. 76�83.

32. Shakhov, V., Migov, D., Rodionov, A. Operation strategy for energy harvesting wireless sensornetworks // Proceedings of the ACM 9th Int. Conf. on Ubiquitous Information Management andCommunication, New York, USA. 2015.

Page 4: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

4 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

33. Shakhov V.V., Yurgenson A.N., Sokolova O.D. Modeling the impact of the Black Hole attackon wireless networks // Software products and systems. 2017. N 1. P. 34�39.

34. Mirabella, O., Brischetto, M. A hybrid wired/wireless networking infrastructure for greenhousemanagement // IEEE Trans. Instrum. Meas. 2011. N 60 (2). P. 398�407.

35. Gennaro,S., Matese, A., Gioli, B., Toscano, P., Zaldei, A., Palliotti, A., Genesio, L. Multisensorapproach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle(UAV) remote sensing and wireless sensor network (WSN) proximal sensing // ScientiaHorticulturae.2017. V. 221. P. 83�87.

36. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., Ellis, K. IoT in Agriculture: Designing aEurope-Wide Large-Scale Pilot. 2017.

37. IEEE Communications Magazine. V. 55. N 9. P. 26�33.

38. Mat, I., Kassim, M., Harun, A., Yuso�, I., 2016. IoT in Precision Agriculture applicationsusing Wireless Moisture Sensor Network // Proceedings of IEEEConference on Open Systems. 2016.P. 24�29.

39. Shakhov V. V., Strelnikov V. E., Nguyen V. D. To the question of the e�ectiveness of wirelesssensor networks // Problems of Informatics. 2014. N 2 (23). P. 28�38.

40. Migov D. A. Reliability indicator for wireless self-organizing networks // Bulletin of SibGUTI.2014. N 3 (27). P. 3�12.

41. Ojha, T., Bera, S., Misra, S., Raghuwanshi, N. S. Dynamic duty scheduling for green sensor-cloud applications // Proceedings of IEEE CloudCom, Singapore. 2014.

42. Misra, S., Krishna, P.V., Kalaiselvan, K., Saritha, V., Obaidat, M. S. Learning automata-basedQoS framework for cloud IaaS // IEEE Trans. Netw. Serv. Manage. 2014. N 11 (1). P. 15�24.

43. Cho, Y., Cho, K., Shin, C., Park, J., Lee, E. S. An agricultural expert cloud for a smart farm //Proceedings of Future Information Technology, Application, and Service. Lecture Notes in ElectricalEngineering. Springer. V. 164. P. 657�662.

44. Atzori, L., Iera, A., Morabito, G. The internet of things: a survey // Comput. Netw. 2010. N54 (15). P. 2787�2805.

45. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M. Internet of Things (IoT): a vision,architectural elements, and future directions // Future Gener. Comput. Syst. 2013. N 29 (7). P. 1645�1660.

46. Moghaddam, M., Entekhabi, D., Goykhman, Y., Li, K., Liu, M., Mahajan, A., Nayyar, A.,Shuman, D., Teneketzis, D. A wireless soil moisture smart sensor web using physics-based optimalcontrol: concept and initial demonstrations // IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.2010. N 3 (4). P. 522�535.

47. Bastiaanssen, W.G.M., Molden, D. J., Makin, I.W. Remote sensing for irrigated agriculture:examples from research and possible applications // Agric. Water Manage. 2000. N 46 (2). P. 137�155.

48. Morais, R., Fernandes, M.A., Matos, S.G., Ser�odio, C., Ferreira, P. J. S.G., Reis, M. J. C. S. AZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture// Comput. Electron. Agric. 2008. N 62 (2). P.94�106.

49. Ye, J., Chen, B., Liu, Q., Fang, Y. A precision agriculture management system based on Internetof Things and WebGIS // Proceedings of International Conference on Geoinformatics. 2013. P. 1�5.

50. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E. A survey on sensor networks //IEEE Commun. Mag. 2002. N 40 (8). P. 102�114.

51. Shakhov, V. On E�ciency Improvement of Energy Harvesting Wireless Sensor Networks //Processing of IEEE 39th International Conference on Telecommunications and Signal, Vienna, Austria,2016. P. 56�59.

52. Akyildiz, I. F., Kasimoglu, I. H. Wireless sensor and actor networks: research challenges // AdHoc Netw. 2004. N 2 (4). P. 351�367.

Page 5: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 5

53. Yick, J., Mukherjee, B., Ghosal, D. Wireless sensor network survey // Comput. Netw. 2008. N52 (12). P. 2292�2330.

54. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, I. A review of wireless sensor technologiesand applications in agriculture and food industry: state of the art and current trends // Sensors. 2009.N 9 (6). P. 4728�4750.

55. Cambra, C., D�iaz, J. R., Lloret, J. Deployment and performance study of an Ad Hoc networkprotocol for intelligent video sensing in precision agriculture // Proceedings of Ad-Hoc Networks andWireless. lNCS. 2015. V. 8629. Springer, Berlin Heidelberg. P. 165�175.

56. Barcelo-Ordinas, J.M., Chanet, J. P., Hou, K. M., Garc�ia-Vidal, J. A survey of wireless sensortechnologies applied to precision agriculture // Sta�ord, J. (Ed.), Precision Agriculture'13. WageningenAcademic Publishers. 2013. P. 801�808.

57. Baseca, C.C., D�iaz, J. R., Lloret, J. Communication Ad Hoc protocol for intelligent videosensing using AR drones // IEEE Mobile Ad-hoc and Sensor Networks (MSN). 2013. P. 449�453.

58. D�iaz, S. E., P�erez, J. C., Mateos, A.C., Marinescu, M.C., Guerra, B.B. A novel methodologyfor the monitoring of the agricultural production process based on wireless sensor networks // Comput.Electron. Agric. 2011. N 76 (2). P. 252�265.

59. L�opez, J.A., Garcia-Sanchez, A. J., Soto, F., Iborra, A., Garcia-Sanchez, F., Garcia-Haro, J.Design and validation of a wireless sensor network architecture for precision horticulture applications// Precision Agric. 2011. N 12 (2). P. 280�295.

60. Park, D.H., Kang, B. J., Cho, K.R., Shin, C. S., Cho, S. E., Park, J.W., Yang, W.M. A studyon greenhouse automatic control system based on wireless sensor network // Wirel. Pers. Commun.2011. N 56 (1). P. 117�130.

61. Matese, A., Gennaro, S. F.D., Zaldei, A., Genesio, L., Vaccari, F. P. A wireless sensor networkfor precision viticulture: the NAV system // Comput. Electron. Agric.2009. N 69 (1). P. 51�58.

62. Lichtenberg, E., Majsztrik, J., Saavoss, M. rower demand for sensor controlled irrigation /Water Resour. Res. 2015. N 51. [Electron. Res].: http://dx.doi.org/10.1002/2014WR015807.

63. Reche, A., Sendra, S., D�iaz, J. R., Lloret, J. A smart M2M deployment to control the agricultureirrigation // Proceedings of Ad-hoc Networks and Wireless, LNCS. 2015. N 8629. P. 139�151.

64. Greenwood, D. J., Zhang, K., Hilton, H.W., Thompson, A. J. Opportunities for improvingirrigation e�ciency with quantitative models, soil water sensors and wireless technology // J. Agric.Sci. 2010. N 148. P. 1�16.

65. Guti�errez, J., Villa-Medina, J. F., Nieto-Garibay, A., �Angel Porta-G�andara, M. Automatedirrigation system using a wireless sensor network and GPRS module // IEEE Trans. Instrum. Meas.2014. N 63 (1). P. 166�176.

66. Hwang, J., Shin, C., Yoe, H. A wireless sensor network-based ubiquitous paprika growthmanagement system // Sensors. 2010. N 10. P. 11566�11589.

67. Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., Moore, D. Environmental wireless sensornetworks // Proc. IEEE. 2010.N 98 (11). P. 1903�1917.

68. Voulodimos, A. S., Patrikakis, C. Z., Sideridis, A.B., Nta�s, V.A., Xylouri, E.M. A completefarm management system based on animal identi�cation using RFID technology // Comput. Electron.Agric. 2010. N 70 (2). P. 380�388.

69. Malaver, A., Motta, N., Corke, P., Gonzalez, F. Development and integration of a solar poweredunmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases // Sensors. 2015.N 15 (2). P. 4072�4096.

70. Yang, H., Qin, Y., Feng, G., Ci, H. Online monitoring of geological CO2 storage and leakagebased on wireless sensor networks // IEEE Sens. J. 2013. N 13 (2). P. 556�562.

71. Mao, X., Miao, X., He, Y., Li, X.Y., Liu, Y. CitySee: Urban CO2 monitoring with sensors //Proceedings of IEEE INFOCOM, Orlando, FL, USA. 2012. P. 1611�1619.

Page 6: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

6 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

72. Dong, X., Vuran, M. C., Irmak, S. Autonomous precision agriculture through integration ofwireless underground sensor networks with center pivot irrigation systems // Ad Hoc Netw. 2013. N11 (7). P. 1975�1987.

73. Shanwad, U.K., Patil, V.C., Gowda, H.H. Proceeding precision farming: dreams and realitiesfor Indian agriculture // Proceedings of Map India Conference. 2004.

74. Mondal, P., Basu, M. Adoption of precision agriculture technologies in India and in somedeveloping countries: scope, present status and strategies // Prog. Nat. Sci. 2009. N 19 (6). P. 659�666.

75. Mondal, P., Tewari, V.K., Rao, P.N. Scope of precision agriculture in India // Proceedings ofInternational Conference on Emerging Technologies in Agricultural and Food Engineering, Kharagpur,WB, India, 2004. P. 103.

76. Guti�errez, J., Villa-Medina, J. F., Nieto-Garibay, A., �Angel Porta-G�andara, M. Automatedirrigation system using a wireless sensor network and GPRS module // IEEE Trans. Instrum. Meas.2014. N 63 (1). P. 166�176.

77. Akyildiz, I. F., Stuntebeck, E. P. Wireless underground sensor networks: research challenges //Ad Hoc Netw. 2006. N. 4 (6). P. 669�686.

78. Vuran, M.C., Akyildiz, I. F. Cross-layer packet size optimization for wireless terrestrial,underwater, and underground sensor networks // Proceedings of IEEE INFOCOM, Phoenix, AZ,USA, 2008. P. 780�788.

79. Silva, A.R., Vuran, M.C. Communication with aboveground devices in wireless undergroundsensor networks: an empirical study // Proceedings of IEEE International Conference onCommunications, Cape Town, South Africa, 2010. P. 1�6.

80. Yu, X., Wu, P., Han, W., Zhang, Z. A survey on wireless sensor network infrastructure foragriculture // Comput. Stand. Interfaces. 2013. N 35 (1). P. 59�64.

81. Akyildiz, I. F., Kasimoglu, I. H. Wireless sensor and actor networks: research challenges // AdHoc Netw. 2004. N 2 (4). P. 351�367.

82. Kulkarni, R.V., F�orster, A., Venayagamoorthy, G.K. Computational intelligence in wirelesssensor networks: a survey // Commun. Surv. Tutorials. 2011. N 13 (1). P. 68�96.

83. Shakhov, V. Performance Evaluation of MAC Protocols in Energy Harvesting Wireless SensorNetworks // Springer LNCS. 2016. V. 9787. P. 344�352.

84. Wu, D., Cai, Y., Zhou, L., Wang, J. A cooperative communication scheme based on coalitionformation game in clustered wireless sensor networks // IEEE Trans. Wirel. Commun.2012. N 11 (3).P. 1190�1200.

85. Shakhov, V. A Graph-based Method for Performance Analysis of Energy Harvesting WirelessSensor Networks Reliability // Springer Lecture Notes in Electrical Engineering, 2016. V. 391. P.127�132.

86. Shakhov V.V., Migov D.A., Sokolova O.D. Wireless sensory networks equipped with meansfor obtaining energy from the environment // Problems of Informatics. 2014. N 4. P. 69�79.

87. Chu, X., Sethu, H. Cooperative topology control with adaptation for improved lifetime inwireless ad-hoc networks // Proceedings of IEEE INFOCOM, Orlando, FL, USA, 2012. P. 262�270.

88. Li, M., Li, Z., Vasilakos, A.V. A survey on topology control in wireless sensor networks:taxonomy, comparative study, and open issues // Proc. IEEE. 2013. N 101 (12). P. 2538�2557.

89. Shakhov, V. On a New Type of Attack in Wireless Sensor Networks: Depletion of Battery //Proceedings of IEEE 11th International Forum on Strategic Technology, Novosibirsk, Russia, 2016.P. 491�494.

90. Vijay, G., Bdira, E. B.A., Ibnkahla, M. Cognition in wireless sensor networks: a perspective //IEEE Sens. J. 2011. N 11 (3). P. 582�592.

Page 7: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 7

91. Shakhov V.V., Yurgenson A.N., Sokolova O.D. E�ective method for generating randomgeometric graphs for modeling wireless networks // Applied Discrete Mathematics. 2016. N 4 (34).P. 99�109.

92. Misra, S., Jain, A. Policy controlled self-con�guration in unattended wireless sensor networks// J. Netw. Comput. Appl. 2011. N 34 (5). P. 1530�1544.

93. Nicopolitidis, P., Papadimitriou, G. I., Pomportsis, A. S., Sarigiannidis, P.G., Obaidat, M. S.Adaptive wireless networks using learning automata. IEEE Wirel. Commun. 2011. N 18 (2). P. 75�81.

94. Shakhov, V. Protecting Wireless Sensor Networks from Energy Exhausting Attacks // SpringerLNCS, 2013. V. 7971. P. 184�193.

95. Shakhov, V., Choo, H., Bang, Y. Discord model for detecting unexpected demands in mobilenetworks // Future Generation Comp. Syst., 2004. V. 20 (2). P. 181�188.

96. Shakhov, V., Choo, H. An E�cient Method for Proportional Di�erentiated Admission ControlImplementation // EURASIP Journal on Wireless Communications and Networking, 2013. V. 2011,Article ID 738386.

97. Shakhov, V., Migov, D. Reliability of Ad Hoc Networks with Imperfect Nodes // SpringerLNCS, 2014. V. 8715, Ð. 49�58.

98. Adamala, S., Raghuwanshi, N. S., Mishra, A. Development of surface irrigation systems designand evaluation software (SIDES) // Comput. Electron. Agric. 2014. N 100. P. 100�109.

99. Westarp, S.V., Chieng, S., Schreier, H. A comparison between low-cost drip irrigation,conventional drip irrigation, and hand watering in Nepal // Agric. Water Manage. 2004. N 64. P.143�160.

100. Kim, Y.D., Yang, Y.M., Kang, W. S., Kim, D.K. On the design of beacon based wirelesssensor network for agricultural emergency monitoring systems // Comput. Stand. Interfaces. 2014. N36 (2). P. 288�299.

101. Bhave, A.G., Mishra, A., Raghuwanshi, N. S. A combined bottom-up and topdown approachfor assessment of climate change adaptation options // J. Hydrol. 2013. [Electron. Res.].: http://dx.doi.org/10.1016/j.jhydrol.2013.08.039.

102. Bhargava, K., Kashyap, A., Gonsalves, T. A. Wireless sensor network based advisory systemfor apple scab prevention // Proceedings of National Conference on Communications, Kanpur, India,2014. P. 1�6.

103. Gon�calves, L. B. L., Costa, F.G., Neves, L.A., Ueyama, J., Zafalon, G. F.D., Montez, C.,Pinto, A. S.R. In�uence of mobility models in precision spray aided by wireless sensor networks // J.Phys.: Conf. Ser. 2015. N 574 (1).

104. Kwong, K.H., Wu, T.T., Goh, H.G., Sasloglou, K., Stephen, B., Glover, I., Shen, C., Du,W., Michie, C., Andonovic, I. Practical considerations for wireless sensor networks in cattle monitoringapplications // Comput. Electron. Agric. 2012. N 81. P. 33�44.

105. Zia, H., Harris, N.R., Merrett, G.V., Rivers, M., Coles, N. The impact of agricultural activitieson water quality: a case for collaborative catchment-scale management using integrated wireless sensornetworks // Comput. Electron Agric. 2013. N 96. P. 126�138.

106. Malaver, A., Motta, N., Corke, P., Gonzalez, F. Development and integration of a solar poweredunmanned aerial vehicle and a wireless sensor network to monitor greenhouse // Sensors. 2015. N 15 (2).P. 4072�4096.

107. Misra, S., Singh, S. Localized policy-based target tracking using wireless sensor networks //ACM Trans. Sens. Netw. 2012. N 8 (3). P. 27.

108. Fukatsu, T., Kiura, T., Hirafuji, M. A web-based sensor network system with distributed dataprocessing approach via web application //Comput. Stand Interfaces. 2011. N 33 (6). P. 565�573.

109. Coates, R.W., Delwiche, M. J., Broad, A., Holler, M. Wireless sensor network with irrigationvalve control // Comput. Electron. Agric. 2013. N 96. P. 13�22.

Page 8: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

8 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

110. Koch, R., Pionteck, T., Albrecht, C., Maehle, E. An adaptive system-on-chip for networkapplications // Proceedings of International Parallel and Distributed Processing Symposium, RhodesIsland. 2006.

111. Karim, F., Mellan, A., Stramm, B., Nguyen, A., Abdelrahman, T., Aydonat, U. Thehyperprocessor: a template system-on-chip architecture for embedded multimedia applications //Proceedings of Workshop on Application Speci�c Processors, 2003. P. 66�73.

112. ZigBee Speci�cations, ZigBee Alliance Std. [El. Res.].: http://www.zigbee.org/.

113. Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., Hu, Y. F. Wireless sensor networks:a survey on the state of the art and the 802.15.4 and ZigBee standards //Comput. Commun. 2007. N30 (7). P. 1655�1695.

114. Guo, W., Healy, W. M., Zhou, M. Impacts of 2.4-GHz ISM band interference on IEEE 802.15.4wireless sensor network reliability in buildings // IEEE Trans. Instrum. Meas. 2012. N 61. P. 2533�2544.

115. IEEE Standard for Information technology, 2006. Telecommunications and InformationExchange Between Systems � Local and Metropolitan Area Networks � Speci�c Requirements Part15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations for Low-RateWireless Personal Area Networks (WPANs), Institute of Electrical and Electronics Engineers Std.

116. IEEE Standard for Information technology, 2005. Local and metropolitan area networks �Speci�c requirements � Part 11: Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY) Speci�cations � Amendment 8: Medium Access Control (MAC) Quality of ServiceEnhancements, Std.

117. IEEE Standard for Information technology, 2012. Telecommunications and InformationExchange Between Systems Local and Metropolitan Area networks�Speci�c Requirements Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations, Institute ofElectrical and Electronics Engineers Std.

118. Bluetooth Technology Special Interest Group. [Electron. Res.].: https://www.bluetooth.org/.

119. General Packet Radio Service. [Electron. Res.].: http://www.3gpp.org/.

120. D. J. Goodman and R. A. Myers. 3G cellular standards and patents // Proceedings ofInternational Conference on Wireless Networks, Communications and Mobile Computing, 2005, P.415�420.

121. Parkvall, S., Dahlman, E., Furuskar, A., Jading, Y., Olsson, M., Wanstedt, S., Zangi, K. `LTE-Advanced � Evolving LTE towards IMT-Advanced // Proceedings of Vehicular Technology Conference(VTC-Fall), Calgary, BC, 2008, P. 1�5.

122. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for BroadbandWireless Access Systems Amendment 3: Advanced Air Interface, Std., May 2011.

