Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

download Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

of 103

Transcript of Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    1/103

     Application ofthermodynamics and

     Molecular simulation in Green Separation processDr.R.Anantharaj

    Department of Chemical Engineering

    National Institute of Technology Tiruchirappalli

    Tiruchirappalli-620015

    Tamil NaduINDI!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    2/103

    My Home

    GreenSolvent

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    3/103

    Over view

    Introduction "olecular #imulation Constituent

    Ionic $i%uids

    #eparation Techni%ues

     !pplications

    #ummary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    4/103

    What is thermodynamics?

    Thermo = energy

    Dynamics = motion

    Thermodynamics = the motion of energy

    Thermodynamics = the comparison of states to determine

    their relative stability.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    5/103

    Denition of a “state” in terms ofenery

    !"Σ#e$ i%epi&

    'inetic enery

    (otential enery

    )nternal enery*

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    6/103

    Why st+dy thermodynamics in ,hemical

    -nineerin?

    Thermodynamics is the basis for understanding a chemical response to changes in

    temperature, pressure, and composition. Thus the critical link between processing

    and microstructure requires a knowledge of the relevant thermodynamics principles.

    (roperties

    (rocessin

    Str+ct+re

     Atomic,rystal . Molec+lar

    Grain str+ct+re(hase distri/+tion

    DefectsMechanica

    l,hemical-lectrical

    Manetic0hermal

    0emperat+re(ress+re . stress 1ol+me . strain

    ,hemical composition

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    7/103

    Why Molec+lar sim+lation2? "olecular simulation is primarily a tool  for

    calculating the energy of a gi&en molecular

    structure'

    To define the chemical engineering  pro(lem

    )ell as one in&ol&ing a structure-energyrelationship'

    Identifying correlations (et)een chemical

    structures and properties #toring and searching for data  on chemical

    entities

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    8/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    9/103

    Molec+lar Sim+lation2?

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    10/103

    Di3erence 4etween MS 5 -6

    "olecular #imulation E,perimentE,periment"olecular #imulation E,periment

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    11/103

    Molec+lar Sim+lation,onstit+ent Molecular Mechanics (MM)  a chemist3s 

    model It3s descri(es the energy of a molecule in terms

    of a simple function which accounts for deformation from

    “ideal”   (ond distances and angles as )ell as and for

    non(onded &an der 4aals and Coulom(ic interactions'

    Quantum Mechanics (QM)  a physicist3s 

    model It3s descri(es the energy of a molecule in terms

    of interactions among nuclei and electrons as given by

    the Schrödinger equation'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    12/103

    Schematic Diaram of MM

    ∑∑∑   ++=anglesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    21   E  E  E    += 21   E  E  E    += 21   E  E  E    +=

    ∑∑∑   ++=ang lesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    ∑∑∑   ++=anglesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    ∑∑∑   ++=ang lesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    13/103

    Limitations of Molecular Mechanics

    MM Description Basedon the Bonding

    Pattern of Product 

    MM Description Basedon the Bonding

    Pattern of Reactant

    Correct description

    The bond-breaking and bond-forming cannot be described.

    A B C A B C

    Reactant Product

    A B C

    Transition State

    Progress of Reaction

    nerg!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    14/103

    Quantum Mechanics

    (QM)

    The #chrdinger e%uation plays the role ofNe)tons la)s and conser&ation of energy inclassical mechanics

    It is a )a&e e%uation  in terms of the )a&e

    function )hich predicts analytically andprecisely the pro(a(ility of e&ents oroutcome'

    The #chrdinger e%uation gi&es the%uanti.ed energies of the system  and gi&esthe form of the )a&e function so that otherproperties may (e calculated'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    15/103

    Schr7diner -8+ation

    Computational Chemistry 5510

    Spring 2006 Hai Lin

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    16/103

    "uantum Mechanics

    MacroscopicMicroscopic

    Quantum mechanics is the law governing the behavior of nuclei and electrons.

