Application of non-commutative Gröbner basis to ...

95
Introduction Non-commutative Gröbner basis Free resolution Application Application of non-commutative Gröbner basis to calculations of E 2 terms of the Adams spectral sequence Tomohiro Fukaya Department of Mathematics Kyoto University Free resolution of the Steenrod Algebra Kyoto university

Transcript of Application of non-commutative Gröbner basis to ...

Page 1: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Application of non-commutative Gröbnerbasis to calculations of E2 terms of the

Adams spectral sequence

Tomohiro Fukaya

Department of MathematicsKyoto University

Free resolution of the Steenrod Algebra Kyoto university

Page 2: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 3: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 4: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 5: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 6: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 7: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 8: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I am interested in the application of Gröbner basis to thestudy of algebraic topology.

I The theory of Gröbner bases for polynomial rings wasdeveloped by Bruno Buchberger in 1965.

I One can view it as a multivariate, non-linear generalizationof:

I the Euclidean algorithm for computation of greatestcommon divisors,

I Gaussian elimination for linear systems, andI integer programming problems.

Free resolution of the Steenrod Algebra Kyoto university

Page 9: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I believe that Gröbner bases will become a powerfullmethod for the study of algebraiv topology.

I For example, I studied the ring structrure of thecohomology of the Oriented Grassmann manifolds usingGröbner basis. I obtaind the exact values of the cup-lengthfor an infinite family of the Oriented Grassmann manifolds.

I cup(G̃n,3) = n + 1 for n = 2m+1 − 4, m ≥ 1.I Today, I will talk on the algorithm of the calculation of the

E2 terms of the Adams spectral sequence usingnon-commutative Gröbner bases.

Free resolution of the Steenrod Algebra Kyoto university

Page 10: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I believe that Gröbner bases will become a powerfullmethod for the study of algebraiv topology.

I For example, I studied the ring structrure of thecohomology of the Oriented Grassmann manifolds usingGröbner basis. I obtaind the exact values of the cup-lengthfor an infinite family of the Oriented Grassmann manifolds.

I cup(G̃n,3) = n + 1 for n = 2m+1 − 4, m ≥ 1.I Today, I will talk on the algorithm of the calculation of the

E2 terms of the Adams spectral sequence usingnon-commutative Gröbner bases.

Free resolution of the Steenrod Algebra Kyoto university

Page 11: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I believe that Gröbner bases will become a powerfullmethod for the study of algebraiv topology.

I For example, I studied the ring structrure of thecohomology of the Oriented Grassmann manifolds usingGröbner basis. I obtaind the exact values of the cup-lengthfor an infinite family of the Oriented Grassmann manifolds.

I cup(G̃n,3) = n + 1 for n = 2m+1 − 4, m ≥ 1.I Today, I will talk on the algorithm of the calculation of the

E2 terms of the Adams spectral sequence usingnon-commutative Gröbner bases.

Free resolution of the Steenrod Algebra Kyoto university

Page 12: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I I believe that Gröbner bases will become a powerfullmethod for the study of algebraiv topology.

I For example, I studied the ring structrure of thecohomology of the Oriented Grassmann manifolds usingGröbner basis. I obtaind the exact values of the cup-lengthfor an infinite family of the Oriented Grassmann manifolds.

I cup(G̃n,3) = n + 1 for n = 2m+1 − 4, m ≥ 1.I Today, I will talk on the algorithm of the calculation of the

E2 terms of the Adams spectral sequence usingnon-commutative Gröbner bases.

Free resolution of the Steenrod Algebra Kyoto university

Page 13: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Steenrod Algebra

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 14: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Steenrod Algebra

Steenrod algebra, A2, which is generated by operations (i ≥ 0)

Sqi : H∗( ; F2) → H∗+i( ; F2),

I Sq0 = the identity homomorphism.I If x ∈ Hn(X ; F2), then Sqnx = x2.I x , y ∈ H∗(X ; F2),

Sqk (x ∪ y) =Pk

i=0 Sqix ∪ Sqk−iy , the Cartan formula.

I The following relations hold among the generators: if 0 < a < 2b

SqaSqb =

[a/2]Xi=0

b − 1− i

a− 2i

!Sqa+b−iSqi

These relations are called the Adem relations.