123. Sperling, O. Water Relations in Date Palm Trees � A Combined Approach using Water, Plant,and Atmospheric Data Water Relations in Date Palm Trees � A Combined Approach using Water,Plant, and Atmospheric Data. Ben-GurionUniversity of the Negev, Beersheva, Israel. 2013.

124. Cohen, Y., Glasner, B.B. Date palm genetic resources and utilization // Al- Khayri, M., Jain,J.,Mohan, S., Johnson, V. D. (Eds.). Date Palm Genetic Resources and Utilization. 2015. P. 265�298.doi: http://dx.doi.org/10.1007/978-94-017-9707-8.

125. Sperling, O., Shapira, O., Cohen, S., Tripler, E., Schwartz, A., Lazarovitch, N., Estimatingsap �ux densities in date palm trees using the heat dissipation method and weighing lysimeters // TreePhysiol. 2012. N 32. P. 1171�1178. [Electron. Res.].: http://dx.doi.org/10.1093/treephys/tps070.

126. Tripler, E., Shani, U., Ben-Gal, A., Mualem, Y. Apparent steady state conditions in highresolution weighing-drainage lysimeters containing date palms grown under di�erent salinities // Agric.Water Manage. 2012. N 107. P. 66�73. [Electron. Res.].: http://dx.doi.org/10.1016/j.agwat.2012.01.010.

Page 9: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 9

127. Yuan Rao, Zhao-hui Jiang, Naftali Lazarovitch. Investigating signal propagation and strengthdistribution characteristics of wireless sensor networks in date palm orchards // Computers andElectronics in Agriculture. 2016. N 124. P. 107�120.

128. Moghaddam, M., Entekhabi, D., Goykhman, Y., Li, K., Liu, M., Mahajan, A., Nayyar, A.,Shuman, D., Teneketzis, D. A wireless soil moisture smart sensor web using physics-based optimalcontrol: concept and initial demonstrations // IEEE J.Sel. Top. Appl. Earth Observ. Rem. Sens. 2010.N 3 (4). P. 522�535.

129. Lovejoy, W. S. A survey of algorithmic methods for partially observed markov decisionprocesses // Ann. Oper. Res. 1991. N 28 (1). P. 47�65.

130. Saha, R., Raghuwanshi, N.S., Upadhyaya, S.K., Wallender, W.W., Slaughter, D. C. Watersensors with cellular system eliminate tail water drainage in alfalfa irrigation // Calif. Agric. 2011. N65 (4). P. 202�207.

131. Aqua Management, Inc. [El. Res.].: http://aquamanagement.com/vertical-solutions/

ami-turfirrigation-controllers/.132. TamoghnaOjha, SudipMisra, Narendra Singh Raghuwanshi. Wireless sensor networks for

agriculture: The state-of-the-art in practice and future challenges // Computers and Electronics inAgriculture. 2015. N 118. P. 66�84.

Page 10: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Ïðîáëåìû èíôîðìàòèêè. 2017. � 4

ÏÐÈÌÅÍÅÍÈÅ ÁÅÑÏÐÎÂÎÄÍÛÕ ÑÅÍÑÎÐÍÛÕ ÑÅÒÅÉ ÂÏÐÅÖÈÇÈÎÍÍÎÌ ÑÅËÜÑÊÎÌ ÕÎÇßÉÑÒÂÅ

Î.Þ. Òàðõàíîâà

Íîâîñèáèðñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò630090, Íîâîñèáèðñê, Ðîññèÿ

ÓÄÊ 004.72

Ñ ó÷åòîì ñîâðåìåííûõ òåíäåíöèé ðàçâèòèÿ öèôðîâîé ýêîíîìèêè è èíòåðíåòà âåùåé àíàëèçè-ðóþòñÿ ïðèêëàäíûå àñïåêòû èñïîëüçîâàíèÿ áåñïðîâîäíûõ ñåíñîðíûõ ñåòåé (ÁÑÑ) â ñèñòåìàõêîíòðîëÿ è íàáëþäåíèÿ ðàçëè÷íûõ ïàðàìåòðîâ îêðóæàþùåé ñðåäû. Îñîáûé èíòåðåñ ïðåäñòàâ-ëÿåò ïðèìåíåíèå ÁÑÑ â ïðåöèçèîííîì ñåëüñêîì õîçÿéñòâå, îáîçíà÷åíû èñïîëüçóåìûå òåõíî-ëîãèè è èíñòðóìåíòàðèé â ðàìêàõ êîíöåïöèè

”òî÷íîãî çåìëåäåëèÿ“.  ñòàòüå àíàëèçèðóåòñÿ

ìèðîâîé îïûò ïðèìåíåíèÿ ÁÑÑ â ñåëüñêîì õîçÿéñòâå è íàïðàâëåíèÿ ïîòåíöèàëüíûõ ïðèëîæå-íèé ÁÑÑ â àãðàðíîé îòðàñëè. Ðàññìîòðåíû èñïîëüçóåìûå òèïû àðõèòåêòóð ñåíñîðíûõ óçëîâè òîïîëîãèé áåñïðîâîäíûõ ñåíñîðíûõ ñåòåé, òåõíîëîãèè è ñòàíäàðòû áåñïðîâîäíîé ñâÿçè.

Êëþ÷åâûå ñëîâà: áåñïðîâîäíûå ñåíñîðíûå ñåòè, ïðåöèçèîííîå (òî÷íîå) ñåëüñêîå õîçÿé-ñòâî, ñåíñîðíûå óçëû, àðõèòåêòóðà, ìîíèòîðèíã, ñåëüñêîõîçÿéñòâåííûå ïðèëîæåíèÿ.

Ââåäåíèå. Âîïðîñ îáåñïå÷åíèÿ ïðîäîâîëüñòâèåì íàñåëåíèÿ ñòàíîâèòñÿ âñå áîëåå àê-òóàëüíûì. Äëÿ äàëüíåéøåãî ðîñòà ïðîäóêòèâíîñòè ñåëüñêîãî õîçÿéñòâà, îáåñïå÷åíèÿ ñòà-áèëüíîãî óðîæàÿ è ïîâûøåíèÿ êîíêóðåíòîñïîñîáíîñòè â ëîêàëüíîì è ìèðîâîì ìàñøòàáåðàçðàáàòûâàþòñÿ íîâûå òåõíîëîãèè è ðåøåíèÿ [1�14].  óñëîâèÿõ èçìåíåíèÿ êëèìàòà èíåõâàòêè âîäû [15�20] ïîèñê è ïðèìåíåíèå ñîâðåìåííûõ òåõíîëîãèé è ïîäõîäîâ ê ïîâû-øåíèþ ýôôåêòèâíîñòè çåìëåïîëüçîâàíèÿ è çåìëåäåëèÿ â àãðàðíîé îòðàñëè ñòàíîâÿòñÿêðèòè÷íûìè.

 ñâîåì àíàëèòè÷åñêîì îáçîðå ýêñïåðòû J'son & Partners Consulting óòâåðæäàþò, ÷òîñåëüñêîå õîçÿéñòâî ñòîèò íà ïîðîãå

”Âòîðîé çåëåíîé ðåâîëþöèè“ [21].  ÷àñòíîñòè, â ðå-

çóëüòàòå ðåàëèçàöèè êîíöåïöèè”òî÷íîãî çåìëåäåëèÿ“ âîçìîæíî êàðäèíàëüíîå óâåëè÷åíèå

óðîæàéíîñòè (”ìîæåò ïîñëåäîâàòü âñïëåñê óðîæàéíîñòè òàêîãî ìàñøòàáà, êàêîãî ÷åëîâå-

÷åñòâî íå âèäåëî äàæå âî âðåìåíà ïîÿâëåíèÿ òðàêòîðîâ, èçîáðåòåíèÿ ãåðáèöèäîâ è ãåíå-òè÷åñêè èçìåíåííûõ ñåìÿí“).

Ïî èõ îöåíêå, â Ðîññèè ñóììàðíûé ýêîíîìè÷åñêèé ýôôåêò îò ïåðåõîäà ñåëüñêèõ õî-çÿéñòâ îòðàñëè íà áèçíåñ-ìîäåëè, áàçèðóþùèåñÿ íà

”èíòåðíåòå âåùåé“ (IoT) è öèôðîâè-

çàöèè, ìîæåò ñîñòàâèòü áîëåå 4,8 òðëí ðóá. â ãîäîâîì âûðàæåíèè, èëè 5,6 % ïðèðîñòàÂÂÏ, à âîçìîæíûé ïðèðîñò îáúåìà ïîòðåáëåíèÿ èíôîðìàöèîííûõ òåõíîëîãèé â Ðîññèèìîæåò ñîñòàâèòü 22 %, ïðè÷åì çà ñ÷åò öèôðîâèçàöèè òîëüêî îäíîé îòðàñëè � ñåëüñêîãîõîçÿéñòâà.

Ñ ó÷åòîì ìèðîâûõ òåíäåíöèé â íà÷àëå 2017 ã. â Ðîññèè (â ñîîòâåòñòâèè ñ ÓêàçîìÏðåçèäåíòà Ðîññèéñêîé Ôåäåðàöèè

”Î ìåðàõ ïî ðåàëèçàöèè ãîñóäàðñòâåííîé íàó÷íî-

òåõíè÷åñêîé ïîëèòèêè â èíòåðåñàõ ðàçâèòèÿ ñåëüñêîãî õîçÿéñòâà“ îò 21 èþëÿ 2016 ãîäà� 350) ïðåäëîæåí ïëàí ìåðîïðèÿòèé (

”äîðîæíàÿ êàðòà“)

”Âíåäðåíèå òåõíîëîãèé ñèñòåìû

Page 11: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 11

èíòåðíåòà âåùåé â àãðîïðîìûøëåííîì êîìïëåêñå“, êîòîðûé ïðåäóñìàòðèâàåò ðàçâèòèåèíôîêîììóíèêàöèîííîé èíôðàñòðóêòóðû (èíôðàñòðóêòóð ïåðåäà÷è äàííûõ è öèôðîâûõóñëóã) è òðåáîâàíèé ïî èñïîëüçîâàíèþ òåõíîëîãèé èíòåðíåòà âåùåé â êà÷åñòâå îäíîãî èçíàïðàâëåíèé ãîñóäàðñòâåííîãî ñòèìóëèðîâàíèÿ àãðîïðîèçâîäèòåëåé.

Îáîçíà÷åííàÿ âûøå êîíöåïöèÿ”òî÷íîãî çåìëåäåëèÿ“ [21] áàçèðóåòñÿ íà ïëàòôîðìå

”èíòåðíåòà âåùåé“ [43, 44], è ïðåäïîëàãàåò èíòåãðèðîâàííóþ âûñîêîòåõíîëîãè÷íóþ ñè-ñòåìó ñåëüñêîõîçÿéñòâåííîãî ìåíåäæìåíòà, âêëþ÷àþùóþ â ñåáÿ òåõíîëîãèè è èíñòðóìåí-òàðèé:

� áåñïðîâîäíûõ ñåíñîðíûõ ñåòåé [23], [26�39];� ãëîáàëüíûõ [25] è îáëà÷íûõ âû÷èñëåíèé [40�42];� ãëîáàëüíîãî ïîçèöèîíèðîâàíèÿ (GPS) è ãåîèíôîðìàöèîííûõ ñèñòåì,� ñèñòåì ñáîðà ïðîñòðàíñòâåííîé èíôîðìàöèè è ïðîñòðàíñòâåííîãî êîíòðîëÿ âûïîë-

íåíèÿ îïåðàöèé (GPS-ïðèáîðû ñïóòíèêîâîé íàâèãàöèè, ñåíñîðíûå äàò÷èêè, RFID ñèñòåìûè äð.);

� IoT-ñåòåé äëÿ ïåðåäà÷è äàííûõ íà áîëüøèå ðàññòîÿíèÿ LPWAN/NB-IoT (íà áàçåðàçâèâàþùèõñÿ/êîíêóðèðóþùèõ ïðîòîêîëîâ LoRa, Ñòðèæ, Sigfox è äð.);

� ñïóòíèêîâûé ìîíèòîðèíã [45] è äèñòàíöèîííîå çîíäèðîâàíèå [46�48];� àíàëèçà äàííûõ (Data Science) è áîëüøèõ äàííûõ (Big Data);� îöåíêè óðîæàéíîñòè (Yield Monitor Technologies) è ïåðåìåííîãî íîðìèðîâàíèÿ

(Variable Rate Technology).Âàæíûì êîìïîíåíòîì IoT ÿâëÿþòñÿ áåñïðîâîäíûå ñåíñîðíûå ñåòè (ÁÑÑ). Èõ ïðèìå-

íåíèþ â ñåëüñêîõîçÿéñòâåííîé îòðàñëè ïîñâÿùåí äàííûé îáçîð.1. Âîçìîæíîñòè èñïîëüçîâàíèÿ ÁÑÑ â ñåëüñêîì õîçÿéñòâå. Ïîòðåáíîñòü â àâ-

òîìàòèçàöèè è èíòåëëåêòóàëüíîì ïðèíÿòèè ðåøåíèé ñòàíîâèòñÿ âñå áîëåå âàæíîé ïðèðàçðàáîòêå è âíåäðåíèè ñîâðåìåííûõ àãðîòåõíîëîãèé [22�24]. Ñðåäè âñåõ òåõíîëîãèé â îñ-íîâíîì ïðåäñòàâëÿåò èíòåðåñ èñïîëüçîâàíèå ÁÑÑ äëÿ ñîâåðøåíñòâîâàíèÿ òðàäèöèîííûõìåòîäîâ çåìëåäåëèÿ [23], [28], [49�53]. Ïðîãðåññ â îáëàñòè ìèêðî ýëåêòðîìåõàíè÷åñêèõ ñè-ñòåì (ÌÝÌÑ) ïîçâîëèë ñîçäàâàòü íåáîëüøèå è äåøåâûå ñåíñîðû.

Âåçäåñóùèé õàðàêòåð ðàáîòû ñåíñîðíûõ ñåòåé âìåñòå ñ ñàìîîðãàíèçóþùèìèñÿ óçëàìèìàëîãî ðàçìåðà ïîçâîëÿåò èñïîëüçîâàòü ÁÑÑ êàê ïîòåíöèàëüíûé èíñòðóìåíò àâòîìàòè-çàöèè â ñåëüñêîì õîçÿéñòâå.  ñâÿçè ñ ýòèì, òî÷íîå ñåëüñêîå õîçÿéñòâî [1], [54�60], àâòîìà-òèçèðîâàííûé ãðàôèê ïîëèâà [45], [61�64], îïòèìèçàöèÿ ðîñòà ðàñòåíèé [65], ìîíèòîðèíãñåëüñêîõîçÿéñòâåííûõ óãîäèé [66], [67], ìîíèòîðèíã ïàðíèêîâûõ ãàçîâ [68�70], óïðàâëåíèåñåëüñêîõîçÿéñòâåííûìè ïðîèçâîäñòâåííûìè ïðîöåññàìè [57], [71] è áåçîïàñíîñòü êóëüòóð[11] � ýòî ëèøü íåñêîëüêî âîçìîæíûõ ïðèëîæåíèé. Îäíàêî ÁÑÑ èìåþò íåêîòîðûå îãðà-íè÷åíèÿ [49], [52], òàêèå êàê íèçêàÿ ìîùíîñòü áàòàðåè, îãðàíè÷åííàÿ âû÷èñëèòåëüíàÿñïîñîáíîñòü è íåáîëüøàÿ ïàìÿòü ñåíñîðíûõ óçëîâ. Ýòè îãðàíè÷åíèÿ âûçûâàþò ïðîáëåìûïðè ðàçðàáîòêå ïðèëîæåíèé ÁÑÑ â ñåëüñêîì õîçÿéñòâå.

Áîëüøèíñòâî ïðèëîæåíèé íà îñíîâå ÁÑÑ, ðàçðàáîòàííûõ äëÿ íóæä ñåëüñêîãî õîçÿé-ñòâà, ìîæåò ïðèìåíÿòüñÿ â äðóãèõ îáëàñòÿõ æèçíåäåÿòåëüíîñòè, è íàîáîðîò. Íàïðèìåð,ÁÑÑ äëÿ ìîíèòîðèíãà ñîñòîÿíèÿ îêðóæàþùåé ñðåäû ñ ïîëó÷åíèåì èíôîðìàöèè î ïèòà-òåëüíûõ âåùåñòâàõ ïî÷âû ïðèìåíÿåòñÿ äëÿ ïðîãíîçèðîâàíèÿ çäîðîâüÿ óðîæàÿ è êà÷åñòâàïðîäóêöèè â òå÷åíèå âðåìåíè. Ãðàôèê ïîëèâà ïðîãíîçèðóåòñÿ ñ ïîìîùüþ ÁÑÑ ïóòåì ìî-íèòîðèíãà âëàæíîñòè ïî÷âû è ïîãîäíûõ óñëîâèé. Ïðîèçâîäèòåëüíîñòü ñóùåñòâóþùåãîïðèëîæåíèÿ íà îñíîâå ÁÑÑ ìîæåò áûòü óëó÷øåíà äîáàâëåíèåì äîïîëíèòåëüíûõ ñåíñîð-íûõ óçëîâ ê ñóùåñòâóþùåé àðõèòåêòóðå, ÷òî ïîçâîëÿåò êîíòðîëèðîâàòü áîëüøåå ÷èñëî

Page 12: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

12 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

ïàðàìåòðîâ. Ïðîáëåìû, êîòîðûå ìîãóò âîçíèêíóòü â òàêèõ ïðèëîæåíèÿõ � îïðåäåëåíèåîïòèìàëüíîé ñòðàòåãèè ðàçìåùåíèÿ, èíòåðâàëà èçìåðåíèÿ, ýíåðãîñáåðåãàþùèõ MAC ïðî-òîêîëîâ è ïðîòîêîëîâ ìàðøðóòèçàöèè.

Îñíîâàííûå íà ÁÑÑ ðåøåíèÿ äëÿ ñåëüñêîãî õîçÿéñòâà äîëæíû áûòü î÷åíü äåøåâûìè,÷òîáû áûòü äîñòóïíûìè øèðîêîìó êðóãó êîíå÷íûõ ïîëüçîâàòåëåé. Ñ ðîñòîì íàñåëåíèÿñïðîñ íà ïðîäîâîëüñòâåííîå çåðíî òàêæå ðàñòåò. Íàïðèìåð, èç íåäàâíèõ îò÷åòîâ âèäíî,÷òî ðîñò ïðîèçâîäñòâà ïðîäîâîëüñòâåííîãî çåðíà â Èíäèè ìåíüøå, ÷åì ðîñò íàñåëåíèÿ[72]. Êðîìå òîãî, Èíäèÿ ÿâëÿåòñÿ îäíèì èç êðóïíåéøèõ ýêñïîðòåðîâ ïðîäîâîëüñòâåííûõçåðíîâûõ êóëüòóð, è ïîýòîìó èññëåäîâàòåëè ñîîáùàþò î íåîáõîäèìîñòè óâåëè÷èòü ïðîèç-âîäñòâî çà ñ÷åò âíåäðåíèÿ ïåðåäîâûõ òåõíîëîãèé [72], [73]. Ñëåäîâàòåëüíî, äëÿ äîñòèæåíèÿòàêîé öåëè âî ìíîãèõ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ ðàññìàòðèâàþòñÿ äîñòóïíûå èñîâðåìåííûå òåõíîëîãèè [74]. Íûíåøíåå ñîñòîÿíèå ðàçâèòèÿ Èíäèè âêëþ÷àåò â ñåáÿ òà-êèå òåõíîëîãèè, êàê ÁÑÑ, ïàêåòíàÿ ðàäèîñâÿçü îáùåãî ïîëüçîâàíèÿ (GPRS), Ãëîáàëüíàÿñèñòåìà îïðåäåëåíèÿ ìåñòîïîëîæåíèÿ (GPS), äèñòàíöèîííîå çîíäèðîâàíèå è Ãåîãðàôè÷å-ñêàÿ èíôîðìàöèîííàÿ ñèñòåìà (ÃÈÑ).

 ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ íàèáîëåå øèðîêî èñïîëüçóþòñÿ äâà âàðèàíòàÁÑÑ � íàçåìíûå ÁÑÑ è ïîäçåìíûå ÁÑÑ.

1.1. Íàçåìíûå ÁÑÑ.  íàçåìíûõ ÁÑÑ óçëû ðàçìåùàþòñÿ íàä ïîâåðõíîñòüþ çåìëè. Èí-òåëëåêòóàëüíûå, ìàëîãàáàðèòíûå è ïðè ýòîì íåäîðîãèå ñåíñîðû ïîçâîëÿþò óçëó ñîáèðàòüäîñòàòî÷íî òî÷íûå äàííûå îá îêðóæàþùåé ñðåäå. Íà îñíîâå îáíàðóæåííîé èíôîðìàöèèýòè óçëû çàòåì îáúåäèíÿþòñÿ äëÿ âûïîëíåíèÿ òðåáîâàíèé ïðèëîæåíèÿ. Íàïðèìåð, ðàñ-ñìîòðèì ïðèêëàäíóþ ñèñòåìó, â êîòîðîé ÁÑÑ ðàçìåùåíà ïî âñåìó ïîëþ äëÿ àâòîìàòèçà-öèè ñèñòåìû ïîëèâà. Ñåíñîðû îïðåäåëÿþò ñîäåðæàíèå âëàãè â ïî÷âå è, äàëåå, ñîâìåñòíîîïðåäåëÿþò âðåìÿ è ïðîäîëæèòåëüíîñòü ãðàôèêà ïîëèâà íà ýòîì ïîëå. Çàòåì, èñïîëüçóÿòó æå ñåòü, ðåøåíèå ïåðåäàåòñÿ ê ñåíñîðíîìó óçëó, ïðèêðåïëåííîìó ê âîäÿíîìó íàñîñó. Â[75] ïðåäëîæèëè ïîäîáíóþ àâòîìàòèçèðîâàííóþ ñèñòåìó ïîëèâà ñ èñïîëüçîâàíèåì ÁÑÑ èGPRS-ìîäóëÿ.

Íà ðèñ. 1 èçîáðàæåíà òèïè÷íàÿ ÁÑÑ, ðàçìåùåííàÿ íà ïîëå äëÿ ñåëüñêîõîçÿéñòâåííî-ãî ïðèìåíåíèÿ. Ïîëå ñîñòîèò èç ñåíñîðíûõ óçëîâ, îñíàùåííûõ ñïåöèàëüíûìè áîðòîâûìèñåíñîðàìè. Óçëû â ñåíñîðíîé ñåòè íà ïîëå îáìåíèâàþòñÿ èíôîðìàöèåé ìåæäó ñîáîé ñèñïîëüçîâàíèåì ðàäèî÷àñòîòíûõ êàíàëîâ (RF) ïðîìûøëåííûõ, íàó÷íûõ è ìåäèöèíñêèõ(ISM) ðàäèîäèàïàçîíîâ (òàêèõ êàê 902�928 ÌÃö è 2,4�2,5 ÃÃö). Êàê ïðàâèëî, óçåë-øëþçòàêæå ðàçìåùàåòñÿ âìåñòå ñ ñåíñîðíûìè óçëàìè, ÷òîáû îáåñïå÷èòü ñîåäèíåíèå ìåæäóñåíñîðíîé ñåòüþ è âíåøíèì ìèðîì. Òàêèì îáðàçîì, óçåë-øëþç ïîëüçóåòñÿ êàê RF, òàê èãëîáàëüíîé ñèñòåìîé ìîáèëüíîé ñâÿçè (GSM) èëè GPRS. Óäàëåííûé ïîëüçîâàòåëü ìîæåòêîíòðîëèðîâàòü ñîñòîÿíèå ïîëÿ è óïðàâëÿòü ïîëåâûìè ñåíñîðàìè è óñòðîéñòâàìè ïðè-âîäà. Íàïðèìåð, ïîëüçîâàòåëü ìîæåò âêëþ÷àòü/âûêëþ÷àòü íàñîñ/êëàïàí, êîãäà óðîâåíüâîäû, ïîäàâàåìûé â ïîëå, äîñòèãàåò íåêîòîðîãî ïðåäîïðåäåëåííîãî ïîðîãîâîãî çíà÷åíèÿ.Ïîëüçîâàòåëè ñ ïîìîùüþ ìîáèëüíîãî òåëåôîíà ìîãóò òàêæå äèñòàíöèîííî êîíòðîëèðî-âàòü ñåíñîðû íà ïîëå. Ìîáèëüíûé ïîëüçîâàòåëü ïîäêëþ÷àåòñÿ ÷åðåç GPRS èëè äàæå ÷åðåçñëóæáó êîðîòêèõ ñîîáùåíèé (SMS). Òàêæå ìîæåò áûòü ðàçðàáîòàíà ôóíêöèÿ ïåðèîäè÷å-ñêîãî îáíîâëåíèÿ èíôîðìàöèè îò ñåíñîðîâ è ñèñòåìíîå óïðàâëåíèå

”ïî òðåáîâàíèþ“ äëÿ

îáîèõ òèïîâ ïîëüçîâàòåëåé.1.2. Ïîäçåìíûå ÁÑÑ. Äðóãèì âàðèàíòîì ÁÑÑ ÿâëÿþòñÿ áåñïðîâîäíûå ïîäçåìíûå ñåí-

ñîðíûå ñåòè [76], [77].  ýòîì ñëó÷àå áåñïðîâîäíûå ñåíñîðû óñòàíàâëèâàþòñÿ âíóòðè ïî÷-âû.  ýòîé óñòàíîâêå áîëåå âûñîêèå ÷àñòîòû çàòóõàþò, à ñðàâíèòåëüíî íèçêèå ÷àñòîòû

Page 13: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 13

Рис. 1 Типичная БСС для сельскохозяйственных приложений

Сельскохозяйственное поле с размещением

База данных и

сервер

Интернет

Удаленный

пользователь

Сотовый телефон

Узел-шлюз

Беспроводной

сенсорный узел

Ðèñ. 1. Òèïè÷íàÿ ÁÑÑ äëÿ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé

ñïîñîáíû ïðîíèêàòü ÷åðåç ïî÷âó [78], [79]. Òàêèì îáðàçîì, ðàäèóñ ñâÿçè îãðàíè÷åí, è ñåòüòðåáóåò áîëüøåãî êîëè÷åñòâà óçëîâ äëÿ ïîêðûòèÿ ïëîùàäè. Ïðèìåíåíèå ïðîâîäíûõ ñåíñî-ðîâ óâåëè÷èâàåò îõâàò ñåòè, òðåáóÿ îòíîñèòåëüíî ìåíüøåãî êîëè÷åñòâà ñåíñîðîâ. Îäíàêîâ ýòîì ñëó÷àå ñåíñîðû è ïðîâîäà ìîãóò áûòü óÿçâèìû.

Òèïè÷íîå ñåëüñêîõîçÿéñòâåííîå ïðèìåíåíèå ïîäçåìíûõ ñåíñîðíûõ ñåòåé ïîêàçàíî íàðèñ. 2.  îòëè÷èå îò ïðèëîæåíèé íà îñíîâå íàçåìíûõ ÁÑÑ, ïîêàçàííûõ íà ðèñ. 1, íà ýòîìðèñóíêå ñåíñîðíûå óçëû çàðûòû âíóòðè ïî÷âû. Îäèí óçåë-øëþç òàêæå ðàçìåùåí äëÿïåðåäà÷è èíôîðìàöèè, ñîáðàííîé ïîäçåìíûìè ñåíñîðíûìè óçëàìè, íà áàçîâóþ ñòàíöèþ,íàõîäÿùóþñÿ íàä çåìëåé. Ïîñëå ýòîãî èíôîðìàöèÿ ìîæåò ïåðåäàâàòüñÿ ÷åðåç Èíòåðíåòäëÿ õðàíåíèÿ â óäàëåííûõ áàçàõ äàííûõ è ìîæåò èñïîëüçîâàòüñÿ äëÿ óâåäîìëåíèÿ ïîëü-çîâàòåëÿ ñ ïîìîùüþ ñîòîâîãî òåëåôîíà. Îäíàêî èç-çà ñðàâíèòåëüíî áîëåå êîðîòêîãî ðàñ-ñòîÿíèÿ ñâÿçè òðåáóåòñÿ ðàçìåùåíèå áîëüøåãî êîëè÷åñòâà óçëîâ â ïîäçåìíûõ ñåíñîðíûõñåòÿõ.

2. Àðõèòåêòóðà ñåíñîðíûõ óçëîâ.

2.1.Âñòðîåííûå ìíîãî÷èïîâûå ñåíñîðíûå óçëû. Êàê ïðàâèëî, ñåíñîðíûé óçåë ñîñòîèòèç ñïåöèàëèçèðîâàííîé ñåíñîðíîé ìàòðèöû ñ ïðèåìîïåðåäàþùèì áëîêîì äëÿ ñâÿçè (ðèñ.3, à).  êà÷åñòâå

”ìîçãà“ óçëà èñïîëüçóåòñÿ ïðîöåññîð èëè áëîê ìèêðîêîíòðîëëåðà. Ïî

æåëàíèþ, ñåíñîðíàÿ ïëàòà ìîæåò âêëþ÷àòü â ñåáÿ áëîêè ïàìÿòè äëÿ õðàíåíèÿ äàííûõ. çàâèñèìîñòè îò òðåáîâàíèé ïðèëîæåíèÿ àðõèòåêòóðà ñåíñîðíûõ óçëîâ ìîæåò èçìåíÿòü-ñÿ â ñîîòâåòñòâèè ñ òðåáîâàíèÿìè. Íàïðèìåð, ìîùíîñòü îáðàáîòêè è ðàçìåð âñòðîåííîé

Page 14: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

14 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

Рис. 2. Типичная подземная БСС для сельскохозяйственных приложений

Линия связи из-под

земли на поверхность

Подземная линия

связи

Узел-

шлюз

Внешняя

базовая

станция

Беспроводной

подземный

сенсорный узел

База данных

и сервер

Интернет

Ðèñ. 2. Òèïè÷íàÿ ïîäçåìíàÿ ÁÑÑ äëÿ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé

ïàìÿòè ìîãóò áûòü óâåëè÷åíû äëÿ óäîâëåòâîðåíèÿ òðåáîâàíèé áîëåå èíòåíñèâíîé èëèèíòåëëåêòóàëüíîé îáðàáîòêè.

Åùå îäíîé âàæíîé òåõíîëîãèåé ÿâëÿåòñÿ ñõåìà èç íåñêîëüêèõ êðèñòàëëîâ, ïîìåùåííûõâ åäèíûé êîðïóñ (àíãë. System in a package, SiP), êîòîðàÿ îïðåäåëÿåòñÿ êàê êîìáèíàöèÿíåñêîëüêèõ ìèêðîñõåì, âêëþ÷àÿ ïàññèâíûå êîìïîíåíòû (íàïðèìåð, ðåçèñòîðû è êîíäåí-ñàòîðû), âçÿòûå âìåñòå, ÷òîáû îáåñïå÷èòü äîïîëíèòåëüíîå ïîäêëþ÷åíèå âíåøíèõ êîìïî-íåíòîâ. SiP ñíèæàåò ñòîèìîñòü ïðîäóêòà, îïòèìèçèðóÿ åãî ðàçìåðû è ïðîèçâîäèòåëüíîñòü.Òàêèì îáðàçîì, òåõíîëîãèÿ SiP èìååò âîçìîæíîñòü ïðèìåíåíèÿ â ñåëüñêîõîçÿéñòâåííûõñöåíàðèÿõ. Ñåëüñêîõîçÿéñòâåííûå ñèñòåìû íà îñíîâå SiP ìîãóò ïðèìåíÿòüñÿ â ðàçëè÷íûõïðèëîæåíèÿõ ïóòåì ïðèñîåäèíåíèÿ ðàçëè÷íûõ äàò÷èêîâ ê îñíîâíîìó ïàêåòó.

 çàâèñèìîñòè îò òðåáîâàíèé ñåëüñêîõîçÿéñòâåííîãî ïðèëîæåíèÿ, ðàññìàòðèâàþòñÿñëåäóþùèå ôàêòîðû âûáîðà êîìïîíåíòîâ ñåíñîðíîãî óçëà:

� Ïðîöåññîð: âû÷èñëèòåëüíàÿ ìîùíîñòü ñåíñîðíîãî óçëà çàâèñèò òîëüêî îò âûáîðàáëîêà îáðàáîòêè. Ìèêðîêîíòðîëëåð ïðåäîñòàâëÿåò íåñêîëüêî ïðåèìóùåñòâ, òàêèõ êàêíèçêàÿ ñòîèìîñòü, ãèáêîñòü â îáùåíèè ñ äðóãèìè óçëàìè, ïðîñòîòà ïðîãðàììèðîâàíèÿè íèçêîå ýíåðãîïîòðåáëåíèå ïî ñðàâíåíèþ ñ òðàäèöèîííûìè ïðîöåññîðàìè.  îñíîâíîì,ýòè ìèêðîêîíòðîëëåðû ðàáîòàþò íà 3,5�5 Â. Îäíàêî ýíåðãîïîòðåáëåíèå ÿâëÿåòñÿ îäíèì èçíàèáîëåå âàæíûõ ôàêòîðîâ â ñåíñîðíûõ óçëàõ. Ó÷èòûâàÿ ýòîò ôàêò, ìèêðîêîíòðîëëåðûïðåäïî÷òèòåëüíåå, ÷åì ïðîöåññîðû îáùåãî íàçíà÷åíèÿ.

� Ïðèåìîïåðåäàò÷èê: ïåðåäà÷à è ïðèåì ÿâëÿþòñÿ äâóìÿ îñíîâíûìè ïðè÷èíàìè ïî-òðåáëåíèÿ ýíåðãèè â ñåíñîðíûõ óçëàõ.  ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ ñåòåâîé ïëà-íèðîâùèê âûáèðàåò ðàçìåùåíèå äëÿ îáåñïå÷åíèÿ îïòèìàëüíîãî ýíåðãîïîòðåáëåíèÿ ñåí-ñîðíûõ óçëîâ.

� Ïàìÿòü: ñåíñîðíûå óçëû èìåþò äâà òèïà âñòðîåííîé ïàìÿòè: ïàìÿòü, ñâÿçàííàÿñ ïðîöåññîðîì, è ïàìÿòü, ñâÿçàííàÿ ñ âíåøíåé ïàìÿòüþ. Â çàâèñèìîñòè îò òðåáîâàíèé

Page 15: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 15

Рис. 3. Компоненты системы: встроенный многочиповый сенсорный узел и сенсорный узел на основе системы на кристалле;

а: архитектура типичного встроенного многочипового сенсорного узла; б: архитектура типичного сенсорного узла на основе

системы на кристалле

Память

Бат

арея

/ист

очн

ик п

ита

ни

я

Приемопереда

тчик

Микроконт

роллер

Схема

сопряжения

сенсора

Сенсор 1

Сенсор 2

Сенсор 3

а)

Ист

очн

ик п

ита

ни

я

Сенсоры Память Приемопе

редатчик

Блоки

ввода/вывода

Межсетевые соединения

Процессор

ное ядро

Сопроцесс

ор

б)

Ðèñ. 3. Êîìïîíåíòû ñèñòåìû: âñòðîåííûé ìíîãî÷èïîâûé ñåíñîðíûé óçåë è ñåíñîðíûé óçåë íà îñíîâå

ñèñòåìû íà êðèñòàëëå; à: àðõèòåêòóðà òèïè÷íîãî âñòðîåííîãî ìíîãî÷èïîâîãî ñåíñîðíîãî óçëà; á:

àðõèòåêòóðà òèïè÷íîãî ñåíñîðíîãî óçëà íà îñíîâå ñèñòåìû íà êðèñòàëëå

ïðèëîæåíèÿ, ñåíñîðíûì óçëàì íåîáõîäèìî õðàíèòü ñòàðûå äàííûå äëÿ èíòåëëåêòóàëüíîãîïðèíÿòèÿ ðåøåíèé. Ôëýø-ïàìÿòü èñïîëüçóåòñÿ äëÿ äîïîëíèòåëüíîãî õðàíåíèÿ.

2.2.Îäíîêðèñòàëüíàÿ ñèñòåìà ñåíñîðíûõ óçëîâ. Àðõèòåêòóðà îäíîêðèñòàëüíîé ñèñòå-ìû (ñèñòåìà íà êðèñòàëëå, ÑíÊ) ïðèìåíÿåòñÿ â êîíêðåòíûõ ïðîåêòàõ, íàöåëåííûõ íàìèíèìèçàöèþ òðåáîâàíèé ê ìîùíîñòè è ñòîèìîñòè ïðîåêòèðîâàíèÿ. ÑíÊ îáåñïå÷èâàåòèíòåãðàöèþ íåñêîëüêèõ ïðîãðàììèðóåìûõ ïðîöåññîðíûõ ÿäåð, ñîïðîöåññîðîâ, àïïàðàò-íûõ óñêîðèòåëåé, áëîêîâ ïàìÿòè, áëîêîâ ââîäà/âûâîäà è ïîëüçîâàòåëüñêèõ áëîêîâ. Íàðèñ. 3, á, ïîêàçàíû êîìïîíåíòû òèïè÷íîãî ñåíñîðíîãî óçëà íà îñíîâå ÑíÊ. Ïðåäïîëàãàå-ìûå ïðèëîæåíèÿ äëÿ ÑíÊ â îñíîâíîì ïðåäíàçíà÷åíû äëÿ ïðîåêòèðîâàíèÿ ñåòåé íà ÷èïàõ(àíãë. NoCs) [109], ñèñòåì äëÿ ìóëüòèìåäèéíûõ è ïîòîêîâûõ ïðèëîæåíèé [110], òðåáóþùèõèíòåíñèâíîé âû÷èñëèòåëüíîé ìîùíîñòè.

 íàñòîÿùåå âðåìÿ â ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ èñïîëüçîâàíèå ÑíÊ âñòðå÷à-åòñÿ î÷åíü ðåäêî. Ïî ñðàâíåíèþ ñ êðåìíèåâûìè ìàòðèöàìè â SiP, ÑíÊ îñíîâàí íà îäèíî÷-íîé ìàòðèöå, è, ñëåäîâàòåëüíî, ÑíÊ èìåþò ìåíüøèé ðàçìåð, íî áîëåå âûñîêóþ ñòîèìîñòü.Òåì íå ìåíåå â áóäóùåì ÑíÊ èìååò áîëüøîé ïîòåíöèàë äëÿ ïðèìåíåíèÿ â ñåëüñêîì õîçÿé-ñòâå è ôåðìåðñêîì õîçÿéñòâå. Âî-ïåðâûõ, èñïîëüçîâàíèå ñåíñîðíûõ óçëîâ íà îñíîâå ÑíÊ,à íå ñîâðåìåííûõ âñòðîåííûõ ìíîãî÷èïîâûõ ñåíñîðíûõ óçëîâ, óâåëè÷èò âû÷èñëèòåëüíóþìîùíîñòü è óìåíüøèò ïîòðåáëåíèå ýíåðãèè. Êðîìå òîãî, ðàçìåð óçëîâ áóäåò ìåíüøå, èòåì ñàìûì óâåëè÷èòñÿ ìîáèëüíîñòü âñåé ñèñòåìû.