    Energy

    Internuclear

    DistanceO

    H

    H

    !".#$ Correct Descri%tion

    for Bond&brea'ing

    and Bond&forming 

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    17/103

    Basis of "uantum Chemistr!

    Schr#dinger e$uation%

    HHψ ψ  "" E Eψ ψ 

    Erwin (chr)dinger *aul A. +. Dirac

    Nobel Prize in Physics1933

    "or the !iscovery o ne#ro!uctive orms o

    atomic theory"

    Dirac &'()(*% +The underl!ing ph!sical

    la,s necessar! for the mathematical

    theor! of a large part of ph!sics and

    the ,hole of chemistr! are thus

    completel! kno,n.

    o,e/er0 it can be sol/ed e1actl! onl! for one-electron s!stems &e.g.0 a

    h!drogen atom* and numericall! for an! a s!stem ha/ing more electrons.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    18/103

    2ccurate "uantum Mechanical Methods

    2ccurate $uantum mechanical computation is a po,erful tool in stud! ofchemistr! 3 chemical engineering .

    ,obel *ri-e inChemistry /

    4alter 5ohn 6ohn 2. Pople

    +for his de/elopment of the

    densit!-functional theor!

    +for his de/elopment of

    computational methods in

    $uantum chemistr!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    19/103

    Schr#dinger $uation

    2

    n

    n

    2

    1a

     N 

    a   a M ∇−= ∑T

    ∑∇−=

    e N 

    i

    i

    m

    2

    e

    e

    2

    1T

    Kinetic energy of nuclei 

    Kinetic energy of electrons

    Coulombic energy between nuclei

    Coulombic energy between electrons

    Coulombic energy between nuclei and electrons

    H  Tn ! Te ! Vnn ! Vee ! Vne

    n9 n:

    e9 e:

    ∑∑>

    =n n

    nn

     N 

    a

     N 

    ab   ab

    ba

     Z  Z V

    ∑∑>=e e 1

    ee

     N 

    i

     N 

      ji   ijr V

    ∑∑=n e

    ne

     N 

    a

     N 

    i   ai

    a

     Z V

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    20/103

    2ppro1imations

    To solve the "chr#dinger equation appro$imately, assumptionsare made to simplify the equation%

    &Born-Oppenheimer approximation allows separate

    treatment of nuclei and electrons. 'ma (( me)

    &Hartree-o!" in#epen#ent ele!tron approximation 

    allows each electron to be considered as being affected by

    the sum 'field) of all other electrons.

    &LC$O $pproximation represents molecular orbitals as

    linear combinations of atomic orbitals 'basis functions).

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    21/103

    Born-7ppenheimer 2ppro1imation

    & *uclei are much heavier than electrons 'ma + me ≥ 1-) andmove much slower.

    &/ffectively, electrons ad0ust themselves instantaneously to

    nuclear configurations.

    &/lectron and nuclear motions are uncoupled, thus the energies

    of the two are separable.

    Energy

    Internuclea 

    r Distance

    9; oint toform a potential enery

    s+rface on which n+cleimove;

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    22/103

    Man!-electron 4a/e function

    %

    e9

    e:

    e N 

    ei

    Pauli #rinci#le& 0wo electrons can not have all8+ant+m n+m/er e8+al;

    This requires that the total 'manyelectron) wave function

    is antisymmetric whenever one e$changes two electrons

    coordinates.

    φ i' x 1)   φ  j' x 1) 3 φ k ' x 1)

    φ i' x 2)   φ  j' x 2) 3 φ k ' x 2)

    φ i' x  N )   φ  j' x  N ) 3 φ k ' x  N )

    Ψ' x 1, x 2, 3, x  N ) '1+ N 4)5 

    Hartree #ro!uct&  All electrons are independent= each in itsown or/ital;Ψ67' x 1, x 2, 3, x  N ) φ i' x 1)   φ  j' x 2)3

    φ k ' x  N )

    Ψ' x 1, x 2, 3, x  N )  − Ψ' x 2, x 1, 3, x  N )

    Slater !eterminant satises the (a+li principle;

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    23/103

    Man!-electron 4a/e function &)*

    e9e:

    The total 'manyelectron) wavefuntion is antisymmetric when one

    e$changes two electrons coordinates x 1 and x 2.