Free resolution of the Steenrod Algebra Kyoto university

Page 15: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

The Problem We Study and The Basic Tool

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 16: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

The Problem We Study and The Basic Tool

ProblemFor topological space X and Y , compute the groups ofmorphisms

{Y , X}k := limn→∞

[Σn+kY ,ΣnX ].

If Y = S0, then {Y , X}k = πSk (X ); the stable k-th homotopy group of X .

Free resolution of the Steenrod Algebra Kyoto university

Page 17: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 18: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

Theorem (Adams spectarl sequence)There is a spectral sequence, converging to (2){Y , X}∗, withE2-terms given by

Es,t2∼= Exts,t

A2(H∗(X ; F2), H∗(Y ; F2)) (1)

and differentials dr of bi-degree (r , r − 1).

Free resolution of the Steenrod Algebra Kyoto university

Page 19: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

E2-terms of Adams spectral sequence are given by A2-freeresolution of A2-module M = H∗(X ; F2)

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri is free A2-module (⊕A2) and A2 is the Steenrod algebra.For another A2-module N = H∗(Y ; F2), we obtain a cochaincomplex

Hom(M, N)d0−→ Hom(R0, N)

d1−→ Hom(R1, N)

d2−→ · · · .

The cohomology of this complex defines Ext∗,∗A2(M, N).

Free resolution of the Steenrod Algebra Kyoto university

Page 20: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

E2-terms of Adams spectral sequence are given by A2-freeresolution of A2-module M = H∗(X ; F2)

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri is free A2-module (⊕A2) and A2 is the Steenrod algebra.For another A2-module N = H∗(Y ; F2), we obtain a cochaincomplex

Hom(M, N)d0−→ Hom(R0, N)

d1−→ Hom(R1, N)

d2−→ · · · .

The cohomology of this complex defines Ext∗,∗A2(M, N).

Free resolution of the Steenrod Algebra Kyoto university

Page 21: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

E2-terms of Adams spectral sequence are given by A2-freeresolution of A2-module M = H∗(X ; F2)

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri is free A2-module (⊕A2) and A2 is the Steenrod algebra.For another A2-module N = H∗(Y ; F2), we obtain a cochaincomplex

Hom(M, N)d0−→ Hom(R0, N)

d1−→ Hom(R1, N)

d2−→ · · · .

The cohomology of this complex defines Ext∗,∗A2(M, N).

Free resolution of the Steenrod Algebra Kyoto university

Page 22: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

The key to calculate such a free resolution is

Non-commutative Gröbner basis and Syzygy module.

RemarkMr. Euiyong Park (Seoul National University) ,and his co-workers,are using the non-commutative Gröbner basis to study therepresentation of Lie algebras and their universal envelopingalgebras.

Free resolution of the Steenrod Algebra Kyoto university

Page 23: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

The key to calculate such a free resolution is

Non-commutative Gröbner basis and Syzygy module.

RemarkMr. Euiyong Park (Seoul National University) ,and his co-workers,are using the non-commutative Gröbner basis to study therepresentation of Lie algebras and their universal envelopingalgebras.

Free resolution of the Steenrod Algebra Kyoto university

Page 24: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Adams spectral sequence

The key to calculate such a free resolution is

Non-commutative Gröbner basis and Syzygy module.

RemarkMr. Euiyong Park (Seoul National University) ,and his co-workers,are using the non-commutative Gröbner basis to study therepresentation of Lie algebras and their universal envelopingalgebras.

Free resolution of the Steenrod Algebra Kyoto university

Page 25: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 26: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

We consider the non-commutative polynomial ring.I k : field.I R = k < x1, x2, . . . , xi , · · · > non-commutative free

associative ringI the set of polynomials.

I B = {xi1xi2 · · · xik} ∪ {1}I the set of monomials.

Free resolution of the Steenrod Algebra Kyoto university

Page 27: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

We consider the non-commutative polynomial ring.I k : field.I R = k < x1, x2, . . . , xi , · · · > non-commutative free

associative ringI the set of polynomials.

I B = {xi1xi2 · · · xik} ∪ {1}I the set of monomials.

Free resolution of the Steenrod Algebra Kyoto university

Page 28: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

We consider the non-commutative polynomial ring.I k : field.I R = k < x1, x2, . . . , xi , · · · > non-commutative free

associative ringI the set of polynomials.