3. Òåõíîëîãèè è ñòàíäàðòû áåñïðîâîäíîé ñâÿçè. Ïåðå÷èñëèì íàèáîëåå èçâåñòíûåòåõíîëîãèè è ñòàíäàðòû áåñïðîâîäíîé ñâÿçè, êîòîðûå ìîãóò íàéòè ïðèìåíåíèå â ñåëüñêîìõîçÿéñòâå.

� ZigBee [111�113]: òåõíîëîãèÿ îïðåäåëÿåò ïðîòîêîëû ñåòåâîãî è ïðèêëàäíîãî óðîâíÿ,îñíîâàííûå íà ñòàíäàðòàõ IEEE 802.15.4 [114], à òàêæå ôèçè÷åñêîãî óðîâíÿ è óðîâíÿ MAC,íåîáõîäèìûå äëÿ ïðîåêòèðîâàíèÿ áåñïðîâîäíîé ïåðñîíàëüíîé ñåòè (WPAN) ñ èñïîëüçî-

Page 16: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

16 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

âàíèåì óñòðîéñòâ ñ íèçêèì ýíåðãîïîòðåáëåíèåì. Áóäó÷è ýíåðãîýôôåêòèâíîé, íåäîðîãîéè íàäåæíîé, òåõíîëîãèÿ ZigBee ÿâëÿåòñÿ ïðåäïî÷òèòåëüíîé äëÿ ïðèëîæåíèé íà îñíîâåÁÑÑ â ñåëüñêîõîçÿéñòâåííûõ äîìåíàõ. ZigBee òàêæå ïîääåðæèâàåò ïåðåäà÷ó äàííûõ íàêîðîòêèå ðàññòîÿíèÿ (10�20 ì) ïî ìíîãîóðîâíåâûì, äåöåíòðàëèçîâàííûì, äèíàìè÷åñêèìè ñåò÷àòûì ñåòÿì. Óñòðîéñòâà ñ ïîääåðæêîé ZigBee èìåþò ýêñòåíñèâíûé ðàáî÷èé öèêë è,òàêèì îáðàçîì, ïîäõîäÿò äëÿ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé, òàêèõ êàê óïðàâëåíèåïîëèâîì, óïðàâëåíèå ïåñòèöèäàìè è óäîáðåíèÿìè, óïðàâëåíèå êà÷åñòâîì âîäû, ãäå òðå-áóåòñÿ ïåðèîäè÷åñêîå îáíîâëåíèå èíôîðìàöèè. Îäíàêî ïðèëîæåíèÿ ZigBee îáåñïå÷èâàþòíèçêóþ ñêîðîñòü ïåðåäà÷è äàííûõ òîëüêî 20�40 êáèò/ñ è 250 êáèò/ñ íà ÷àñòîòàõ 868/915ÌÃö è 2,4 ÃÃö ïîëîñû ISM ñîîòâåòñòâåííî. Êàê ïðàâèëî, äëÿ ýòîãî ñòàíäàðòà òðåáóþòñÿîáîðóäîâàíèå ñ íèçêîé ñïåöèôèêàöèåé (íàïðèìåð, ìèêðîïðîöåññîð ñ ïàìÿòüþ 50�60 êá) èìåòîäû øèôðîâàíèÿ äàííûõ.

� Wi-Fi: Wi-Fi � ýòî ñòàíäàðò áåñïðîâîäíîé ëîêàëüíîé ñåòè (WLAN) äëÿ îáìåíà èí-ôîðìàöèåé èëè ïîäêëþ÷åíèÿ ê Èíòåðíåòó ïî áåñïðîâîäíîé ñåòè íà îñíîâå ñåìåéñòâà ñòàí-äàðòîâ IEEE 802.11 (IEEE 802.11, 802.11a/b/g/n) [115], [116].  íàñòîÿùåå âðåìÿ ýòî íàè-áîëåå øèðîêî èñïîëüçóåìàÿ áåñïðîâîäíàÿ òåõíîëîãèÿ, èñïîëüçóþùàÿñÿ â óñòðîéñòâàõ îòñìàðòôîíîâ è ïëàíøåòîâ äî íàñòîëüíûõ êîìïüþòåðîâ è íîóòáóêîâ. Wi-Fi îáåñïå÷èâàåòäîñòîéíûé äèàïàçîí ñâÿçè â ïðåäåëàõ 20 ì (â ïîìåùåíèè) äî 100 ì (íà îòêðûòîì âîçäóõå)ñî ñêîðîñòüþ ïåðåäà÷è äàííûõ â ðàçìåðå 2�54 Ìáèò/ñ ïðè ÷àñòîòå 2,4 ÃÃö ïîëîñû ISM. ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ Wi-Fi ðàñøèðÿåò èñïîëüçîâàíèå íåîäíîðîäíûõ àð-õèòåêòóð, ïîäêëþ÷àþùèõ íåñêîëüêî òèïîâ óñòðîéñòâ ê äèíàìè÷åñêîé ñåòè.

� Bluetooth: Bluetooth [116], [117], îñíîâàííûé íà ñòàíäàðòå IEEE 802.15.1, ïðåäñòàâ-ëÿåò ñîáîé íåäîðîãóþ áåñïðîâîäíóþ òåõíîëîãèþ ñ íèçêèì ýíåðãîïîòðåáëåíèåì, èñïîëü-çóåìóþ äëÿ ñâÿçè ìåæäó ïîðòàòèâíûìè óñòðîéñòâàìè è ðàáî÷èìè ñòîëàìè â êîðîòêîìäèàïàçîíå (8�10 ì). Ñòàíäàðò Bluetooth îïðåäåëÿåò ñâÿçü ñ ïåðñîíàëüíîé ñåòüþ (PAN)ñ ÷àñòîòîé 2,4 ÃÃö äèàïàçîíà ISM. Ñêîðîñòü ïåðåäà÷è äàííûõ, äîñòèãàåìàÿ â ðàçíûõâåðñèÿõ Bluetooth, ñîñòàâëÿåò îò 1 äî 24 Ìáèò/ñ. Ïðåèìóùåñòâà ýòîé òåõíîëîãèè � ååïîâñåìåñòíûé õàðàêòåð, è ïîýòîìó îíà ïîäõîäèò äëÿ èñïîëüçîâàíèÿ â ìíîãîóðîâíåâûõñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ.

� GPRS / 3G / 4G: GPRS (ïàêåòíàÿ ðàäèîñâÿçü îáùåãî ïîëüçîâàíèÿ) [118] � óñëóãà ïà-êåòíîé ïåðåäà÷è äàííûõ äëÿ ñîòîâûõ òåëåôîíîâ íà áàçå GSM.  ñèñòåìàõ 2G äîñòèãàåòñÿñêîðîñòü ïåðåäà÷è äàííûõ 50-100 êáèò/ñ. Îäíàêî â GPRS ïðîïóñêíàÿ ñïîñîáíîñòü è çà-äåðæêà ìåíÿþòñÿ, è îíè çàâèñÿò îò êîëè÷åñòâà äðóãèõ ïîëüçîâàòåëåé, èñïîëüçóþùèõ îäèíè òîò æå ðåñóðñ. Õîòÿ ñàìîå áîëüøîå ïðåèìóùåñòâî, êîòîðîå ïðåäëàãàåò GPRS, çàêëþ-÷àåòñÿ â ñíÿòèè îãðàíè÷åíèÿ äèàïàçîíà áåñïðîâîäíûõ óñòðîéñòâ. Ëþáûå äâà óñòðîéñòâàìîãóò âçàèìîäåéñòâîâàòü, åñëè îíè îáà íàõîäÿòñÿ â çîíå îáñëóæèâàíèÿ GSM. Îäíàêî îíëó÷øå ïîäõîäèò äëÿ ïðèëîæåíèé ïåðèîäè÷åñêîãî ìîíèòîðèíãà, ÷åì äëÿ ïðèëîæåíèé òèïàîòñëåæèâàíèÿ â ðåæèìå ðåàëüíîãî âðåìåíè. Ðàñøèðåííàÿ âåðñèÿ GPRS � ýòî EnhancedData rate äëÿ Global Evolution (EDGE), êîòîðàÿ îáåñïå÷èâàåò ïîâûøåííóþ ñêîðîñòü ïå-ðåäà÷è äàííûõ áåç èçìåíåíèé àïïàðàòíîãî è ïðîãðàììíîãî îáåñïå÷åíèÿ â îñíîâíûõ ñåòÿõGSM. 3G [119] è 4G [120] ÿâëÿþòñÿ òðåòüèì è ÷åòâåðòûì ïîêîëåíèÿìè òåõíîëîãèé ìîáèëü-íîé ñâÿçè. Ñîîòâåòñòâóþùàÿ ñêîðîñòü ïåðåäà÷è äàííûõ ñîñòàâëÿåò 200 êáèò/ñ è îò 100Ìáèò/ñ äî 1 Ãáèò/ñ â 3G è 4G ñîîòâåòñòâåííî.

� WiMAX: WiMAX ÿâëÿåòñÿ àêðîíèìîì äëÿ Worldwide Interoperability for MicrowaveAccess, ñòàíäàðòà áåñïðîâîäíîé ñâÿçè, îòíîñÿùåãîñÿ ê ìåæîïåðàöèîííûì ðåàëèçàöèÿìñåìåéñòâà ñòàíäàðòîâ IEEE 802.16 [121]. WiMAX íàöåëåí íà äîñòèæåíèå ñêîðîñòè ïåðå-

Page 17: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 17

äà÷è äàííûõ 0,4�1 Ãáèò/ñ íà ñòàöèîíàðíûõ ñòàíöèÿõ, à ìàêñèìàëüíàÿ äàëüíîñòü ïåðåäà-÷è ñ èñïîëüçîâàíèåì ýòîé òåõíîëîãèè ñîñòàâëÿåò 50 êì. Ìîáèëüíûé WiMAX (ñòàíäàðòIEEE 802.16e) îáåñïå÷èâàåò ñêîðîñòü ïåðåäà÷è äàííûõ ïîðÿäêà 50�100 Ìáèò/ñ. Ïîääåðæ-êà áîëüøîãî äèàïàçîíà è âûñîêîñêîðîñòíûå êîììóíèêàöèîííûå ôóíêöèè äåëàþò WiMAXíàèáîëåå ïîäõîäÿùåé òåõíîëîãèåé äëÿ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé, âêëþ÷àþùèõ âñåáÿ ìîíèòîðèíã îáúåêòîâ, ìîíèòîðèíã ñèñòåìû ñåëüñêîãî õîçÿéñòâà, ìîíèòîðèíã ãðàíèöïîñåâíûõ ïëîùàäåé è äèàãíîñòèêó â ðåàëüíîì âðåìåíè.

4. Ïðè÷èíû èñïîëüçîâàíèÿ ÁÑÑ â ñåëüñêîì õîçÿéñòâå. Íèæå âûäåëåíû îñíîâ-íûå ÷åðòû ÁÑÑ, êîòîðûå ïîçâîëèëè èì ñòàòü ïîòåíöèàëüíûì èíñòðóìåíòîì àâòîìàòèçà-öèè â îáëàñòè ñåëüñêîãî õîçÿéñòâà.

� Èíòåëëåêòóàëüíàÿ ñïîñîáíîñòü ïðèíèìàòü ðåøåíèÿ. ÁÑÑ îáû÷íî ñîäåðæèò ìíîæå-ñòâåííûå òðàíçèòíûå ó÷àñòêè (multi-hop) [49], [50], [80]. Ïðè ðàçâåðòûâàíèè ñåòè â áîëü-øîé îáëàñòè ýòî ñâîéñòâî ïîâûøàåò ýíåðãîýôôåêòèâíîñòü âñåé ñåòè, è, ñëåäîâàòåëüíî,óâåëè÷èâàåòñÿ ñðîê ñëóæáû ñåòè. Èñïîëüçóÿ ýòî ñâîéñòâî, íåñêîëüêî ñåíñîðíûõ óçëîâìîãóò âçàèìîäåéñòâîâàòü ìåæäó ñîáîé è ñîâìåñòíî ïðèíèìàòü îêîí÷àòåëüíîå ðåøåíèå[81�84].

� Êîíôèãóðàöèÿ äèíàìè÷åñêîé òîïîëîãèè. Äëÿ ýêîíîìèè çàðÿäà àêêóìóëÿòîðà ñåí-ñîðíûé óçåë óäåðæèâàåò ñåáÿ â ðåæèìå îæèäàíèÿ (ò. í. ñïÿùèé ðåæèì) áîëüøóþ ÷àñòüâðåìåíè. Èñïîëüçóÿ ìåòîäû óïðàâëåíèÿ òîïîëîãèåé [85�87], ñåíñîðíûå óçëû ìîãóò ñîâ-ìåñòíî ïðèíèìàòü ýòè ðåøåíèÿ. ×òîáû ìàêñèìèçèðîâàòü âðåìÿ æèçíè ñåòè, òîïîëîãèÿñåòè íàñòðîåíà òàê, ÷òî â àêòèâíîì ñîñòîÿíèè îñòàåòñÿ ìèíèìàëüíîå êîëè÷åñòâî óçëîâ.

� Îòêàçîóñòîé÷èâîñòü. Îäíîé èç ðàñïðîñòðàíåííûõ ïðîáëåì, êîòîðóþ íàäî ïðèíè-ìàòü âî âíèìàíèå ïðè ðàçâåðòûâàíèè ÁÑÑ, ÿâëÿåòñÿ òî, ÷òî ñåíñîðíûå óçëû ïîäâåðæåíûíåèñïðàâíîñòÿì [88].  òàêèõ îáñòîÿòåëüñòâàõ íåïðîäóìàííîå ðàçìåùåíèå óçëîâ ìîæåòïðèâåñòè ê ïîòåðå ñâÿçíîñòè, è ýòî, â ñâîþ î÷åðåäü, âëèÿåò íà îáùóþ ïðîèçâîäèòåëü-íîñòü ñåòè. Îäíàêî ñåíñîðíûå óçëû ìîãóò

”ñàìîîðãàíèçîâûâàòüñÿ“ ïóòåì äèíàìè÷åñêîé

íàñòðîéêè ñåòåâîé òîïîëîãèè [33].� Êîíòåêñòíàÿ îñâåäîìëåííîñòü. Îñíîâûâàÿñü íà ïîëó÷åííîé èíôîðìàöèè î ôèçè-

÷åñêèõ è ýêîëîãè÷åñêèõ ïàðàìåòðàõ, ñåíñîðíûå óçëû ïîëó÷àþò çíàíèÿ îá îêðóæàþùåéîáñòàíîâêå. Ðåøåíèÿ, ïðèíèìàåìûå ñåíñîðíûìè óçëàìè ïîñëå ýòîãî, ÿâëÿþòñÿ êîíòåêñòíî-çàâèñèìûìè [89].

� Ìàñøòàáèðóåìîñòü. Êàê ïðàâèëî, ïðîòîêîëû ÁÑÑ ïðåäíàçíà÷åíû äëÿ ðåàëèçàöèèâ ëþáîé ñåòè íåçàâèñèìî îò åå ðàçìåðà è êîëè÷åñòâà óçëîâ. Ýòî ñâîéñòâî, íåñîìíåííî,ðàñøèðÿåò âîçìîæíîñòè èñïîëüçîâàíèÿ ÁÑÑ äëÿ ìíîãî÷èñëåííûõ ïðèëîæåíèé.

� Íåîäíîðîäíîñòü óçëîâ. ×àñòî ïðåäïîëàãàåòñÿ, ÷òî ÁÑÑ ñîñòîèò èç îäíîðîäíûõ ñåí-ñîðíûõ óñòðîéñòâ [2], [85], [90]. Îäíàêî âî ìíîãèõ ðåàëèñòè÷íûõ ñöåíàðèÿõ óñòðîéñòâàÿâëÿþòñÿ íåîäíîðîäíûìè â îòíîøåíèè îáðàáîòêè è âû÷èñëèòåëüíîé ìîùíîñòè, ïàìÿòè,÷óâñòâèòåëüíîñòè, ïðèåìà-ïåðåäà÷è è âîçìîæíîñòè ïåðåìåùåíèÿ.

� Òîëåðàíòíîñòü ê ñáîÿì ñâÿçè â ñóðîâûõ óñëîâèÿõ îêðóæàþùåé ñðåäû. Áëàãîäàðÿøèðîêîìó ñïåêòðó ïðèìåíåíèé â îòêðûòîé ñåëüñêîõîçÿéñòâåííîé ñðåäå, ÁÑÑ ñòðàäàþòîò âîçäåéñòâèÿ ñóðîâûõ óñëîâèé îêðóæàþùåé ñðåäû [7]. Ñòåê ïðîòîêîëà ÁÑÑ âêëþ÷àåò âñåáÿ ìåòîäû, ïîçâîëÿþùèå ïðîòèâîñòîÿòü ïîñëåäñòâèÿì ñáîåâ ñâÿçè â ñåòè, âîçíèêàþùèõèç-çà âîçäåéñòâèÿ îêðóæàþùåé ñðåäû.

� Àâòîíîìíûé ðåæèì ðàáîòû. Âàæíîé îñîáåííîñòüþ ÁÑÑ ÿâëÿåòñÿ èõ àâòîíîìíûé ðå-æèì ðàáîòû [91] è àäàïòèâíîñòü [92].  ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèÿõ ýòà ôóíêöèÿ,áåçóñëîâíî, èãðàåò âàæíóþ ðîëü è îáåñïå÷èâàåò ïðîñòîé è ðàñøèðåííûé ðåæèì ðàáîòû.

Page 18: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

18 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

� Èíôîðìàöèîííàÿ áåçîïàñíîñòü. Âîïðîñàì îáåñïå÷åíèÿ áåçîïàñíîñòè ÁÑÑ, êàê èäðóãèõ áåñïðîâîäíûõ ñåòåé, óäåëÿåòñÿ ïîâûøåííîå âíèìàíèå â ïîñëåäíþþ äåêàäó. Äëÿïðîòèâîäåéñòâèÿ àòàêàì èñïîëüçóþò ìåõàíèçìû îáíàðóæåíèÿ ñòàòèñòè÷åñêèõ àíîìàëèéâ íàáëþäàåìûõ ïàðàìåòðàõ ÁÑÑ [93], [94]. Òàêæå öåëåñîîáðàçíî ðåàëèçîâàòü ýôôåêòèâ-íûå ìåõàíèçìû êîíòðîëÿ äîñòóïà ïîëüçîâàòåëåé [95] è ñîâåðøåíñòâîâàòü ñòðàòåãèè ðàç-ìåùåíèÿ ñòîêîâ [96], óêàçàííûå ìåðû ìîãóò çíà÷èòåëüíî ïîâûñèòü îòêàçîóñòîé÷èâîñòüñèñòåìû.

5. Ïîòåíöèàëüíûå ïðèëîæåíèÿ. Äàëåå ïðåäñòàâëåíû âîçìîæíûå ñåëüñêîõîçÿé-ñòâåííûå ïðèëîæåíèÿ, êîòîðûå ìîãóò áûòü ðåàëèçîâàíû ñ èñïîëüçîâàíèåì ÁÑÑ.