    φ i' x 1) φ  j' x 1)

    φ i' x 2) φ  j' x 2)Ψ' x 1, x 2) '1+2)5 

    Hartree #ro!uct& 4oth electrons areindependent;Ψ67' x 1, x 2) φ i' x 1) φ  j' x 2)

    Ψ' x 2, x 1) '1+2)5 8φ i' x 2) φ  j' x 1) − φ i' x 1) φ  j' x 2)9 − Ψ' x 1, x 2)

    Slater !eterminant satises the (a+li principle;

    -@ample* A twoelectron system;

    Ψ' x 1, x 2) '1+2)5 8φ i' x 1) φ  j' x 2) − φ i' x 2) φ  j' x 1)9

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    24/103

    artree-8ock 2ppro1imation

    %

    &: ;ock operator  is introduced for a given electron in the ith orbital%

    i

     φ i

      ε i

     φ i

    $inetic eneryterm of the

    iven electron

    potentialenery termd+e to @ed

    n+cleiaveraed

    potentialenery termd+e to the

    other electrons

    i %

    φ i is the ith molecular orbital, and ε i is the corresponding orbital energy.

     *ote% The total energy is *feels? all the other electrons as a whole 'field

    of charge), .i.e., an electron moves in a meanfield generated by all the other electrons.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    25/103

    The 8ock 7perator

    Kinetic energy term

    and nuclear attraction

    for the given electron

    ∑   −+= N 

      j

      j  jii   )' % &h

    ,oreHamiltonian

    operator

    ,o+lom/

    operator

    -@chane

    operator

    Coulombic energy

    term for the given

    electron due to

    another electron

    /$change energy due

    to another electron

    ': pure quantum

    mechanical term due tothe 7auli principle, no

    classical interpretation)

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    26/103

    Self-consistenc!

    &The ;ock equation for an electron in

    the ith orbital contains information ofall the other electrons 'in an averaged

    fashion), i.e., the ;ock equations for all

    electrons are coupled with each other.

    e jek

    ei

    &/ach electron >feels? all the other electrons as a whole 'field of

    charge), .i.e., an electron moves in a meanfield generated byall the other electrons.

    &:ll equations must be solved together

    'iteratively until selfconsistency is obtained).

     @ "elfconsistent field '"C;) method.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    27/103

    Refresh 9our Mind%

    igen/alue 3 igen/ectorAenerally, one can construct a matri$ for an operator, e.g., the6amiltonian H' using a set of basis functions Bφ i.

    φ 1 φ 2 ...  φ nφ 1φ 2... φ n

     H 99 H 9: ;;;  H 9n

     H :9 H :: ;;;  H :n

     H n9 H n: ;;;  H nn:fter diagonaliDation, one obtains eigenvalues 'energy levels)

    and eigenvectors 'wavefunctions).

    Where H ij " 〈φ i B H B φ  j〉

    " ∫ φ i*# x & H# x & φ  j # x & d x 

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    28/103

    Linear Combination of 2tomic 7rbitals

    &/ach oneelectron molecular orbital is appro$imated by a linear combination

    of atomic orbitals 'basis functions).

    φ   c1 χ1 ! c2 χ2 ! c- χ- ! 3

     where φ  is the molecular orbital wavefunction, χi represents atomic orbitalwavefunction, and ci is the corresponding e$pansion coefficients.

    &The resulting ;ock equations are called Eoothaan6all equations.