I B = {xi1xi2 · · · xik} ∪ {1}I the set of monomials.

Free resolution of the Steenrod Algebra Kyoto university

Page 29: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

We consider the non-commutative polynomial ring.I k : field.I R = k < x1, x2, . . . , xi , · · · > non-commutative free

associative ringI the set of polynomials.

I B = {xi1xi2 · · · xik} ∪ {1}I the set of monomials.

Free resolution of the Steenrod Algebra Kyoto university

Page 30: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Non-commutative ring

We consider the non-commutative polynomial ring.I k : field.I R = k < x1, x2, . . . , xi , · · · > non-commutative free

associative ringI the set of polynomials.

I B = {xi1xi2 · · · xik} ∪ {1}I the set of monomials.

Free resolution of the Steenrod Algebra Kyoto university

Page 31: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 32: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Definition (Monomial order)Let ≤ be a well-ordering on B. ≤ is said to be a monomialordering on R if the following two conditions are satisfied.

I if u, v , w , s ∈ B with w ≤ u, then vws ≤ vus.I For u, w ∈ B, if u = vws for some v , s ∈ B with v 6= 1 or

s 6= 1, then w ≤ u.Hence 1 ≤ u for all u ∈ B.

Free resolution of the Steenrod Algebra Kyoto university

Page 33: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Definition (Monomial order)Let ≤ be a well-ordering on B. ≤ is said to be a monomialordering on R if the following two conditions are satisfied.

I if u, v , w , s ∈ B with w ≤ u, then vws ≤ vus.I For u, w ∈ B, if u = vws for some v , s ∈ B with v 6= 1 or

s 6= 1, then w ≤ u.Hence 1 ≤ u for all u ∈ B.

Free resolution of the Steenrod Algebra Kyoto university

Page 34: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Definition (Monomial order)Let ≤ be a well-ordering on B. ≤ is said to be a monomialordering on R if the following two conditions are satisfied.

I if u, v , w , s ∈ B with w ≤ u, then vws ≤ vus.I For u, w ∈ B, if u = vws for some v , s ∈ B with v 6= 1 or

s 6= 1, then w ≤ u.Hence 1 ≤ u for all u ∈ B.

Free resolution of the Steenrod Algebra Kyoto university

Page 35: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

From here, We fix a monomial ordering.I For f ∈ R, f 6= 0, we may write

f = c1u1 + · · ·+ cmum

where ci ∈ k \ {0}, ui ∈ B, u1 > u2 > · · · > um.I lm(f ) = u1, the leading monomial of f .

Free resolution of the Steenrod Algebra Kyoto university

Page 36: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

From here, We fix a monomial ordering.I For f ∈ R, f 6= 0, we may write

f = c1u1 + · · ·+ cmum

where ci ∈ k \ {0}, ui ∈ B, u1 > u2 > · · · > um.I lm(f ) = u1, the leading monomial of f .

Free resolution of the Steenrod Algebra Kyoto university

Page 37: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Theorem (Division on f by H)

INPUT f , H = {h1, . . . , hm . . . } ⊂ R

OUTPUT f =d∑

α=0

µαvαhiαsα + r

I µα ∈ k \ {0}, vα, sα ∈ B. lm(µαvαhiαsα) ≤ lm(f ).

I r = 0 or r =∑

j cj tj where cj ∈ k \ {0}, tj ∈ B,

I lm(r) ≤ lm(f ), none of the tj is divisible by any lm(hi).

I r is depend on the ordering on H.

Free resolution of the Steenrod Algebra Kyoto university

Page 38: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Theorem (Division on f by H)

INPUT f , H = {h1, . . . , hm . . . } ⊂ R

OUTPUT f =d∑

α=0

µαvαhiαsα + r

I µα ∈ k \ {0}, vα, sα ∈ B. lm(µαvαhiαsα) ≤ lm(f ).

I r = 0 or r =∑

j cj tj where cj ∈ k \ {0}, tj ∈ B,

I lm(r) ≤ lm(f ), none of the tj is divisible by any lm(hi).

I r is depend on the ordering on H.

Free resolution of the Steenrod Algebra Kyoto university

Page 39: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Theorem (Division on f by H)

INPUT f , H = {h1, . . . , hm . . . } ⊂ R

OUTPUT f =d∑

α=0

µαvαhiαsα + r

I µα ∈ k \ {0}, vα, sα ∈ B. lm(µαvαhiαsα) ≤ lm(f ).