� Ñèñòåìà óïðàâëåíèÿ ïîëèâîì: ñîâðåìåííîå ñåëüñêîå õîçÿéñòâî òðåáóåò óñîâåðøåí-ñòâîâàííîé ñèñòåìû óïðàâëåíèÿ ïîëèâîì äëÿ îïòèìèçàöèè èñïîëüçîâàíèÿ âîäû â ñåëüñêîìõîçÿéñòâå [63], [97]. Åùå îäíîé ïðè÷èíîé íåîáõîäèìîñòè ïåðåäîâîé ñèñòåìû ÿâëÿåòñÿ òðå-âîæíîå ñíèæåíèå óðîâíÿ ãðóíòîâûõ âîä.  ýòîé ñèòóàöèè ìåòîäû ìèêðîïîëèâà ïîëåçíûñ òî÷êè çðåíèÿ çàòðàò è ýôôåêòèâíîñòè èñïîëüçîâàíèÿ âîäû [98]. Òåì íå ìåíåå, ýôôåê-òèâíîñòü ìèêðîïîëèâà ìîæåò áûòü äîïîëíèòåëüíî óëó÷øåíà ñ ïîìîùüþ èíôîðìàöèè îáîêðóæàþùåé ñðåäå è ïî÷âå.  ýòîì ñëó÷àå ÁÑÑ ïðèìåíÿþòñÿ â êà÷åñòâå êîîðäèíèðóþùåéòåõíîëîãèè [45], [61], [64].

� Ìîíèòîðèíã ñèñòåì çåìëåäåëèÿ.  íàñòîÿùåå âðåìÿ â ñåëüñêîì õîçÿéñòâå èñïîëüçó-þòñÿ ðàçëè÷íûå óñîâåðøåíñòâîâàííûå ñèñòåìû è óñòðîéñòâà. Óëó÷øåííàÿ ñèñòåìà óïðàâ-ëåíèÿ ýòèìè óñòðîéñòâàìè îáëåã÷àåò îáùóþ ðàáîòó è ïîçâîëÿåò îáåñïå÷èòü àâòîìàòèçà-öèþ â ñåëüñêîì õîçÿéñòâå [99]. Òàêæå òàêèå ñèñòåìû óäàëåííîãî ìîíèòîðèíãà ïîìîãàþòóñîâåðøåíñòâîâàòü óïðàâëåíèå â êðóïíûõ ñåëüñêîõîçÿéñòâåííûõ îáëàñòÿõ. Êðîìå òîãî,ïðè ââîäå äîïîëíèòåëüíîé èíôîðìàöèè, òàêîé êàê ñïóòíèêîâûå èçîáðàæåíèÿ è ïðîãíîçïîãîäû, ïðîèçâîäèòåëüíîñòü ñèñòåìû ìîæåò áûòü óëó÷øåíà.

� Áîðüáà ñ âðåäèòåëÿìè è áîëåçíÿìè: êîíòðîëèðóåìîå èñïîëüçîâàíèå ïåñòèöèäîâ èóäîáðåíèé ïîìîãàåò ïîâûñèòü êà÷åñòâî óðîæàÿ, à òàêæå ìèíèìèçèðóåò ñåáåñòîèìîñòü.Îäíàêî äëÿ êîíòðîëÿ çà èñïîëüçîâàíèåì ïåñòèöèäîâ íåîáõîäèìî êîíòðîëèðîâàòü âåðî-ÿòíîñòü è ïîÿâëåíèå âðåäèòåëåé â êóëüòóðàõ. ×òîáû ïðåäñêàçàòü ýòî, òàêæå òðåáóåòñÿèíôîðìàöèÿ îá îêðóæàþùåì êëèìàòå [60], [100], òàêàÿ êàê òåìïåðàòóðà, âëàæíîñòü èñêîðîñòü âåòðà. ÁÑÑ ìîæåò ñàìîñòîÿòåëüíî îòñëåæèâàòü è ïðîãíîçèðîâàòü ýòè ñîáûòèÿâ èíòåðåñóþùåé îáëàñòè [101].

� Êîíòðîëèðóåìîå èñïîëüçîâàíèå óäîáðåíèé: ðîñò ðàñòåíèé è êà÷åñòâî ñåëüñêîõîçÿé-ñòâåííûõ êóëüòóð íàïðÿìóþ çàâèñÿò îò èñïîëüçîâàíèÿ óäîáðåíèé. Îäíàêî îïòèìàëüíàÿïîñòàâêà óäîáðåíèé â íóæíûå ìåñòà â ïîëÿõ ÿâëÿåòñÿ ñëîæíîé çàäà÷åé. Èñïîëüçîâàíèåóäîáðåíèé äëÿ ñåëüñêîãî õîçÿéñòâà ìîæåò êîíòðîëèðîâàòüñÿ ïóòåì ìîíèòîðèíãà èçìåíå-íèÿ â ïî÷âåííûõ ïèòàòåëüíûõ âåùåñòâàõ, òàêèõ êàê àçîò, ôîñôîð, êàëèé è pH. Ñëåäîâà-òåëüíî, òàêæå ìîæåò áûòü äîñòèãíóò áàëàíñ ïèòàíèÿ ïî÷âû, è, ñëåäîâàòåëüíî, êà÷åñòâîñåëüñêîõîçÿéñòâåííûõ êóëüòóð òàêæå ñîõðàíÿåòñÿ.  [102] áûëà èçó÷åíà ýôôåêòèâíîñòüìîáèëüíûõ óçëîâ äëÿ ïîâûøåíèÿ ïðîèçâîäèòåëüíîñòè ñåëüñêîãî õîçÿéñòâà â èíòåëëåêòó-àëüíîé ñèñòåìå ñ ïðåöèçèîííûìè ñïðåÿìè.

� Ìîíèòîðèíã äâèæåíèÿ êðóïíîãî ðîãàòîãî ñêîòà: ñòàäî ñêîòà, ïàñóùåãî ïîëå, ìîæíîêîíòðîëèðîâàòü ñ èñïîëüçîâàíèåì òåõíîëîãèè ÁÑÑ èëè ðàäèî÷àñòîòíîãî èäåíòèôèêàòîðà(RFID) [67], [103]. Òàêèì îáðàçîì, ìîíèòîðèíã ëþáîãî êðóïíîãî ðîãàòîãî ñêîòà â ðåàëüíîìâðåìåíè, òàêæå ìîæåò áûòü îñóùåñòâëåí. Äàëåå ýòà òåõíîëîãèÿ ìîæåò áûòü ðåàëèçîâàíà,÷òîáû êîíòðîëèðîâàòü, ïåðåìåùàåòñÿ ëè êàêîé-ëèáî êðóïíûé ðîãàòûé ñêîò âáëèçè ïîëåéðàñòèòåëüíîñòè èëè íåò.

Page 19: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 19

� Ìîíèòîðèíã êà÷åñòâà ãðóíòîâûõ âîä: óâåëè÷åíèå èñïîëüçîâàíèÿ óäîáðåíèé è ïå-ñòèöèäîâ ïðèâîäèò ê ñíèæåíèþ êà÷åñòâà ãðóíòîâûõ âîä. Ðàçìåùåíèå ñåíñîðíûõ óçëîâ,íàäåëåííûõ áåñïðîâîäíîé ñâÿçüþ, ïîìîãàåò êîíòðîëèðîâàòü êà÷åñòâî âîäû [39], [104].

� Ìîíèòîðèíã ïàðíèêîâûõ ãàçîâ: ïàðíèêîâûå ãàçû è ñåëüñêîå õîçÿéñòâî òåñíî ñâÿçà-íû äðóã ñ äðóãîì. Ïàðíèêîâûå ãàçû îòâå÷àþò çà ïîâûøåíèå êëèìàòè÷åñêîé òåìïåðàòóðûè, ñëåäîâàòåëüíî, îêàçûâàþò íåïîñðåäñòâåííîå âëèÿíèå íà ñåëüñêîå õîçÿéñòâî. Ñ äðóãîéñòîðîíû, âûáðîñû ïàðíèêîâûõ ãàçîâ ïðîèñõîäÿò èç ðàçëè÷íûõ ñåëüñêîõîçÿéñòâåííûõ èñ-òî÷íèêîâ.  [105] ïðåäñòàâëåíà ðàçðàáîòêà ñèñòåìû íà ñîëíå÷íûõ áàòàðåÿõ áåñïèëîòíûõëåòàòåëüíûõ àïïàðàòîâ (ÁÏËÀ) è ÁÑÑ äëÿ ìîíèòîðèíãà ïàðíèêîâûõ ãàçîâ � CH4 è CO2.

� Îòñëåæèâàíèå àêòèâîâ: áåñïðîâîäíàÿ òåõíîëîãèÿ, ïîçâîëÿþùàÿ äèñòàíöèîííî ñëå-äèòü [106] çà ôåðìåðñêèì îáîðóäîâàíèåì. Ôåðìåð ìîæåò îòñëåæèâàòü ïîëîæåíèå ñåëüñêî-õîçÿéñòâåííûõ ìàøèí è ñèñòåì ïîëèâà èç ñâîåãî äîìà.

� Äèñòàíöèîííîå óïðàâëåíèå è äèàãíîñòèêà: ñ ïîÿâëåíèåì Èíòåðíåòà âåùåé ñòàëèâîçìîæíû äèñòàíöèîííîå óïðàâëåíèå è äèàãíîñòèêà ñåëüñêîõîçÿéñòâåííîãî îáîðóäîâàíèÿ,òàêîãî êàê íàñîñû, îãíè, îáîãðåâàòåëè, êëàïàíû â ìàøèíàõ [107], [108].

6. Ïðîåêòèðîâàíèå ÁÑÑ äëÿ ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé. Îñíîâûâà-ÿñü íà ïåðåìåùåíèè ñåòåâûõ óñòðîéñòâ è óçëîâ, ìîæíî êëàññèôèöèðîâàòü ñóùåñòâóþùèåàðõèòåêòóðû ÁÑÑ äëÿ ñåëüñêîãî õîçÿéñòâà:

� Ñòàöèîíàðíàÿ àðõèòåêòóðà: â ñòàöèîíàðíîé àðõèòåêòóðå ñåíñîðíûå óçëû ðàçìåùà-þòñÿ â ôèêñèðîâàííîì ïîëîæåíèè, è â òå÷åíèå ñðîêà ïðèìåíåíèÿ ïðèëîæåíèÿ îíè íå ìå-íÿþò ñâîå ïîëîæåíèå. Êàê ïðàâèëî, òàêèå ïðèëîæåíèÿ, êàê ñèñòåìà óïðàâëåíèÿ ïîëèâîì,ìîíèòîðèíã êà÷åñòâà ãðóíòîâûõ âîä è êîíòðîëü íàä èñïîëüçîâàíèåì óäîáðåíèé, òðåáó-þò ñòàöèîíàðíûõ àðõèòåêòóð.  òàêèõ ïðèëîæåíèÿõ ñ íàçåìíûìè ÁÑÑ ñåíñîðíûå óçëû,ñîáèðàþùèå äàííûå, îáû÷íî ïîìåùàþòñÿ íàä ïîëåì. Îäíàêî â ïîäçåìíûõ ÁÑÑ ñåíñîð-íûå óçëû, ñîáèðàþùèå äàííûå, ðàçìåùåíû ïîä çåìëåé. Êðîìå òîãî, êàê ïîêàçàíî íà ðèñ.2, óçëû-ñáîðùèêè ìîãóò áûòü ïîìåùåíû ïîä çåìëþ äëÿ ñáîðà âñåõ äàííûõ ñ ïîäçåìíûõñåíñîðîâ è ñâÿçè ñ âíåøíèìè íàçåìíûìè ÁÑÑ.

� Ìîáèëüíàÿ àðõèòåêòóðà: ìîáèëüíûå àðõèòåêòóðû âêëþ÷àþò â ñåáÿ óñòðîéñòâà, êî-òîðûå ñî âðåìåíåì ìåíÿþò ñâîå ïîëîæåíèå. Ïðèìåðîì ïðèëîæåíèé, îñíîâàííûõ íà òàêîéàðõèòåêòóðå, ÿâëÿåòñÿ àâòîíîìíàÿ ñåòü òðàêòîðîâ è ôåðìåðîâ, èñïîëüçóþùèõ ìîáèëüíûåòåëåôîíû, ñëóæàùèå äëÿ ñåëüñêîõîçÿéñòâåííûõ îïåðàöèé.

� Ãèáðèäíàÿ àðõèòåêòóðà.  ãèáðèäíîé àðõèòåêòóðå ïðèñóòñòâóþò êàê ñòàöèîíàðíûå,òàê è ìîáèëüíûå óçëû. Íàïðèìåð, ýòîò òèï àðõèòåêòóðû ïðèìåíèì ê ñåëüñêîõîçÿéñòâåí-íûì ïðèëîæåíèÿì, ñîñòîÿùèì èç ñòàöèîíàðíûõ ïîëåâûõ äàò÷èêîâ, ìîáèëüíûõ ôåðìåð-ñêèõ óñòàíîâîê, ïîëüçîâàòåëåé, èñïîëüçóþùèõ ìîáèëüíûå òåëåôîíû, è ïåðåìåùåíèÿ ñêî-òà.

 çàâèñèìîñòè îò òèïà ñåíñîðíûõ óçëîâ è ñâÿçàííûõ ñ íèìè óñòðîéñòâ, ñóùåñòâóþùàÿàðõèòåêòóðà, èñïîëüçóåìàÿ â ñåëüñêîì õîçÿéñòâå, êëàññèôèöèðóåòñÿ ñëåäóþùèì îáðàçîì:

� Îäíîðîäíàÿ àðõèòåêòóðà. Êàê ñëåäóåò èç íàçâàíèÿ, îäíîðîäíàÿ àðõèòåêòóðà âêëþ-÷àåò â ñåáÿ ñåíñîðû, îñíàùåííûå óñòðîéñòâàìè ñ îäèíàêîâûì ïîòåíöèàëîì. Ýòîò òèïñòðóêòóðû îáû÷íî èñïîëüçóåòñÿ â ïðèëîæåíèÿõ, îñíîâàííûõ íà íåçàïëàíèðîâàííûõ ðàç-ìåùåíèÿõ.  òàêèõ îáñòîÿòåëüñòâàõ ñåòü ðàçìåùàåòñÿ ãëàâíûì îáðàçîì äëÿ ìîíèòîðèíãàòðåáóåìûõ ïàðàìåòðîâ ñåëüñêîãî õîçÿéñòâà íà ìåñòå. Îäíàêî ýòîò òèï àðõèòåêòóðû íå èìå-åò áîëüøîãî ðàçíîîáðàçèÿ â ïëàíå àïïàðàòíîãî îáåñïå÷åíèÿ ñâÿçè. Ñëåäîâàòåëüíî, ñõåìûè ïðîòîêîëû ñâÿçè ðàçðàáîòàíû ñ ó÷åòîì ýòîãî îãðàíè÷åíèÿ. Îäíèì èç ïðèìåðîâ ïðèìå-íåíèÿ òàêîãî òèïà àðõèòåêòóðû ÿâëÿåòñÿ ïðèìåíåíèå ñáîðà ñåëüñêîõîçÿéñòâåííûõ äàííûõ

Page 20: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

20 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

â îòíîøåíèè èñïîëüçîâàíèÿ ïåñòèöèäîâ è èçìåíåíèÿ êîëè÷åñòâà ïèòàòåëüíûõ âåùåñòâ âïî÷âå.

� Íåîäíîðîäíàÿ àðõèòåêòóðà: â ýòîì òèïå àðõèòåêòóðû ïðèñóòñòâóþò ðàçëè÷íûå òè-ïû ñåíñîðíûõ óçëîâ è óñòðîéñòâ. Ýòè óñòðîéñòâà ðàçëè÷àþòñÿ â âû÷èñëèòåëüíîé ìîù-íîñòè, ïàìÿòè, ÷óâñòâèòåëüíîñòè ïðèåìîïåðåäàò÷èêîâ. Íàïðèìåð, â ëþáîì ïðèëîæåíèèóïðàâëåíèÿ ïîëèâîì ñåíñîðíûå óçëû ïåðåäàþò ñâîþ ñîáðàííóþ èíôîðìàöèþ íà ãëàâíûéèëè ïðèåìíûé óçåë, êîòîðûé ñíîâà ïåðåäàåò èíôîðìàöèþ óäàëåííîìó ïîëüçîâàòåëþ. Âýòîì ñëó÷àå óçåë áàçîâîé ñòàíöèè ñïîñîáåí îñóùåñòâëÿòü ñâÿçü â íåñêîëüêèõ ðåæèìàõ �RF è GSM. Äðóãèì âîçìîæíûì ïðèëîæåíèåì ìîæåò áûòü ìîíèòîðèíã ñèñòåì âåäåíèÿñåëüñêîãî õîçÿéñòâà è îòñëåæèâàíèå ñåëüñêîõîçÿéñòâåííûõ àêòèâîâ. Ìîäåëü ïðèëîæåíèÿ,ïîêàçàííàÿ íà ðèñ. 1, èçîáðàæàåò íåîäíîðîäíóþ àðõèòåêòóðó. Íà ðèñ. 1 ïîëåâîé ñåíñîð èóçëû-øëþçû èìåþò ðàçíûå êîíôèãóðàöèè.

Àðõèòåêòóðû êëàññèôèöèðóþòñÿ ïî ðàçëè÷íûì êàòåãîðèÿì íà îñíîâå èåðàðõèè.� Îäíîóðîâíåâàÿ àðõèòåêòóðà: ýòîò òèï àðõèòåêòóðû íàèáîëåå ðàñïðîñòðàíåí ñðåäè

ñåëüñêîõîçÿéñòâåííûõ ïðèëîæåíèé, â ÷àñòíîñòè, íåáîëüøèõ ïðèëîæåíèé.  ýòîì òèïå àð-õèòåêòóðû óñòðîéñòâà íà ïîëå è ñåíñîðíûå óçëû íåïîñðåäñòâåííî ïåðåäàþò ñâîè äàííûåíà áàçîâóþ ñòàíöèþ, ðàñïîëîæåííóþ ðÿäîì ñ îáëàñòüþ ïðèëîæåíèÿ. Ýòîò òèï àðõèòåê-òóðû òàêæå íàçûâàåòñÿ åäèíîé êëàñòåðíîé àðõèòåêòóðîé.

� Ìíîãîóðîâíåâàÿ àðõèòåêòóðà.  ìíîãîóðîâíåâîé àðõèòåêòóðå â îáùåé èåðàðõèè ïðè-ëîæåíèé åñòü íåñêîëüêî óðîâíåé. Ñåíñîðíûå óçëû íà ïîëå íàõîäÿòñÿ íà áîëåå íèçêîìóðîâíå èåðàðõèè è îáðàçóþò îñíîâíûå êëàñòåðû. Âïîñëåäñòâèè ñëåäóþùèå óðîâíè èåðàð-õèè âêëþ÷àþò â ñåáÿ íåñêîëüêî êëàñòåðîâ äëÿ äîñòóïà ê óçëàì �øëþçàì. Êàê ïðàâèëî,ìíîãîóðîâíåâûå àðõèòåêòóðû ñîñòîÿò èç íåîäíîðîäíûõ óçëîâ.

Íà ðèñ. 4 ïîêàçàíà ìíîãîóðîâíåâàÿ àðõèòåêòóðà ñ òðåìÿ óðîâíÿìè óçëîâ-øëþçîâ. Áà-çîâûé áëîê ñåòè ôîðìèðóåòñÿ êëàñòåðîì, ñîñòîÿùèì èç ñåíñîðíûõ óçëîâ è ãîëîâû êëàñòå-ðà, íàçûâàåìûì óçëîì-øëþçîì 3-ãî óðîâíÿ íà ðèñóíêå. Ýòè óçëû-øëþçû ñíîâà îáðàçóþòêëàñòåð ñ óçëàìè-øëþçàìè 2-ãî óðîâíÿ â êà÷åñòâå ãîëîâû êëàñòåðà, è, ñëåäîâàòåëüíî,èåðàðõèÿ âûïîëíÿåòñÿ èòåðàòèâíî äî òåõ ïîð, ïîêà íå áóäåò äîñòèãíóòà óäàëåííàÿ áàçî-âàÿ ñòàíöèÿ.