    &This reduces the problem of finding the best functional form for the

    molecular orbitals to the much simpler one of optimiDing a set of coefficients

    'cn) in a linear equation.

     x

     y

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    29/103

    :ariational Principle

    Fased on the GC:< appro$imation, each oneelectron molecular

    orbital is appro$imated as a linear combination of atomic orbitals.

    φ   c1 χ1 ! c2 χ2 ! c- χ- ! 3

    &The energy calculated from any appro$imated wave function ishigher than the true energy.

    &The better the wave function, the lower the energy.

    &

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    30/103

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %ii   E  "    ψ ψ   =

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    ii   E  "    ψ ψ   =

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

    ii   E  "    ψ ψ   =

    ErwinSchrödinger,

    1927

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    31/103

    C+ant+m Harmonic Oscillator*Wave f+nction

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    32/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    33/103

    C+ant+m ,hemical Map

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

    CHEMICAL

    ENGINEERDECIDES 

    COMPUTER CALCULATES 

    #tartingmoleculargeometry

    9asis set : 9asisfunction

    Type of

    Calculation

    ;roperties to (ecalculated

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

    7

    8 8 8 8

    7

     M% &%   'C&%    →     M% &%   'C&%    →  

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    34/103

    4asis

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    35/103

    L+ -1 "$ (−

    The no of

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    36/103

    Software (ac$aes e8+ired

    E,ceed -

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    37/103

    )onic Ei8+ids Ionic li%uids/I$s are organic salts )ith )ide li%uid range and lo)

    melting point /?1000Cconsists of organic cation and

    organic*inorganic anion

    I$s also =no)n as @deigner o!"entA due to their a(ility to &ary

    the ions /i'e cation and anion and there(y modifying and optimi.ing

    the I$s properties'

    I$s are referred to as @green o!"entA due to negligi(le &apour

    pressure )hich can reduce the technical e,posure : sol&ent loss to

    the en&ironment'

    I$s ha&ing high denit# than organic inorganic and )ater

    molecules in )hich it may e,ist as a separate phase )hen in contact

    )ith aromatic sulphur*nitrogen compounds'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    38/103

    S'*'+ ,- .,N.* /.Q.0

    NN

    CH3) 

    *-

    +

    12lyl3methylimi!azoliumanion 14utyl3methylimi!aozlium

    he5a6uoro#hos#hate

    F4M)MF(

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    39/103

    '7P.*2/ *2'.,NS 2N0 2N.,NS .N .,N.*/.Q.0S

     *

     *

    E -

    E 1

    E K

    E M

    E 2

     *

    E .

    E -

    E M

    E 1

    E 2

    E K

     *

    E 1

    E 2

    E -

    E M

    C$T,O-S   $-,O-S

    8F;M9 

    87;.9

    Cl+:lCl-

    Cl,Fr ,=

     *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    40/103

    Chemical systems of IL’s

     April 9:= :I9 State of the art Seminar JI

    ;ure ionic li%uids

      cation anion B I$3s 9inary mi,ture containing I$3s

      I$3s "olecular Compounds

    Molecular compouns: aliphatic al=anes

    cyclohydrocar(ons aromatic hydrocar(onsetc'''!"amples:  solu(ility of 72  and C72  in 1-9utyl->-

    "ethylimida.olium Tetrafluoro(orate

    Ternary mi,ture containing I$3s

      I$3s "olecular compound "olecular compound

      /or

      I$3s I$3s "olecular compound

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    41/103

     Application of ionic li8+id in the f+t+re

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    42/103

    0ypical S+lph+r 5 Kitroencompo+nds#

      #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3 i(en4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

    #   #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3 i(en4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

    i(en4othiophene BTS3

    #   #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    43/103

    Ho$ S % N co&'ound can a((ect)* 

    Di d t f it d l h i

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    44/103

     Disadvantages of nitrogen and sulphur in

     Diesel oil 

    itrogen3 S Sulphur3

    Nndesirable. Nndesirable.

    Catalyst deactivation . Catalyst deactivation .