I r = 0 or r =∑

j cj tj where cj ∈ k \ {0}, tj ∈ B,

I lm(r) ≤ lm(f ), none of the tj is divisible by any lm(hi).

I r is depend on the ordering on H.

Free resolution of the Steenrod Algebra Kyoto university

Page 40: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

Theorem (Division on f by H)

INPUT f , H = {h1, . . . , hm . . . } ⊂ R

OUTPUT f =d∑

α=0

µαvαhiαsα + r

I µα ∈ k \ {0}, vα, sα ∈ B. lm(µαvαhiαsα) ≤ lm(f ).

I r = 0 or r =∑

j cj tj where cj ∈ k \ {0}, tj ∈ B,

I lm(r) ≤ lm(f ), none of the tj is divisible by any lm(hi).

I r is depend on the ordering on H.

Free resolution of the Steenrod Algebra Kyoto university

Page 41: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

I The r appeared in above OUTPUT is called a remainder off on the division by G, dented f

H.

I Then fH

is depend on the order on H.I To overcome this difficulty, we need Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 42: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

I The r appeared in above OUTPUT is called a remainder off on the division by G, dented f

H.

I Then fH

is depend on the order on H.I To overcome this difficulty, we need Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 43: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

I The r appeared in above OUTPUT is called a remainder off on the division by G, dented f

H.

I Then fH

is depend on the order on H.I To overcome this difficulty, we need Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 44: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

I The r appeared in above OUTPUT is called a remainder off on the division by G, dented f

H.

I Then fH

is depend on the order on H.I To overcome this difficulty, we need Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 45: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

I The r appeared in above OUTPUT is called a remainder off on the division by G, dented f

H.

I Then fH

is depend on the order on H.I To overcome this difficulty, we need Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 46: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

DefinitionLet I be two-side ideal of R. G = {g1, g2, . . . } ⊂ I is Gröbnerbasis, if and only if

(lm(g)|g ∈ G) = (lm(g)|g ∈ I)

I If G = {g1, g2, . . . } ⊂ R is Gröbner basis, thenI f

Gis independent of the order on G and f

Gis unique.

I f ∈ I = (g1, g2, . . . , gi , . . . ) ⇔ fG

= 0.I There exists an algorithm to compute a Gröbner basis ofH = {h1, . . . , hs}.

Free resolution of the Steenrod Algebra Kyoto university

Page 47: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

DefinitionLet I be two-side ideal of R. G = {g1, g2, . . . } ⊂ I is Gröbnerbasis, if and only if

(lm(g)|g ∈ G) = (lm(g)|g ∈ I)

I If G = {g1, g2, . . . } ⊂ R is Gröbner basis, thenI f

Gis independent of the order on G and f

Gis unique.

I f ∈ I = (g1, g2, . . . , gi , . . . ) ⇔ fG

= 0.I There exists an algorithm to compute a Gröbner basis ofH = {h1, . . . , hs}.

Free resolution of the Steenrod Algebra Kyoto university

Page 48: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

DefinitionLet I be two-side ideal of R. G = {g1, g2, . . . } ⊂ I is Gröbnerbasis, if and only if

(lm(g)|g ∈ G) = (lm(g)|g ∈ I)

I If G = {g1, g2, . . . } ⊂ R is Gröbner basis, thenI f

Gis independent of the order on G and f

Gis unique.

I f ∈ I = (g1, g2, . . . , gi , . . . ) ⇔ fG

= 0.I There exists an algorithm to compute a Gröbner basis ofH = {h1, . . . , hs}.

Free resolution of the Steenrod Algebra Kyoto university

Page 49: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

DefinitionLet I be two-side ideal of R. G = {g1, g2, . . . } ⊂ I is Gröbnerbasis, if and only if

(lm(g)|g ∈ G) = (lm(g)|g ∈ I)

I If G = {g1, g2, . . . } ⊂ R is Gröbner basis, thenI f

Gis independent of the order on G and f

Gis unique.

I f ∈ I = (g1, g2, . . . , gi , . . . ) ⇔ fG

= 0.I There exists an algorithm to compute a Gröbner basis ofH = {h1, . . . , hs}.