7. Ìèðîâîé îïûò ïðèìåíåíèÿ ÁÑÑ â ñåëüñêîì õîçÿéñòâå.

7.1. Ôèíèêîâûå ïàëüìîâûå ñàäû. Ïîñêîëüêó ôèíèêîâûå ïàëüìû ÿâëÿþòñÿ âàæíîé êîì-ìåð÷åñêîé êóëüòóðîé, øèðîêî êóëüòèâèðóåìîé â ïîëóçàñóøëèâûõ è çàñóøëèâûõ ðåãèîíàõ[122], â ïîñëåäíèå íåñêîëüêî ëåò áûëè ïðåäïðèíÿòû îãðîìíûå óñèëèÿ äëÿ èññëåäîâàíèÿâçàèìîñâÿçåé ìåæäó âîäîé äëÿ ïîëèâà, ðîñòîì äåðåâüåâ, ðàçìåðàìè ïëîäîâ è èõ êà÷åñòâîì[123�125]. ÁÑÑ ñòàëè ïîäõîäÿùèì èíñòðóìåíòîì äëÿ ýôôåêòèâíîãî ñáîðà è äîñòàâêè äàí-íûõ â ïàëüìîâûõ ñàäàõ.  [126] ïðîâåäåíî èññëåäîâàíèå õàðàêòåðèñòèê ðàñïðîñòðàíåíèÿè ðàñïðåäåëåíèÿ ñèãíàëà â ÁÑÑ â ôèíèêîâûõ ïàëüìîâûõ ñàäàõ. Èçìåðåíèÿ óðîâíÿ ïðè-íÿòîãî ñèãíàëà (RSSI) ïðîâîäèëèñü ñ àíòåííàìè, ðàáîòàþùèìè ñ äèàïàçîíîì 2,4 ÃÃö èðàñïîëîæåííûìè íà ðàññòîÿíèè 0,05 ì îò ñòâîëîâ. Ñðàâíèòåëüíûé àíàëèç ïîêàçàë, ÷òîëîãàðèôìè÷åñêàÿ ìîäåëü ÿâëÿåòñÿ íàèáîëåå òî÷íîé è óäîáíîé ñðåäè âñåõ ìîäåëåé îñëàá-ëåíèÿ ñèãíàëà äëÿ ïðîãíîçèðîâàíèÿ õàðàêòåðèñòèê ðàñïðîñòðàíåíèÿ áåñïðîâîäíîãî ñèã-íàëà íèçêîé ìîùíîñòè â ñàäàõ ôèíèêîâûõ ïàëüì. Äàëüíåéøèå èçìåðåíèÿ ïðîâîäèëèñüäëÿ èññëåäîâàíèÿ ðàñïðåäåëåíèÿ ìîùíîñòè ïðèíÿòîãî ñèãíàëà âîêðóã îòäåëüíûõ ñòâîëîâè ìåæäó ñàäàìè ðàçíûõ âîçðàñòîâ. Äëÿ ýêñïåðèìåíòà áûëè âçÿòû äâà ïàëüìîâûõ ñàäà,â îäíîì íàõîäèëèñü äåñÿòèëåòíèå, â äðóãîì ïÿòíàäöàòèëåòíèå äåðåâüÿ. Íàäåæíûé äèà-ïàçîí ñâÿçè ïîêàçàë âîçðàñòàþùóþ òåíäåíöèþ ñ óâåëè÷åíèåì âîçðàñòà ñàäîâ. Áîëåå òîãî,

Page 21: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 21

Рис. 4. Приложение, основанное на многоуровневой архитектуре

Интернет

База данных

и сервер

Удаленная базовая

станция

Узел-

шлюз 1

уровня

Сенсорный

узел

Узел-шлюз

3 уровня Связь узел-шлюз –

узел-шлюз

Связь

сенсор –

узел-шлюз

Узел-

шлюз 2

уровня

Ðèñ. 4. Ïðèëîæåíèå, îñíîâàííîå íà ìíîãîóðîâíåâîé àðõèòåêòóðå

ñòâîëû îòðèöàòåëüíî âëèÿëè íà ðàñïðîñòðàíåíèå ñèãíàëà, à ñèëà ïîìåõ çàâèñåëà îò îòíî-øåíèÿ ïîëîæåíèÿ ìåæäó ñòâîëàìè, àíòåííàìè Tx è Rx. Íàêîíåö, áûëè äàíû êîíêðåòíûåè ïîäðîáíûå ðåêîìåíäàöèè äëÿ ðàçìåùåíèÿ ÁÑÑ â ñàäàõ ôèíèêîâûõ ïàëüì.

7.2.Óïðàâëåíèå ïîëèâîì.  [75] îïèñàíû ðàçðàáîòêà è ðàçìåùåíèå àâòîìàòèçèðîâàííîéñèñòåìû ïîëèâà, ñîñòîÿùåé èç ðàñïðåäåëåííîé ÁÑÑ, óçëà-øëþçà è óäàëåííîãî ñåðâåðà.Ïðîåêò áûë ïîñâÿùåí âíåäðåíèþ ñèñòåìû ÁÑÑ, ñïîñîáíîé ñîêðàòèòü èñïîëüçîâàíèå âî-äû.  äàííîì èññëåäîâàíèè ÁÑÑ ñîñòîèò èç ñåíñîðîâ, èçìåðÿþùèõ âëàæíîñòü ïî÷âû èòåìïåðàòóðû, ïîãðóæåííûõ â çåìëþ äëÿ èçìåðåíèÿ ïîêàçàòåëåé íà ðàçíûõ ãëóáèíàõ. Óóçëà-øëþçà åñòü âñòðîåííûå ñðåäñòâà, ïîääåðæèâàþùèå ñâÿçü ZigBee [112�114] è GPRS.Îí òàêæå ìîæåò ïðèíèìàòü èíòåëëåêòóàëüíûå ðåøåíèÿ, òàêèå êàê àâòîìàòè÷åñêàÿ àêòè-âàöèÿ ïîëèâà, çàâèñÿùàÿ îò çíà÷åíèé âëàæíîñòè ïî÷âû è òåìïåðàòóðû, ïðåâûøàþùèõîïðåäåëåííîå ïðåäîïðåäåëåííîå ïîðîãîâîå çíà÷åíèå. Óäàëåííûé ñåðâåð èñïîëüçóåòñÿ äëÿõðàíåíèÿ âñåé èíôîðìàöèè è îòîáðàæåíèÿ èíôîðìàöèè â ãðàôè÷åñêîì èíòåðôåéñå (GUI).Ïðåèìóùåñòâîì ýòîãî ïðèëîæåíèÿ ÿâëÿåòñÿ åãî ñïîñîáíîñòü àíàëèçà äàííûõ â ðåæèìå ðå-àëüíîãî âðåìåíè. Êîìïîíåíòû ñèñòåìû îïðåäåëÿþòñÿ ñëåäóþùèì îáðàçîì:

� Áåñïðîâîäíûå ñåíñîðíûå áëîêè (àíãë. WSU): êàæäûé WSU, ðàçìåùåííûé íà ïîëå,èìååò ÷åòûðå ðàçíûõ òèïà êîìïîíåíòîâ: ñïåöèàëüíûå äàò÷èêè, ïðîöåññîð, ðàäèîïðèåìíèêè àêêóìóëÿòîð. Äëÿ ýêîíîìèè ýíåðãèè ìèêðîêîíòðîëëåð ÷àñòî îñòàåòñÿ â ñïÿùåì ðåæè-ìå. Ïàíåëü ñîëíå÷íûõ áàòàðåé ïîäêëþ÷àåòñÿ ê êàæäîìó èç WSU äëÿ ïîäçàðÿäêè ñâîèõáàòàðåé.

Page 22: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

22 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

� Áåñïðîâîäíîé èíôîðìàöèîííûé áëîê (àíãë. WIU): WIU äåéñòâóåò êàê ãëàâíûé óçåëè ñîáèðàåò èíôîðìàöèþ èç WSU ñ èñïîëüçîâàíèåì òåõíîëîãèè ZigBee. Âñÿ ïîëó÷åííàÿèíôîðìàöèÿ î âëàæíîñòè è òåìïåðàòóðå ïî÷âû ñðàâíèâàåòñÿ ñ ïðåäîïðåäåëåííûìè ïî-ðîãîâûìè çíà÷åíèÿìè, è, äàëåå, íàñîñû àêòèâèðóþòñÿ â òå÷åíèå ðàññ÷èòàííîãî ïåðèîäà.Ïîëó÷åííûå äàííûå è äàííûå, ñâÿçàííûå ñ ïîëèâîì, ñîõðàíÿþòñÿ â ïðèêðåïëåííîé òâåð-äîòåëüíîé ïàìÿòè è ïåðåäàþòñÿ íà óäàëåííûé ñåðâåð ÷åðåç GPRS ñ èñïîëüçîâàíèåì ïðî-òîêîëà ïåðåäà÷è ãèïåðòåêñòà (HTTP). Íàñîñû óïðàâëÿþòñÿ äâóìÿ ýëåêòðîííûìè ðåëå.Ïî êîìàíäå WIU ìîæåò áûòü èçìåíåí ãðàôèê ïîëèâà ñ óäàëåííîãî ñåðâåðà, à òàêæå WIUîñíàùåí êíîïêîé äëÿ ðó÷íîãî ïîëèâà. Ðàññìàòðèâàåòñÿ ÷åòûðå ðàçëè÷íûõ èððèãàöèîí-íûõ äåéñòâèÿ (ÈÀ) � ðó÷íîé ïîëèâ, ïðåäîïðåäåëåííûé ïîëèâ, àâòîìàòè÷åñêèé ïîëèâ ïîðåçóëüòàòàì äàííûõ î ïî÷âåííîé âëàæíîñòè, ïî ìåíüøåé ìåðå, îäíîãî ñåíñîðà, ïîíèæà-þùåãîñÿ íèæå ïîðîãà, è àâòîìàòè÷åñêèé ïîëèâ ïî ðåçóëüòàòàì äàííûõ î òåìïåðàòóðåïî÷âû, ïî ìåíüøåé ìåðå, îäíîãî ñåíñîðà, ïðåâûøàþùåãî ïîðîã.

� Óäàëåííûé âåá-ñåðâåð: íà ñåðâåðå îòîáðàæàåòñÿ îïðåäåëåííûé ãðàôè÷åñêèé èíòåð-ôåéñ, êîòîðûé âèçóàëèçèðóåò äàííûå èç êàæäîãî WSU, îáùåãî ïîòðåáëåíèÿ âîäû è òèïàÈÀ. Âåá-ïðèëîæåíèå òàêæå ïîçâîëÿåò ïîëüçîâàòåëþ ïðÿìî ïðîãðàììèðîâàòü çàïëàíèðî-âàííûå ñõåìû ïîëèâà è èçìåíÿòü ïîðîãîâûå çíà÷åíèÿ â çàâèñèìîñòè îò òèïà è ñåçîíàïîñåâà.

Åùå îäèí ïðèìåð ïðèìåíåíèÿ ÁÑÑ � âåá-ñàéò Smart Sensor: ñèñòåìà Smart SensorWeb (SSW), ïðåäëîæåííàÿ [127], ââîäèò íîâóþ òåõíîëîãèþ äëÿ èíòåëëåêòóàëüíîé ñåíñîð-íîé âåá-ñèñòåìû, èçìåðÿþùóþ ïîâåðõíîñòíûé ïðîôèëü âëàæíîñòè íà ãëóáèíå â ïîëåâûõñåíñîðàõ. Áîòàíè÷åñêèé ñàä Ìàòòåé Ìè÷èãàíñêîãî óíèâåðñèòåòà â Àíí-Àðáîðå, Ìè÷èãàí,áûë âûáðàí â êà÷åñòâå ðàéîíà ðàçìåùåíèÿ ñåíñîðîâ íà ïîëå. Ñåíñîðû áûëè ðàçìåùåíûäëÿ ìîäåëèðîâàíèÿ ïðîñòðàíñòâåííî-âðåìåííûõ èçìåíåíèé âëàæíîñòè ïî÷âû, äëÿ îáåñïå-÷åíèÿ ñïóòíèêîâîãî íàáëþäåíèÿ çà âëàæíîñòüþ ïî÷âû. ×òîáû ñâåñòè ê ìèíèìóìó îáùóþñòîèìîñòü è ýêîíîìèþ ýíåðãèè, àâòîðû ïëàíèðóþò âûáîðî÷íî îòîáðàæàòü äàííûå ñåíñî-ðîâ.

Sensor Web, ðóêîâîäñòâóåòñÿ èíòåëëåêòîì ñèñòåìû óïðàâëåíèÿ äëÿ âûáîðà îïòèìàëü-íîé ñòðàòåãèè âûáîðà ñåíñîðîâ. Çàäà÷à ïîèñêà îïòèìàëüíîé ñòðàòåãèè è îöåíêè ïàðàìåòðàìîäåëèðóåòñÿ ñ èñïîëüçîâàíèåì ÷àñòè÷íî íàáëþäàåìîãî Ìàðêîâñêîãî ïðîöåññà ïðèíÿòèÿðåøåíèé [128]. Íåñêîëüêî óçëîâ ïðèâîäà ðàçìåùàþòñÿ ñ íåñêîëüêèìè ñåíñîðàìè, ðàñïî-ëîæåííûìè íà ðàçíûõ ãëóáèíàõ. Ïîñëå ïîëó÷åíèÿ ïîêàçàíèé îò ïðèâîäîâ öåíòðàëüíûéêîîðäèíàòîð îöåíèâàåò ïðîñòðàíñòâåííîå èçìåíåíèå âëàæíîñòè ïî÷âû. Çàòåì êîîðäèíà-òîð ñòðîèò ãðàôèê áóäóùèõ èçìåðåíèé. Òàêèì îáðàçîì, êîîðäèíàöèîííûé óçåë èñïîëüçóåòïðîñòðàíñòâåííî-âðåìåííóþ êîððåëÿöèþ âëàæíîñòè ïî÷âû è îïòèìàëüíî îöåíèâàåò åå ñóìåíüøåííûì ÷èñëîì èçìåðåíèé.

 [129] ïðåäñòàâëåíà àâòîìàòè÷åñêàÿ ñèñòåìà îòáîðî÷íîãî ïîëèâà, ïðåäíàçíà÷åííàÿäëÿ óñòðàíåíèÿ äðåíàæà õâîñòîâîé âîäû ïðè âûðàùèâàíèè ëþöåðíû. Ðàáîòà âûïîëíåíàíà èëîíî-ñóãëèíèñòîé ïî÷âå Éîëî â êàìïóñå UC Davis, Êàëèôîðíèÿ, ÑØÀ, ãäå ëþöåðíàñ÷èòàåòñÿ êóëüòóðîé, ïîòðåáëÿþùåé áîëüøîå êîëè÷åñòâî âîäû. Ðàíüøå äëÿ ýòîãî óðîæàÿèñïîëüçîâàëñÿ ìåòîä íàâîäíåíèÿ. Îäíàêî ñòîê âîäû ñíèæàåò ýôôåêòèâíîñòü ýòîãî ìåòî-äà. Äëÿ ðåøåíèÿ ýòîé ïðîáëåìû àâòîðû ðàçðàáîòàëè áåñïðîâîäíóþ ñåíñîðíóþ ñèñòåìó,êîòîðàÿ ïðåäîñòàâëÿåò èíôîðìàöèþ î ïîëèâå îò äàëüíåãî êîíöà ïîëÿ. Ðåàëèçàöèÿ ñèñòå-ìû îñóùåñòâëÿåòñÿ ïóòåì ïðèìåíåíèÿ ìîäåëè ïðîäâèæåíèÿ âîäû ê ïîëåâîìó ðàçìåùåíèþïàðû ñåíñîðîâ ñ ñîòîâîé ñâÿçüþ. Ôåðìåð-èððèãàòîð ïîëó÷àåò SMS-óâåäîìëåíèå î âðåìåíèîñòàíîâêè ïîëèâî÷íîé ñèñòåìû.

Page 23: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 23

 ðàáîòå [130] îïèñàíà ñèñòåìà óïðàâëåíèÿ ïîëèâîì äåðíà, êîòîðàÿ ñîçäàíà äëÿ ïðåäî-ñòàâëåíèÿ ýôôåêòèâíûõ ðåøåíèé óïðàâëåíèÿ âîäíûìè ðåñóðñàìè ïî äîñòóïíîé öåíå. Ýòîîáëà÷íàÿ ñèñòåìà óïðàâëåíèÿ, â êîòîðîé ðàññìàòðèâàþòñÿ ðàçëè÷íûå ïàðàìåòðû ïîëÿ,òàêèå êàê Evapotranspiration (ET), ïîãîäíûå óñëîâèÿ, ïîòîê âîäû è óòå÷êà. Äîñòóï êóïðàâëåíèþ ïðèëîæåíèÿìè âîçìîæåí ñ ëþáîãî êîìïüþòåðà, ïëàíøåòà èëè ñìàðòôîíà.

7.3.Ìîíèòîðèíã âèíîãðàäíèêîâ. Ðàññìîòðèì ïðèìåíåíèå øèðîêîìàñøòàáíûõ è ìî-áèëüíûõ âû÷èñëèòåëüíûõ òåõíîëîãèé â ìîíèòîðèíãå âèíîãðàäíèêîâ äëÿ ïîâûøåíèÿ êà÷å-ñòâà ïðîäóêöèè è ñíèæåíèÿ ñåáåñòîèìîñòè ïðîäóêöèè è âëèÿíèÿ çàáîëåâàíèé, ñâÿçàííûõñ êóëüòóðîé.  êà÷åñòâå ïðèìåðà âîçüìåì èññëåäîâàíèå [57], ïîñâÿùåííîå ìîíèòîðèíãóïðîèçâîäñòâà âèíîãðàäíèêîâ. Ðàçìåùåíèå ÁÑÑ ïîìîãàåò îöåíèòü èçìåí÷èâîñòü ïàðàìåò-ðîâ ñåëüñêîãî õîçÿéñòâà íà âñåé òåððèòîðèè. Ïåðâîíà÷àëüíî íà ïåðâîì ýòàïå àâòîðû äåëÿòïðåäìåòíûé ëàíäøàôò íà íåñêîëüêî ðàçíûõ çîí (çîíû A, B, C) íà îñíîâå ãåîãðàôè÷åñêèõ,ìåòåîðîëîãè÷åñêèõ è ïî÷âåííûõ êàðò. Íà ýòàïå ïëàíèðîâàíèÿ ñåòè íàèáîëåå ïîäõîäÿùàÿàðõèòåêòóðà âûáèðàåòñÿ íà îñíîâå òðåáîâàíèé ïðèëîæåíèÿ. Ðàçìåð îáëàñòè îáúåêòà ñî-ñòàâëÿë 600 ì × 450 ì, à ðàçíûå ñåíñîðû áûëè ïîìåùåíû â ðàçíûå çîíû. Íàïðèìåð,àâòîðû ïðåäïîëîæèëè, ÷òî â çîíå Ñ áóäóò ðàçìåùåíû ñåíñîðû, èçìåðÿþùèå òåìïåðàòóðó,âëàæíîñòü, âëàæíîñòü ïî÷âû, îñâåùåííîñòü è óðîâåíü ðÍ.  çîíàõ A è B, ñîîòâåòñòâåííî,áûëè óñòàíîâëåíû ñåíñîðû, èçìåðÿþùèå òåìïåðàòóðó, âëàæíîñòü è òåìïåðàòóðó îêðóæà-þùåé ñðåäû, à òàêæå ñåíñîðû îñâåùåííîñòè. Ïðåäïîëàãàåòñÿ, ÷òî ñåíñîðíûå óçëû èìåþòäèàïàçîí ïåðåäà÷è 75�100 ì. Óçëû â ðàçíûõ çîíàõ îáðàçóþò ìåæäó ñîáîé âèðòóàëüíóþäðåâîâèäíóþ ñòðóêòóðó, è âîñïðèíèìàåìàÿ èíôîðìàöèÿ äîñòèãàåò óçëà-øëþçà ïî ïóòè ñíåñêîëüêèìè ïåðåõîäàìè.