    Geading to coke formation. Geading to coke formation.

    6ighly inhibiting effect on6O".

    6ighly inhibiting effect onactive catalyst.

    7otentially affect dieselstability during storage.

    7otentially affect dieselstability during storage.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    45/103

    To produce *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    46/103

     HDN & HDS Limitations

    H HS

    Consume high energy Consume high energy

    "evere operating conditionsT-HHHHQC R 7 J1H S7a

    "evere operating conditionsT-HHMHHQC R 7 (M S7a

    Gower space velocity Gower space velocity

    :dditives are needed toimprove fuel properties and

     performance

    :dditives are needed toimprove fuel properties and

     performance

    Gess efficiency for refractorynitrogen. Gess efficiency for refractorysulphur.

    e.g.%pyrrole,indoline,pyridine,quinoline.

    e.g.% thiophene,benDothiophene.

    Si l t d Di l iti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    47/103

    Simulated Diesel composition

    #nti! C$

    wt %

    C& 

    wt %

    C' 

    wt %

    C9 

    wt %

    C1(

    wt %

    C11)

     wt

    %

    n*+arans

    -Cn.2n)2/

    &07 102 (01 20$ * * (0(&

    4soparans-Cn.2n)2/

    1(09 $0&2 10'1 17 10 * (0

    5romatics

    -Cn.2n*&/

    * (02 &07

    1

    (0 (0 (0& (0

    6aphthenes-Cn.2n/

    (0 10&2 101 102 * * *

    O!ens

    -Cn.2n/

    &07 10&2 (0$1 (01 (02 * *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    48/103

    Separation processes eneral "echanical separations e'g' filtration of a

    solid from a suspension in a li%uid

    centrifugation screening etc

    "ass transfer operations e'g' distillatione,traction etc

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    49/103

    Mass transfer operations Lnat+re of interface /etween

    phases

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    50/103

    Mass transfer operations Lcontrollin transport

    phenomenon "ass transfer controlling e'g'distillationa(sorption e,traction adsorption etc

    "ass transfer and heat transfer controlling

    e'g' drying crystallisation 8eat transfer controlling e'g' e&aporation

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    51/103

    Methods of operation

    Non steady state concentration changes

    )ith time e'g' (atch processes

    #teady state

    #tage

    Differential contact

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    52/103

    When /oth phases areowin* Co-current contact

    Cross flo)

    Counter-current flo)

    Stae 9 Stae :

    9 :

    9 :

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    53/103

    ,hoice of separation process

    +actors to (e considered

    +easi(ility

    ;roduct &alue

    Cost

    ;roduct %uality

    selecti&ity

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    54/103

    Ei8+idli8+id e@tractionprinciples+eed phase contains a component  i )hich is

    to (e remo&ed' !ddition of a second phase/sol&ent phase )hich is immisci(le )ith feed

    phase (ut component i is solu(le in (othphases' #ome of component i /solute istransferred from the feed phase to the sol&entphase' !fter e,traction the feed and sol&ent

    phases are called the raffinate / ande,tract /E phases respecti&ely'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    55/103

    -@tractants

    The efficiency of a li%uid li%uid e,traction can

    (e enhanced (y adding one or more

    e,tractants to the sol&ent phase' The

    e,tractant interacts )ith component iincreasing the capacity of the sol&ent for i'To

    reco&er the solute from the e,tract phase the

    e,tractant-solute comple, has to (e

    degraded'

    / 3

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    56/103

    Distri/+tion coe3icient

    B mass fraction solute in E phase

    mass fraction solute in phase

    B y*,

    $arge &alues are desira(le since less sol&ent is

    re%uired for a gi&en degree of e,traction

    ) i i/l li id

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    57/103

    )mmisci/le li8+ids

    e'g' )ater chloroform

    Consider a feed of )ater*acetone/solute'

    B mass fraction acetone in chloroform phase  mass fraction acetone in )ater phase