Free resolution of the Steenrod Algebra Kyoto university

Page 50: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Review of Non-commutative Gröbner basis

DefinitionLet I be two-side ideal of R. G = {g1, g2, . . . } ⊂ I is Gröbnerbasis, if and only if

(lm(g)|g ∈ G) = (lm(g)|g ∈ I)

I If G = {g1, g2, . . . } ⊂ R is Gröbner basis, thenI f

Gis independent of the order on G and f

Gis unique.

I f ∈ I = (g1, g2, . . . , gi , . . . ) ⇔ fG

= 0.I There exists an algorithm to compute a Gröbner basis ofH = {h1, . . . , hs}.

Free resolution of the Steenrod Algebra Kyoto university

Page 51: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 52: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

We can consider the Steenrod algebra as a quotient ring.I A = Z2〈Sq1, Sq2, . . . 〉.I G =

{SqaSqb −

∑[a/2]i=0

(b−1−ia−2i

)Sqa+b−iSqi |0 < a < 2b

}.

Set of Adem relations.I I = (G): A two-side Ideal generated by G.I A2 = A/I.

Free resolution of the Steenrod Algebra Kyoto university

Page 53: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

We can consider the Steenrod algebra as a quotient ring.I A = Z2〈Sq1, Sq2, . . . 〉.I G =

{SqaSqb −

∑[a/2]i=0

(b−1−ia−2i

)Sqa+b−iSqi |0 < a < 2b

}.

Set of Adem relations.I I = (G): A two-side Ideal generated by G.I A2 = A/I.

Free resolution of the Steenrod Algebra Kyoto university

Page 54: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

We can consider the Steenrod algebra as a quotient ring.I A = Z2〈Sq1, Sq2, . . . 〉.I G =

{SqaSqb −

∑[a/2]i=0

(b−1−ia−2i

)Sqa+b−iSqi |0 < a < 2b

}.

Set of Adem relations.I I = (G): A two-side Ideal generated by G.I A2 = A/I.

Free resolution of the Steenrod Algebra Kyoto university

Page 55: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

We can consider the Steenrod algebra as a quotient ring.I A = Z2〈Sq1, Sq2, . . . 〉.I G =

{SqaSqb −

∑[a/2]i=0

(b−1−ia−2i

)Sqa+b−iSqi |0 < a < 2b

}.

Set of Adem relations.I I = (G): A two-side Ideal generated by G.I A2 = A/I.

Free resolution of the Steenrod Algebra Kyoto university

Page 56: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

Definition (A monomial Ordering of Steenrod Algebra)Let u = Sqa1 · · ·Sqak , v = Sqb1 · · ·Sqbl ∈ B.Then, u ≥ v if and only if

I k > l or,I k = l and the right-most nonzero entry of

(a1 − b1, . . . , ak − bk ) is positive.

lm(SqaSqb −∑[a/2]

i=0

(b−1−ia−2i

)Sqa+b−iSqi) = SqaSqb.

PropositionG is a Gröbner basis of I.

Free resolution of the Steenrod Algebra Kyoto university

Page 57: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

Definition (A monomial Ordering of Steenrod Algebra)Let u = Sqa1 · · ·Sqak , v = Sqb1 · · ·Sqbl ∈ B.Then, u ≥ v if and only if

I k > l or,I k = l and the right-most nonzero entry of

(a1 − b1, . . . , ak − bk ) is positive.

lm(SqaSqb −∑[a/2]

i=0

(b−1−ia−2i

)Sqa+b−iSqi) = SqaSqb.

PropositionG is a Gröbner basis of I.

Free resolution of the Steenrod Algebra Kyoto university

Page 58: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Example: Steenrod Algebra

Definition (A monomial Ordering of Steenrod Algebra)Let u = Sqa1 · · ·Sqak , v = Sqb1 · · ·Sqbl ∈ B.Then, u ≥ v if and only if

I k > l or,I k = l and the right-most nonzero entry of

(a1 − b1, . . . , ak − bk ) is positive.

lm(SqaSqb −∑[a/2]

i=0

(b−1−ia−2i

)Sqa+b−iSqi) = SqaSqb.

PropositionG is a Gröbner basis of I.