Ðàññìàòðèâàþòñÿ ÷åòûðå òèïà óçëîâ � ñåíñîð, ïðèâîä, èçáûòî÷íûå óçëû è óçåë-øëþç.Ñåíñîðû ìîãóò òîëüêî ñîáèðàòü äàííûå, à èíôîðìàöèÿ íàïðàâëÿåòñÿ íà óçåë-øëþç. Óçëûïðèâîäà ñíàáæåíû ïðèâîäíûìè ñèñòåìàìè ïîëèâà. Ïðèâîäû òàêæå ìîãóò ðåàãèðîâàòü íàçàäàííûå êîìàíäû î ïëàíèðîâàíèè ïîëèâà. Èçáûòî÷íûå óçëû ïîìîãàþò â ìàðøðóòèçàöèèèíôîðìàöèè è èìèòèðóþò ôóíêöèîíàëüíîñòü íåèñïðàâíûõ óçëîâ. Óçåë-øëþç äåéñòâóåòêàê ìîñò ìåæäó ñåòüþ è áàçîâîé ñòàíöèåé. Íà ïðîòîêîë ìàðøðóòèçàöèè âîçëîæåí âûáîðëó÷øåãî ñîñåäíåãî óçëà. Ñõåìà ìàðøðóòèçàöèè òàêæå ìîæåò ó÷èòûâàòü íåîáõîäèìîñòüðàöèîíàëüíîãî èñïîëüçîâàíèÿ ýíåðãèè, è â òàêîì ñëó÷àå äèàãîíàëüíî ðàñïîëîæåííûå óçëûíå âûáèðàþòñÿ äëÿ ñëåäóþùåãî ïåðåõîäà.

7.4.Òî÷íîå çåìëåäåëèå. Òî÷íîå çåìëåäåëèå íàöåëåíî íà ïîâûøåíèå ïðîèçâîäèòåëüíîñòèè ñíèæåíèå çàòðàò. Áåñïðîâîäíûå äèíàìè÷åñêèå è ñåíñîðíûå ñåòè èñïîëüçóþòñÿ â òî÷íîìñåëüñêîì õîçÿéñòâå äëÿ ñáîðà ïîëåâûõ äàííûõ, êîòîðûå çàòåì ìîæíî ïðîàíàëèçèðîâàòü,÷òîáû íàéòè íàèëó÷øèå óñëîâèÿ äëÿ âåäåíèÿ ñåëüñêîãî õîçÿéñòâà.

 èññëåäîâàíèè [54] àâòîðû ïðåäëîæèëè èñïîëüçîâàòü âèäåîíàáëþäåíèå äëÿ êîíòðîëÿèñïîëüçîâàíèÿ óäîáðåíèé â ñåëüñêîõîçÿéñòâåííîé îáëàñòè. Çàäà÷åé ðàáîòû áûëî ñîõðà-íåíèå ýíåðãîýôôåêòèâíîñòè è ñîêðàùåíèå èñïîëüçîâàíèÿ óäîáðåíèé â ïðîèçâîäñòâå. Âäàííîé ðàáîòå äðîíû ðàñøèðåííîé ðåàëüíîñòè (àíãë. AR) èñïîëüçóþòñÿ äëÿ âèäåîñúåì-êè íà ïîëå. Îñíîâûâàÿñü íà ïîëó÷åííîì âèäåî, ñèñòåìà èäåíòèôèöèðóåò è ãåîïîçèðóåòñîðíÿêè, ïðèñóòñòâóþùèå â ïîëå. Íàêîíåö, ñèñòåìà ðàñïûëèòåëÿ óäîáðåíèé ïðèâîäèòñÿ âäåéñòâèå íà îñíîâå îáðàáîòàííîé ëîêàëèçîâàííîé èíôîðìàöèè î ñîðíÿêàõ â ïîëÿõ.

Íà ðèñ. 5 ïðåäñòàâëåí îáçîð ñèñòåìû, ïîêàçûâàþùèé âçàèìîäåéñòâèå ìåæäó áåñïèëîò-íûìè ëåòàòåëüíûìè àïïàðàòàìè AR, öåíòðàëüíîé ñèñòåìîé è ðàñïûëèòåëÿìè óäîáðåíèé.Çäåñü íàáëþäàåìàÿ ïëîùàäü ïîëÿ ñîñòàâëÿëà 17 ì íà 15 ì. Áåñïèëîòíûå ëåòàòåëüíûå àï-ïàðàòû îáðàçóþò äèíàìè÷åñêóþ ñåòü ìåæäó ñîáîé è öåíòðàëüíîé ñèñòåìîé.  ýòîé ðàáîòå

Page 24: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

24 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

Рис. 3. Обзор системы видеосъемки на основе системы точного земледелия

Динамическая сеть

Распылитель

удобрений

Дроны

Дроны

Дроны

Центральная

система

Сельскохозяйственное поле

Ðèñ. 5. Îáçîð ñèñòåìû âèäåîñúåìêè íà îñíîâå ñèñòåìû òî÷íîãî çåìëåäåëèÿ

ïðèìåíÿåòñÿ ïðîòîêîë ìàðøðóòèçàöèè ñ ôèêñèðîâàííîé ñâÿçüþ äëÿ ïåðåäà÷è èíôîðìà-öèè îò ïîëåâûõ áåñïèëîòíèêîâ â öåíòðàëüíóþ ñèñòåìó â ðåæèìå ðåàëüíîãî âðåìåíè. Êðî-ìå òîãî, äðîíû è äðóãèå óñòðîéñòâà îñíàùåíû âñòðîåííûì GPS-íàâèãàòîðîì, êîòîðûéïîçâîëÿåò îáíîâëÿòü êàðòó ïîëåòà è âû÷èñëÿòü ðàññòîÿíèå ìåæäó óñòðîéñòâàìè.

Âèäåîêàäðû, ïîëó÷åííûå îò ëåòàþùèõ áåñïèëîòíûõ ëåòàòåëüíûõ àïïàðàòîâ, îá-ðàáàòûâàþòñÿ è ïðèâÿçûâàþòñÿ ïî ãåîãðàôè÷åñêèì êàíàëàì â öåíòðàëüíîé ñèñòåìå.Îñíîâàííàÿ íà OpenCV2 ïëàòôîðìà èñïîëüçóåòñÿ äëÿ ðàñïîçíàâàíèÿ ñîðíÿêîâ â ïîëåâûõóñëîâèÿõ. Ìåñòà ñîðíÿêîâ â ïîëå ïåðåäàþòñÿ íà îïðûñêèâàòåëè óäîáðåíèé, êîòîðûå òî÷íîîïðûñêèâàþò ñîðíÿêè óäîáðåíèÿìè. Òàêèì îáðàçîì, èñïîëüçîâàíèå ýòîé òåõíîëîãèè óâå-ëè÷èâàåò îáùóþ ýôôåêòèâíîñòü ïðîèçâîäñòâà ïðè ñîêðàùåíèè èñïîëüçîâàíèÿ óäîáðåíèé[131].

Ñïèñîê ëèòåðàòóðû

1. Chen, N., Zhang, X., Wang, C. Integrated open geospatial web service enabled cyber-physicalinformation infrastructure for precision agriculture monitoring // Comput. Electron. Agric. 2015. N111, P. 78�91.

2. Misra, S., Krishna, P.V., Saritha, V., Agarwal, H., Shu, L., Obaidat, M. S. E�cient mediumaccess control for cyber-physical systems with heterogeneous networks // IEEE Syst. J. 2015. N 9 (1),P. 22�30.

3. Gonzalez-de-Soto, M., Emmi, L., Benavides, C., Garcia, I., Gonzalez-de-Santos, P. Reducingair pollution with hybrid-powered robotic tractors for precision agriculture //Biosystems Engineering,2016. V. 143, P. 79�94.

Page 25: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 25

4. Maurya, S., Jain, V. 2016. Fuzzy based energy e�cient sensor network protocol for precisionagriculture // Computers and Electronics in Agriculture. 2016. V. 130, P. 20�37.

5. Ngo, V., Woungang, I., Anpalagan, A., 2014. A schedule-based medium access control protocolfor mobile wireless sensor networks // Wirel. Commun. Mobile Comput. 2016. N 14 (6). P. 629�643.

6. Foughali, K., Fathalah, K., Ali, F. Monitoring system using web of things in precision agriculture// Procedia Computer Science. 2017. V. 110. P. 402�409.

7. Misra, S., Kar, P., Roy, A., Obaidat, M. S., 2014. Existence of dumb nodes in stationary wirelesssensor network // J. Syst. Softw. 2014. N 91.P. 135�146.

8. Qu, Y., Zhu, Y., Han, W., Wang, J., Ma, M. Crop leaf area index observations with a wirelesssensor network and its potential for validating remote sensing products // IEEE J. Sel. Top. Appl.Earth Observ. Rem. Sens. 2014. N 7 (2). P. 431�444.

9. Shakhov, V. Experiment Design for Parameter Estimation in Sensing Models // Springer LNCS.2013. V. 8072. P. 151�158.

10. Riquelme, J.A. L., Soto, F., Suard�iaz, J., S�anchez, P., Iborra, A., Vera, J. A. Wireless sensornetworks for precision horticulture in southern Spain // Comput. Electron. Agric. 2009. N 68 (1). P.25�35.

11. Garcia-Sanchez, A. J., Garcia-Sanchez, F., Garcia-Haro, J. Wireless sensor network deploymentfor integrating video-surveillance and data-monitoring in precision agriculture over distributed crops// Comput. Electron. Agric. 2011. N 75 (2). P. 288�303.

12. Camilli, A., Cugnasca, C. E., Saraiva, A.M., Hirakawa, A.R., Corr�ea, P. L. From wireless sensorsto �eld mapping: anatomy of an application for precision agriculture // Comput. Electron. Agric. 2007.N 58 (1). P. 25�36.

13. Behzadan, A., Anpalagan, A., Woungang, I., Ma, B., Chao, H.C. An energy e�cient utility-based distributed data routing scheme for heterogeneous sensor networks // Wirel. Commun. MobileComput. 2014. [Electron. Res.].: http://dx.doi.org/10.1002/wcm.2474.

14. Dhurandher, S.K., Sharma, D.K., Woungang, I., Saini, A. E�cient routing based on pastinformation to predict the future location for message passing in infrastructure-less opportunisticnetworks. J. Supercomput. 2014. [Electron. Res.].: http://dx.doi.org/10.1007/s11227-014-1243-5.

15. Postel, S. L. Entering an era of water scarcity: the challenges ahead //Ecol. Appl. 1999. N 10.P. 941�948.

16. Bouwer, H. Integrated water management: emerging issues and challenges // Agric. WaterManage. 2000. N 45 (3). P. 217�228.

17. Saleth, R., Dinar, A. Institutional changes in global water sector: trends, patterns, andimplications // Water Policy. 2000. N 2 (3). P. 175�199.

18. Jury, W.A., Vaux Jr., H. J. The emerging global water crisis: managing scarcity and con�ictbetween water users // Adv. Agron. 2007. N 95. P. 1�76.

19. Falloon, P., Betts, R. Climate impacts on european agriculture and water management in thecontext of adaptation and mitigation � the importance of an integrated approach // Sci. Total Environ.2010. N 408 (23). P. 5667�5687.

20. Mueller, N.D., Gerber, J. S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A. Closingyield gaps through nutrient and water management // Nature. 2012. N 490. P. 254�257.

21. J'son&PartnersConsulting, 2017. Communication technologies for the Internet of things inagriculture and the role of telecom operators. [El. Res.].: https://clck.ru/CBqQd.

22. Suprem, A., Mahalik, N., Kim, K. A review on application of technology systems, standard sandinterfaces for agriculture and food sector // Comput. Stand. Interfaces. 2013. N 35 (4). P. 355�364.

23. Wang, N., Zhang, N., Wang, M. Wireless sensors in agriculture and food industry � recentdevelopment and future perspective // Comput. Electron. Agric. 2006. N 50 (1). P. 1�14.

24. Hart, J.K., Martinez, K. Environmental sensor networks: a revolution in the earth systemscience // Earth Sci. Rev. 2006. N 78 (3�4). P. 177�191.

Page 26: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

26 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

25. Burrell, J., Brooke, T., Beckwith, R. Vineyard computing: sensor networks in agriculturalproduction // IEEE Pervasive Comput. 2004. N 3 (1). P. 38�45.

26. Diallo, O., Rodrigues, J. J. P.C., Sene, M., Mauri, J. L. Distributed database managementtechniques for wireless sensor networks // IEEE Trans. Parallel Distrib. Syst. 2015. N 26 (2). P.604�620.

27. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., Borozan, V. Environmentalparameters monitoring in precision agriculture using wireless sensor networks // J. Clean. Prod. 2015.N 88. P. 297�307.

28. Zhao, L., He, L., Jin, X., Yu, W. Design of wireless sensor network middleware for agriculturalapplications // Proc. IFIP Adv. Inform. Commun. Technol. 2013. N 393. P. 270�279.

29. Karim, L., Anpalagan, A., Nasser, N., Almhana, J. Sensor-based M2M agriculture monitoringsystems for developing countries: state and challenges // Netw. Protoc. Algor. 2013. N 5 (3). P. 68�86.

30. Zhang, H., Shu, L., Rodrigues, J. J., Chieh Chao, H. Solving network isolation problem in duty-cycled wireless sensor networks // Proceeding of the International Conference on Mobile Systems,Applications, and Services (MobiSys). 2013. P. 543�544.

31. Krishna, P.V., Saritha, V., Vedha, G., Bhiwal, A., Chawla, A. S., 2012. Quality-of-service-enabled ant colony-based multipath routing for mobile ad hoc networks // IET Commun. 2012. N6 (1). P. 76�83.

32. Shakhov, V., Migov, D., Rodionov, A. Operation strategy for energy harvesting wireless sensornetworks // Proceedings of the ACM 9th Int. Conf. on Ubiquitous Information Management andCommunication, New York, USA. 2015.

33. Øàõîâ Â. Â., Þðãåíñîí À. Í., Ñîêîëîâà Î. Ä. Ìîäåëèðîâàíèå âîçäåéñòâèÿ àòàêè BlackHole íà áåñïðîâîäíûå ñåòè // Ïðîãðàììíûå ïðîäóêòû è ñèñòåìû. 2017. � 1. Ñ. 34-39.

34. Mirabella, O., Brischetto, M. A hybrid wired/wireless networking infrastructure for greenhousemanagement // IEEE Trans. Instrum. Meas. 2011. N 60 (2). P. 398�407.

35. Gennaro,S., Matese, A., Gioli, B., Toscano, P., Zaldei, A., Palliotti, A., Genesio, L. Multisensorapproach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle(UAV) remote sensing and wireless sensor network (WSN) proximal sensing // ScientiaHorticulturae.2017. V. 221. P. 83�87.

36. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., Ellis, K. IoT in Agriculture: Designing aEurope-Wide Large-Scale Pilot. 2017.

37. IEEE Communications Magazine. V. 55. N 9. P. 26�33.

38. Mat, I., Kassim, M., Harun, A., Yuso�, I., 2016. IoT in Precision Agriculture applicationsusing Wireless Moisture Sensor Network // Proceedings of IEEEConference on Open Systems. 2016.P. 24�29.

39. Øàõîâ Â. Â., Ñòðåëüíèêîâ Â. Å., Íãóåí Â. Ä. Ê âîïðîñó îá ýôôåêòèâíîñòè áåñïðîâîäíûõñåíñîðíûõ ñåòåé // Ïðîáëåìû èíôîðìàòèêè. 2014. � 2 (23). Ñ. 28�38.

40. Ìèãîâ Ä. À. Ïîêàçàòåëü íàäåæíîñòè äëÿ áåñïðîâîäíûõ ñàìîîðãàíèçóþùèõñÿ ñåòåé //Âåñòíèê ÑèáÃÓÒÈ. 2014. � 3 (27). Ñ. 3�12.

41. Ojha, T., Bera, S., Misra, S., Raghuwanshi, N. S. Dynamic duty scheduling for green sensor-cloud applications // Proceedings of IEEE CloudCom, Singapore. 2014.

42. Misra, S., Krishna, P.V., Kalaiselvan, K., Saritha, V., Obaidat, M. S. Learning automata-basedQoS framework for cloud IaaS // IEEE Trans. Netw. Serv. Manage. 2014. N 11 (1). P. 15�24.

43. Cho, Y., Cho, K., Shin, C., Park, J., Lee, E. S. An agricultural expert cloud for a smart farm //Proceedings of Future Information Technology, Application, and Service. Lecture Notes in ElectricalEngineering. Springer. V. 164. P. 657�662.

44. Atzori, L., Iera, A., Morabito, G. The internet of things: a survey // Comput. Netw. 2010. N54 (15). P. 2787�2805.

Page 27: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 27

45. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M. Internet of Things (IoT): a vision,architectural elements, and future directions // Future Gener. Comput. Syst. 2013. N 29 (7). P. 1645�1660.

46. Moghaddam, M., Entekhabi, D., Goykhman, Y., Li, K., Liu, M., Mahajan, A., Nayyar, A.,Shuman, D., Teneketzis, D. A wireless soil moisture smart sensor web using physics-based optimalcontrol: concept and initial demonstrations // IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.2010. N 3 (4). P. 522�535.

47. Bastiaanssen, W.G.M., Molden, D. J., Makin, I.W. Remote sensing for irrigated agriculture:examples from research and possible applications // Agric. Water Manage. 2000. N 46 (2). P. 137�155.

48. Morais, R., Fernandes, M.A., Matos, S.G., Ser�odio, C., Ferreira, P. J. S.G., Reis, M. J. C. S. AZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture// Comput. Electron. Agric. 2008. N 62 (2). P.94�106.

49. Ye, J., Chen, B., Liu, Q., Fang, Y. A precision agriculture management system based on Internetof Things and WebGIS // Proceedings of International Conference on Geoinformatics. 2013. P. 1�5.

50. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E. A survey on sensor networks //IEEE Commun. Mag. 2002. N 40 (8). P. 102�114.

51. Shakhov, V. On E�ciency Improvement of Energy Harvesting Wireless Sensor Networks //Processing of IEEE 39th International Conference on Telecommunications and Signal, Vienna, Austria,2016. P. 56�59.

52. Akyildiz, I. F., Kasimoglu, I. H. Wireless sensor and actor networks: research challenges // AdHoc Netw. 2004. N 2 (4). P. 351�367.

53. Yick, J., Mukherjee, B., Ghosal, D. Wireless sensor network survey // Comput. Netw. 2008. N52 (12). P. 2292�2330.

54. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, I. A review of wireless sensor technologiesand applications in agriculture and food industry: state of the art and current trends // Sensors. 2009.N 9 (6). P. 4728�4750.