    B =g acetone*=g chloroform B y*,

      =g acetone*=g )ater 

    B 1'2i'e' acetone is preferentially solu(le in the chloroform phase

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    58/103

    ( i ll i i/l li id

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    59/103

    (artially misci/le li8+idsE'g' )ater "I9

    Consider a solute acetone'

    Need to use a triangular phase diagram to sho)

    e%uili(rium compositions of "I9-acetone-)ater mi,tures'

    Characteristics are single phase and t)o phaseregions tie lines connecting e%uili(rium phasecompositions in t)o phase region'

    ,h i f l t

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    60/103

    ,hoice of solvent+actors to (e considered

    #electi&ity Distri(ution coefficient

    Insolu(ility of sol&ent

    eco&era(ility of solute from sol&ent

    Density difference (et)een li%uid phases

    Interfacial tension

    Chemical reacti&ity

    Cost Fiscosity &apour pressure

    +lamma(ility to,icity

    S l ti it

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    61/103

    Selectivity

    G B /mass fraction 9 in E*/mass fraction ! in E

      /mass fraction 9 in */mass fraction ! in

    G H 1

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    62/103

    ( ti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    63/103

    (roperties*Density:  ! density difference is re%uired (et)een

    the t)o phases'

    $nter%acial tension : The larger the interfacialtension (et)een the t)o phases the more

    readily coalescence of emulsions )ill occur togi&e t)o distinct li%uid phases (ut the more

    difficult )ill (e the dispersion of one li%uid in the

    other to gi&e efficient solute e,traction'

    Chemical reacti&ity: #ol&ent should (e sta(le andinert'

    (h i l ti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    64/103

    (hysical properties

    +or material handling

    $o) &iscosity

    $o) &apour pressure

    Non-flamma(le /high flash point

    Non-to,ic

    S ti 0 h i

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    65/103

    Separation 0echni8+es

    $i%uid-$i%uid E,traction1';rocess is applica(le at am(ient conditions

    2'#pecial e%uipment re%uirements

    >'Energy consumption is negligi(le

    'No hydrogen consumption

    5'8andling is easy

    6'The process does not change the chemical

    structure of the components'

    A li ti f M l l

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    66/103

     Application of Molec+larSim+lation To predict the $J"7 and 87"7 energy of the

    molecules and their thermodynamic properties

    To find the scalar properties

    Chemical potential /K

    Electronegati&ity /L

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    67/103

    roperties name :mpiri!al expressionOperational

    expressionOr(ital e.inition

    Chemical potential ' )

    /lectronegativity 'U)

    Alobal 6ardness 'V )

    Alobal "oftness '")

    /lectrophilicity

    inde$'W )

    Or/ital DenitionsScalar(roperties

    ' ) r 

     E 

     N   µ 

    ∂ = ∂ 2

     /P E&+  − ÷   2

     "%M% '+M%ξ ξ +   ÷  

    ' ) r 

     E 

     N  χ µ  ∂ = ∂

    ; -

    2

     /P E&+   ÷   2

     "%M% '+M%ξ ξ +   ÷  

    2

    2' ) ' )

    1 1

    2 2V r r  

     E 

     N N 

     µ η 

      ∂ ∂ = = ∂ ∂ 2 /P E&−  

    ÷   2

     "%M% '+M%ξ ξ − +  

    ÷  

    2

    2' ) ' )

    1 1 1

    2 2V r r  

     s  E 

     N N 

     µ    η = = =∂ ∂ ∂ ∂

    2 /P E&

      ÷−  2

     "%M% '+M%ξ ξ 

      ÷− +  

    2

    2

     µ ω 

    η = M

     /P E&+   ÷   M

     "%M% '+M%ξ ξ − +  

    ÷  

    MOED-K S ft

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    68/103

    MOED-K Software

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    69/103

    (artial ,hares (redictions

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    70/103

    (artial ,hares (redictions'ile !it aitional

    section mem=-M> un

    Route section ? @35?*+,3--B/ opt=2iis#C'(C4N!R=9MAECC5!=-6) pop(npachelp2)2eom=istance

    7=

    Title section ?artial char2es

    Char2e an multiplicity -

    Molecular speci%ication

    'or e"ampleF Thiophene optimi1e &alues %rom M45D!N out %ile(a%ter 6ND step)s c - cs6c 6 cc3 - ccs3c 3 cc7 6 ccc7 - ih7

    c 7 cc8 3 ccc8 6 ih8h 8 hc+ 7 hcc+ - ih+h 7 hc9 8 hcc9 3 ih9h 3 hc 7 hcc 6 ihh 6 hc; 3 hcc; - ih;cs6 -.9-cc3 -.78ccs3 -;.79-cc7 -.78ccc7 -;.79-ih7 .

    cc8 -.78ccc8 -;.79-ih8 .hc+ -.;hcc+ -;.79-ih+ -.hc9 -.;hcc9 -;.79-ih9 -.

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    71/103

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    72/103

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    73/103

    (artial ,hares of ,ation#4M(O&

    (artial ,hares of

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    74/103

    (artial ,hares of)E#4M(O4

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    75/103

    (artial ,hares of )E%0hiophene

    E!MO HOMO -neries

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    76/103

    E!MOHOMO -neries(redictions

    )nteraction -neries

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    77/103

    )nteraction -neries(redictions

    COSMO RS model

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    78/103

    COSMO-RS model C7#"7-# consist of

    - Puantum theory- #urface interactions

    - #tatistical thermodynamics

    - Dielectric continuum models

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    79/103

    *,SM, & *,n!uctor /ieScreenin8 M,!el

    Element #pecific

    "olecular Ca&itiesCreated #ol&ent !ccessi(le !rea

    /#!#

    "olecule ;laced

    In a conductor #olute "olecule

    "olecule ;ulls Charges

    +rom the conductor 

    To the interface

    ":" divided into small segments

    each having a screening charge

    density X

    LH :q)otal soluteΦ Φ = = +

    #urface Charge Distri(ution #I

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    80/103

    The energy difference (et)een the real situation of such contact and

    the ideally screened situation has to (e defined as a local electrostatic

    interaction energy )hich results from the contact of the molecules'

    PCI!

    ))))))

        

          

    σY

    σ

    σ>> 0σYZZ H 8ydrogen 9onding

    Interaction

    "isfit Energy

    Interaction

    IdealElectrostati

    c

    Contact

    I t ti "

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    81/103

     Interaction "ner#yCalculations "isfit interaction

    6ydrogen bonding   ( )2

    ' , ) ' , )

     

    2

    misfit eff misfit  

    eff  

     E a e

    a

    σ σ σ σ  

    α σ σ 

    ′ ′=

    ′′= +

    ' , ) ' , )

      minBH,min'H, )ma$'H, )C

    hb eff hb

    eff hb don hb acc hb

     E a e

    a c

    σ σ σ σ  

    σ σ σ σ  

    ′ ′=

    = + −

    mist constant

    .8drogen :onding coecientthresho!d for .8drogen:onding

    E;ecti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    82/103

    $cti%ity Coe&icient

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    83/103

     $cti%ity Coe&icient

     !cti&ity Coefficient of the #egment

     !cti&ity Coefficient of Component in "i,ture

    ' , )ln ' ) ln ' ) ' )e$p

    * * * 

     E  !

    k) σ  

    σ σ  σ σ σ  

    ′ − Γ = − Γ ∑

    2' , ) ' ) minBH, min'H, ) ma$'H, )C

    2  hb don hb acc hb

     E cα 

    σ σ σ σ σ σ σ σ  ′

    ′ ′= + + + −

    + +ln ' )8ln ' ) ' )9 ln  *(

    i * i i * i i *  n !