55. Cambra, C., D�iaz, J. R., Lloret, J. Deployment and performance study of an Ad Hoc networkprotocol for intelligent video sensing in precision agriculture // Proceedings of Ad-Hoc Networks andWireless. lNCS. 2015. V. 8629. Springer, Berlin Heidelberg. P. 165�175.

56. Barcelo-Ordinas, J.M., Chanet, J. P., Hou, K. M., Garc�ia-Vidal, J. A survey of wireless sensortechnologies applied to precision agriculture // Sta�ord, J. (Ed.), Precision Agriculture'13. WageningenAcademic Publishers. 2013. P. 801�808.

57. Baseca, C.C., D�iaz, J. R., Lloret, J. Communication Ad Hoc protocol for intelligent videosensing using AR drones // IEEE Mobile Ad-hoc and Sensor Networks (MSN). 2013. P. 449�453.

58. D�iaz, S. E., P�erez, J. C., Mateos, A.C., Marinescu, M.C., Guerra, B.B. A novel methodologyfor the monitoring of the agricultural production process based on wireless sensor networks // Comput.Electron. Agric. 2011. N 76 (2). P. 252�265.

59. L�opez, J.A., Garcia-Sanchez, A. J., Soto, F., Iborra, A., Garcia-Sanchez, F., Garcia-Haro, J.Design and validation of a wireless sensor network architecture for precision horticulture applications// Precision Agric. 2011. N 12 (2). P. 280�295.

60. Park, D.H., Kang, B. J., Cho, K.R., Shin, C. S., Cho, S. E., Park, J.W., Yang, W.M. A studyon greenhouse automatic control system based on wireless sensor network // Wirel. Pers. Commun.2011. N 56 (1). P. 117�130.

61. Matese, A., Gennaro, S. F.D., Zaldei, A., Genesio, L., Vaccari, F. P. A wireless sensor networkfor precision viticulture: the NAV system // Comput. Electron. Agric.2009. N 69 (1). P. 51�58.

62. Lichtenberg, E., Majsztrik, J., Saavoss, M. rower demand for sensor controlled irrigation /Water Resour. Res. 2015. N 51. [Electron. Res].: http://dx.doi.org/10.1002/2014WR015807.

63. Reche, A., Sendra, S., D�iaz, J. R., Lloret, J. A smart M2M deployment to control the agricultureirrigation // Proceedings of Ad-hoc Networks and Wireless, LNCS. 2015. N 8629. P. 139�151.

Page 28: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

28 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

64. Greenwood, D. J., Zhang, K., Hilton, H.W., Thompson, A. J. Opportunities for improvingirrigation e�ciency with quantitative models, soil water sensors and wireless technology // J. Agric.Sci. 2010. N 148. P. 1�16.

65. Guti�errez, J., Villa-Medina, J. F., Nieto-Garibay, A., �Angel Porta-G�andara, M. Automatedirrigation system using a wireless sensor network and GPRS module // IEEE Trans. Instrum. Meas.2014. N 63 (1). P. 166�176.

66. Hwang, J., Shin, C., Yoe, H. A wireless sensor network-based ubiquitous paprika growthmanagement system // Sensors. 2010. N 10. P. 11566�11589.

67. Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., Moore, D. Environmental wireless sensornetworks // Proc. IEEE. 2010.N 98 (11). P. 1903�1917.

68. Voulodimos, A. S., Patrikakis, C. Z., Sideridis, A.B., Nta�s, V.A., Xylouri, E.M. A completefarm management system based on animal identi�cation using RFID technology // Comput. Electron.Agric. 2010. N 70 (2). P. 380�388.

69. Malaver, A., Motta, N., Corke, P., Gonzalez, F. Development and integration of a solar poweredunmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases // Sensors. 2015.N 15 (2). P. 4072�4096.

70. Yang, H., Qin, Y., Feng, G., Ci, H. Online monitoring of geological CO2 storage and leakagebased on wireless sensor networks // IEEE Sens. J. 2013. N 13 (2). P. 556�562.

71. Mao, X., Miao, X., He, Y., Li, X.Y., Liu, Y. CitySee: Urban CO2 monitoring with sensors //Proceedings of IEEE INFOCOM, Orlando, FL, USA. 2012. P. 1611�1619.

72. Dong, X., Vuran, M. C., Irmak, S. Autonomous precision agriculture through integration ofwireless underground sensor networks with center pivot irrigation systems // Ad Hoc Netw. 2013. N11 (7). P. 1975�1987.

73. Shanwad, U.K., Patil, V.C., Gowda, H.H. Proceeding precision farming: dreams and realitiesfor Indian agriculture // Proceedings of Map India Conference. 2004.

74. Mondal, P., Basu, M. Adoption of precision agriculture technologies in India and in somedeveloping countries: scope, present status and strategies // Prog. Nat. Sci. 2009. N 19 (6). P. 659�666.

75. Mondal, P., Tewari, V.K., Rao, P.N. Scope of precision agriculture in India // Proceedings ofInternational Conference on Emerging Technologies in Agricultural and Food Engineering, Kharagpur,WB, India, 2004. P. 103.

76. Guti�errez, J., Villa-Medina, J. F., Nieto-Garibay, A., �Angel Porta-G�andara, M. Automatedirrigation system using a wireless sensor network and GPRS module // IEEE Trans. Instrum. Meas.2014. N 63 (1). P. 166�176.

77. Akyildiz, I. F., Stuntebeck, E. P. Wireless underground sensor networks: research challenges //Ad Hoc Netw. 2006. N. 4 (6). P. 669�686.

78. Vuran, M.C., Akyildiz, I. F. Cross-layer packet size optimization for wireless terrestrial,underwater, and underground sensor networks // Proceedings of IEEE INFOCOM, Phoenix, AZ,USA, 2008. P. 780�788.

79. Silva, A.R., Vuran, M.C. Communication with aboveground devices in wireless undergroundsensor networks: an empirical study // Proceedings of IEEE International Conference onCommunications, Cape Town, South Africa, 2010. P. 1�6.

80. Yu, X., Wu, P., Han, W., Zhang, Z. A survey on wireless sensor network infrastructure foragriculture // Comput. Stand. Interfaces. 2013. N 35 (1). P. 59�64.

81. Akyildiz, I. F., Kasimoglu, I. H. Wireless sensor and actor networks: research challenges // AdHoc Netw. 2004. N 2 (4). P. 351�367.

82. Kulkarni, R.V., F�orster, A., Venayagamoorthy, G.K. Computational intelligence in wirelesssensor networks: a survey // Commun. Surv. Tutorials. 2011. N 13 (1). P. 68�96.

Page 29: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 29

83. Shakhov, V. Performance Evaluation of MAC Protocols in Energy Harvesting Wireless SensorNetworks // Springer LNCS. 2016. V. 9787. P. 344�352.

84. Wu, D., Cai, Y., Zhou, L., Wang, J. A cooperative communication scheme based on coalitionformation game in clustered wireless sensor networks // IEEE Trans. Wirel. Commun.2012. N 11 (3).P. 1190�1200.

85. Shakhov, V. A Graph-based Method for Performance Analysis of Energy Harvesting WirelessSensor Networks Reliability // Springer Lecture Notes in Electrical Engineering, 2016. V. 391. P.127�132.

86. Øàõîâ Â. Â., Ìèãîâ Ä. À., Ñîêîëîâà Î. Ä. Áåñïðîâîäíûå ñåíñîðíûå ñåòè, îñíàùåííûåñðåäñòâàìè ïîëó÷åíèÿ ýíåðãèè èç îêðóæàþùåé ñðåäû // Ïðîáëåìû èíôîðìàòèêè, 2014. � 4. Ñ.69�79.

87. Chu, X., Sethu, H. Cooperative topology control with adaptation for improved lifetime inwireless ad-hoc networks // Proceedings of IEEE INFOCOM, Orlando, FL, USA, 2012. P. 262�270.

88. Li, M., Li, Z., Vasilakos, A.V. A survey on topology control in wireless sensor networks:taxonomy, comparative study, and open issues // Proc. IEEE. 2013. N 101 (12). P. 2538�2557.

89. Shakhov, V. On a New Type of Attack in Wireless Sensor Networks: Depletion of Battery //Proceedings of IEEE 11th International Forum on Strategic Technology, Novosibirsk, Russia, 2016.P. 491�494.

90. Vijay, G., Bdira, E. B.A., Ibnkahla, M. Cognition in wireless sensor networks: a perspective //IEEE Sens. J. 2011. N 11 (3). P. 582�592.

91. Øàõîâ Â. Â., Þðãåíñîí À. Í., Ñîêîëîâà Î. Ä. Ýôôåêòèâíûé ìåòîä ãåíåðàöèè ñëó÷àé-íûõ ãåîìåòðè÷åñêèõ ãðàôîâ äëÿ ìîäåëèðîâàíèÿ áåñïðîâîäíûõ ñåòåé // Ïðèêëàäíàÿ äèñêðåòíàÿìàòåìàòèêà. 2016. � 4 (34). C. 99�109.

92. Misra, S., Jain, A. Policy controlled self-con�guration in unattended wireless sensor networks// J. Netw. Comput. Appl. 2011. N 34 (5). P. 1530�1544.

93. Nicopolitidis, P., Papadimitriou, G. I., Pomportsis, A. S., Sarigiannidis, P.G., Obaidat, M. S.Adaptive wireless networks using learning automata. IEEE Wirel. Commun. 2011. N 18 (2). P. 75�81.

94. Shakhov, V. Protecting Wireless Sensor Networks from Energy Exhausting Attacks // SpringerLNCS, 2013. V. 7971. P. 184�193.

95. Shakhov, V., Choo, H., Bang, Y. Discord model for detecting unexpected demands in mobilenetworks // Future Generation Comp. Syst., 2004. V. 20 (2). P. 181�188.

96. Shakhov, V., Choo, H. An E�cient Method for Proportional Di�erentiated Admission ControlImplementation // EURASIP Journal on Wireless Communications and Networking, 2013. V. 2011,Article ID 738386.

97. Shakhov, V., Migov, D. Reliability of Ad Hoc Networks with Imperfect Nodes // SpringerLNCS, 2014. V. 8715, Ð. 49�58.

98. Adamala, S., Raghuwanshi, N. S., Mishra, A. Development of surface irrigation systems designand evaluation software (SIDES) // Comput. Electron. Agric. 2014. N 100. P. 100�109.

99. Westarp, S.V., Chieng, S., Schreier, H. A comparison between low-cost drip irrigation,conventional drip irrigation, and hand watering in Nepal // Agric. Water Manage. 2004. N 64. P.143�160.

100. Kim, Y.D., Yang, Y.M., Kang, W. S., Kim, D.K. On the design of beacon based wirelesssensor network for agricultural emergency monitoring systems // Comput. Stand. Interfaces. 2014. N36 (2). P. 288�299.

101. Bhave, A.G., Mishra, A., Raghuwanshi, N. S. A combined bottom-up and topdown approachfor assessment of climate change adaptation options // J. Hydrol. 2013. [Electron. Res.].: http://dx.doi.org/10.1016/j.jhydrol.2013.08.039.

Page 30: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

30 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

102. Bhargava, K., Kashyap, A., Gonsalves, T. A. Wireless sensor network based advisory systemfor apple scab prevention // Proceedings of National Conference on Communications, Kanpur, India,2014. P. 1�6.

103. Gon�calves, L. B. L., Costa, F.G., Neves, L.A., Ueyama, J., Zafalon, G. F.D., Montez, C.,Pinto, A. S.R. In�uence of mobility models in precision spray aided by wireless sensor networks // J.Phys.: Conf. Ser. 2015. N 574 (1).

104. Kwong, K.H., Wu, T.T., Goh, H.G., Sasloglou, K., Stephen, B., Glover, I., Shen, C., Du,W., Michie, C., Andonovic, I. Practical considerations for wireless sensor networks in cattle monitoringapplications // Comput. Electron. Agric. 2012. N 81. P. 33�44.

105. Zia, H., Harris, N.R., Merrett, G.V., Rivers, M., Coles, N. The impact of agricultural activitieson water quality: a case for collaborative catchment-scale management using integrated wireless sensornetworks // Comput. Electron Agric. 2013. N 96. P. 126�138.

106. Malaver, A., Motta, N., Corke, P., Gonzalez, F. Development and integration of a solar poweredunmanned aerial vehicle and a wireless sensor network to monitor greenhouse // Sensors. 2015. N 15 (2).P. 4072�4096.

107. Misra, S., Singh, S. Localized policy-based target tracking using wireless sensor networks //ACM Trans. Sens. Netw. 2012. N 8 (3). P. 27.

108. Fukatsu, T., Kiura, T., Hirafuji, M. A web-based sensor network system with distributed dataprocessing approach via web application //Comput. Stand Interfaces. 2011. N 33 (6). P. 565�573.

109. Coates, R.W., Delwiche, M. J., Broad, A., Holler, M. Wireless sensor network with irrigationvalve control // Comput. Electron. Agric. 2013. N 96. P. 13�22.

110. Koch, R., Pionteck, T., Albrecht, C., Maehle, E. An adaptive system-on-chip for networkapplications // Proceedings of International Parallel and Distributed Processing Symposium, RhodesIsland. 2006.

111. Karim, F., Mellan, A., Stramm, B., Nguyen, A., Abdelrahman, T., Aydonat, U. Thehyperprocessor: a template system-on-chip architecture for embedded multimedia applications //Proceedings of Workshop on Application Speci�c Processors, 2003. P. 66�73.

112. ZigBee Speci�cations, ZigBee Alliance Std. [El. Res.].: http://www.zigbee.org/.

113. Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., Hu, Y. F. Wireless sensor networks:a survey on the state of the art and the 802.15.4 and ZigBee standards //Comput. Commun. 2007. N30 (7). P. 1655�1695.

114. Guo, W., Healy, W. M., Zhou, M. Impacts of 2.4-GHz ISM band interference on IEEE 802.15.4wireless sensor network reliability in buildings // IEEE Trans. Instrum. Meas. 2012. N 61. P. 2533�2544.

115. IEEE Standard for Information technology, 2006. Telecommunications and InformationExchange Between Systems � Local and Metropolitan Area Networks � Speci�c Requirements Part15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations for Low-RateWireless Personal Area Networks (WPANs), Institute of Electrical and Electronics Engineers Std.

116. IEEE Standard for Information technology, 2005. Local and metropolitan area networks �Speci�c requirements � Part 11: Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY) Speci�cations � Amendment 8: Medium Access Control (MAC) Quality of ServiceEnhancements, Std.

117. IEEE Standard for Information technology, 2012. Telecommunications and InformationExchange Between Systems Local and Metropolitan Area networks�Speci�c Requirements Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations, Institute ofElectrical and Electronics Engineers Std.

118. Bluetooth Technology Special Interest Group. [Electron. Res.].: https://www.bluetooth.org/.

119. General Packet Radio Service. [Electron. Res.].: http://www.3gpp.org/.

Page 31: APPLICATION OF WIRELESS SENSOR NETWORKS IN PRECISION AGRICULTURE … · 2019. 1. 29. · The nal section of paper examines the existing examples of the application of wireless sensor

Òàðõàíîâà Î.Þ. 31

120. D. J. Goodman and R. A. Myers. 3G cellular standards and patents // Proceedings ofInternational Conference on Wireless Networks, Communications and Mobile Computing, 2005, P.415�420.

121. Parkvall, S., Dahlman, E., Furuskar, A., Jading, Y., Olsson, M., Wanstedt, S., Zangi, K. `LTE-Advanced � Evolving LTE towards IMT-Advanced // Proceedings of Vehicular Technology Conference(VTC-Fall), Calgary, BC, 2008, P. 1�5.

122. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for BroadbandWireless Access Systems Amendment 3: Advanced Air Interface, Std., May 2011.

123. Sperling, O. Water Relations in Date Palm Trees � A Combined Approach using Water, Plant,and Atmospheric Data Water Relations in Date Palm Trees � A Combined Approach using Water,Plant, and Atmospheric Data. Ben-GurionUniversity of the Negev, Beersheva, Israel. 2013.

124. Cohen, Y., Glasner, B.B. Date palm genetic resources and utilization // Al- Khayri, M., Jain,J.,Mohan, S., Johnson, V. D. (Eds.). Date Palm Genetic Resources and Utilization. 2015. P. 265�298.doi: http://dx.doi.org/10.1007/978-94-017-9707-8.

125. Sperling, O., Shapira, O., Cohen, S., Tripler, E., Schwartz, A., Lazarovitch, N., Estimatingsap �ux densities in date palm trees using the heat dissipation method and weighing lysimeters // TreePhysiol. 2012. N 32. P. 1171�1178. [Electron. Res.].: http://dx.doi.org/10.1093/treephys/tps070.

126. Tripler, E., Shani, U., Ben-Gal, A., Mualem, Y. Apparent steady state conditions in highresolution weighing-drainage lysimeters containing date palms grown under di�erent salinities // Agric.Water Manage. 2012. N 107. P. 66�73. [Electron. Res.].: http://dx.doi.org/10.1016/j.agwat.2012.01.010.

127. Yuan Rao, Zhao-hui Jiang, Naftali Lazarovitch. Investigating signal propagation and strengthdistribution characteristics of wireless sensor networks in date palm orchards // Computers andElectronics in Agriculture. 2016. N 124. P. 107�120.

128. Moghaddam, M., Entekhabi, D., Goykhman, Y., Li, K., Liu, M., Mahajan, A., Nayyar, A.,Shuman, D., Teneketzis, D. A wireless soil moisture smart sensor web using physics-based optimalcontrol: concept and initial demonstrations // IEEE J.Sel. Top. Appl. Earth Observ. Rem. Sens. 2010.N 3 (4). P. 522�535.

129. Lovejoy, W. S. A survey of algorithmic methods for partially observed markov decisionprocesses // Ann. Oper. Res. 1991. N 28 (1). P. 47�65.

130. Saha, R., Raghuwanshi, N.S., Upadhyaya, S.K., Wallender, W.W., Slaughter, D. C. Watersensors with cellular system eliminate tail water drainage in alfalfa irrigation // Calif. Agric. 2011. N65 (4). P. 202�207.

131. Aqua Management, Inc. [El. Res.].: http://aquamanagement.com/vertical-solutions/

ami-turfirrigation-controllers/.132. TamoghnaOjha, SudipMisra, Narendra Singh Raghuwanshi. Wireless sensor networks for

agriculture: The state-of-the-art in practice and future challenges // Computers and Electronics inAgriculture. 2015. N 118. P. 66�84.

 2013 ãîäó Î.Þ. Òàðõà-íîâà ïîñòóïèëà íà ìåõàíèêî-ìàòåìàòè÷åñêèé ôàêóëüòåò Íî-âîñèáèðñêîãî ãîñóäàðñòâåííîãîóíèâåðñèòåòà è îêîí÷èëà åãî â2017 ãîäó (áàêàëàâðèàò). Ñïå-öèàëèçèðîâàëàñü íà êàôåäðåäèñêðåòíîé ìàòåìàòèêè è èí-

ôîðìàòèêè. Â 2017 ãîäó ïîñòóïèëà â ìàãèñòðà-òóðó ÌÌÔ ÍÃÓ.

In 2013 Tarhanova O. Y. entered theMechanics and Mathematics Department ofNovosibirsk State University and �nished itin 2017 (bachelor's degree). She specialized inthe Department of Discrete Mathematics andInformatics. In 2017 she entered the magistracyof the MMF NSU.

Äàòà ïîñòóïëåíèÿ � 05.11.2017