    σ 

    γ σ σ σ γ    = Γ − Γ +∑i

    i

    eff  

     &n

    a==here

    i0e The contri(ution of molecule Ri’  to the surface segment

    ( )+γ  i S 7nce !cti&ity Coefficients is =no)n )e can predict $i%uid $i%uidE%uili(ria /$$E

    'eneration of COSMO (ile

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    84/103

    'eneration of COSMO (ile

    #tep:-: eometry 4ptimi1ation in as ?hase

    5e&el o% Theory ;9FQ6 /Density +unctional Theory

    @asis #et TSF; /Triple Seta Falence ;olari.ed )ith

    D

    #tep 6: C4#M4 'ile eneration

    5e&el o% Theory ;9FQ6 /Density +unctional Theory

    @asis #et TSF; /Triple Seta Falence ;olari.ed * D

    #C+ Calculation is done )ith SCRF=COSORS =ey)ord in

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    85/103

    "odified ashford ice algorithm

    for C7#"7-# model'

    Selectivity 5 ,apacity

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    86/103

    Selectivity 5 ,apacity

    The selecti&ity is defined as the ratio of the composition of/nitrogen*sulphur compounds species in I$ rich phase /e,tract

    and its composition in model diesel rich /raffinate phase'

    "u=hopadhyay1UUV

    The in&erse of the acti&ity coefficient of the species

    /nitrogen*sulphur compoundsat infinite dilution in sol&ent rich

    /e,tract phase' "u=hopadhyay : ao1UQV

    86

    2 1 2

    1 2 1

     /' !hase 0iesel !hase /' !hase

    ij1max ij* 2*   γ γ γ  

    γ γ γ  

    ∞ ∞ ∞∞

    ∞ ∞ ∞

     = ≈ ÷ ÷ ÷  

    12

    1

    1C 

    γ  ∞

     = ÷

     

    Separation of aromatic nitroen

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    87/103

    Separation of aromatic nitroen5 s+lph+r compo+nds

    0ernary Diaram

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    88/103

    0ernary Diaram

    TE"I"VTEt#7V0 10 20 >0 0 50 60 0 Q0 U0 100

    9en.othiophene

    0

    10

    20

    >0

    0

    50

    60

    0

    Q0

    U0

    100

    8e,ane

    0

    10

    20

    >0

    0

    50

    60

    0

    Q0

    U0

    100

    E,perimental

    C7#"7-# ;redictions

    RMSD for Quaternary systems

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    89/103

    yy#'No Name of the systems NT$ model JNIPJ!C

    modelC7#"7-#model

    1 !M$MI4AcIBThiophene

    ;yridine?entane

    0'> 1'6U '62

    2 E"I"VEt#7VThiophene

    ;yridine?entane

    0'12 0'1U 5'>

    > !M$MIMe#43IBThiophene

    ;yridine?entane

    1'U 1'60 6'

    !M$MI4AcIBThiophene

    ;yridineCyclohe"ane

    1'0> 1'6U 'Q5

    5 !M$MI!t#47IBThiophene

    ;yridineCyclohe"ane

    1'25 1'U0 5'U>

    6 !M$MIMe#43IBThiophene

    ;yridineCyclohe"ane

    1'0U 2' 5'>5

    !M$MI4AcIBThiophene

    ;yridineToluene

    0'U2Q 1'5 Q'1

    Q !M$MI!t#47IBThiophene

    ;yridineToluene

    1'2> 1'5 Q'

    U !M$MIMe#43IBThiophene

    ;yridineToluene

    0U'> 2'> 6'5>

    S+mmary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    90/103

    S+mmary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    91/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    92/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    93/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    94/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    95/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    96/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    97/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    98/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    99/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    100/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    101/103

     Ac$nowledements

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    102/103

    c o ede e ts

    Dr'Tamal 9anerYeeIIT

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    103/103

     Than>s, and 4?!! see 8ou ne@t time0