Free resolution of the Steenrod Algebra Kyoto university

Page 59: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy module

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 60: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy module

Again, let R = k < x1, x2, . . . , xi , · · · >.We consider the algorithm of computing a free-resolution ofleft-R-module M,

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri ’s are free R-modules.

The key to compute the free resolutions is the

syzygy modules.

Free resolution of the Steenrod Algebra Kyoto university

Page 61: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy module

Again, let R = k < x1, x2, . . . , xi , · · · >.We consider the algorithm of computing a free-resolution ofleft-R-module M,

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri ’s are free R-modules.

The key to compute the free resolutions is the

syzygy modules.

Free resolution of the Steenrod Algebra Kyoto university

Page 62: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy module

Again, let R = k < x1, x2, . . . , xi , · · · >.We consider the algorithm of computing a free-resolution ofleft-R-module M,

· · · di+1−−→ Ridi−→ Ri−1

di−1−−→ · · · d1−→ R0d0−→ M → 0

where Ri ’s are free R-modules.

The key to compute the free resolutions is the

syzygy modules.

Free resolution of the Steenrod Algebra Kyoto university

Page 63: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy module

DefinitionThe kernel of the map φ : Rs → M given by

(h1, . . . , hs) 7→s∑

i=1

hi fi , fi ∈ M

is called the syzygy module of the matrix t [f1 · · · fs]. It isdenoted Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 64: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 65: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We consider only the case M = R.

Step 1: we consider

Syz(g1, . . . , gt) = Ker[Rt ×t [g1···gt ]−−−−−−→ R]

where {g1, . . . , gt} is Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 66: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We consider only the case M = R.

Step 1: we consider

Syz(g1, . . . , gt) = Ker[Rt ×t [g1···gt ]−−−−−−→ R]

where {g1, . . . , gt} is Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 67: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We let lm(gi) = Xi and Xij = lcm(Xi , Xj).Then the S-polynomialof gi and gj is, given by

S(gi , gj) =Xij

Xigi −

Xij

Xjgj , lp(S(gi , gj)) < lp(

Xij

Xigi), lp(

XijXj

gj),

S(gi , gj) =t∑

ν=t

hijνgν , lp(S(gi , gj)) ≥ (lp(hijνgν)),

Letsij :=

Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt) ∈ Rt .

Free resolution of the Steenrod Algebra Kyoto university

Page 68: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We let lm(gi) = Xi and Xij = lcm(Xi , Xj).Then the S-polynomialof gi and gj is, given by

S(gi , gj) =Xij

Xigi −

Xij

Xjgj , lp(S(gi , gj)) < lp(

Xij

Xigi), lp(

XijXj

gj),

S(gi , gj) =t∑

ν=t

hijνgν , lp(S(gi , gj)) ≥ (lp(hijνgν)),

Letsij :=

Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt) ∈ Rt .

Free resolution of the Steenrod Algebra Kyoto university

Page 69: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We let lm(gi) = Xi and Xij = lcm(Xi , Xj).Then the S-polynomialof gi and gj is, given by

S(gi , gj) =Xij

Xigi −

Xij

Xjgj , lp(S(gi , gj)) < lp(

Xij

Xigi), lp(

XijXj

gj),

S(gi , gj) =t∑

ν=t

hijνgν , lp(S(gi , gj)) ≥ (lp(hijνgν)),

Letsij :=

Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt) ∈ Rt .

Free resolution of the Steenrod Algebra Kyoto university

Page 70: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We let lm(gi) = Xi and Xij = lcm(Xi , Xj).Then the S-polynomialof gi and gj is, given by

S(gi , gj) =Xij

Xigi −

Xij

Xjgj , lp(S(gi , gj)) < lp(

Xij

Xigi), lp(

XijXj

gj),

S(gi , gj) =t∑

ν=t

hijνgν , lp(S(gi , gj)) ≥ (lp(hijνgν)),

Letsij :=

Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt) ∈ Rt .

Free resolution of the Steenrod Algebra Kyoto university

Page 71: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We let lm(gi) = Xi and Xij = lcm(Xi , Xj).Then the S-polynomialof gi and gj is, given by

S(gi , gj) =Xij

Xigi −

Xij

Xjgj , lp(S(gi , gj)) < lp(

Xij

Xigi), lp(

XijXj

gj),

S(gi , gj) =t∑

ν=t

hijνgν , lp(S(gi , gj)) ≥ (lp(hijνgν)),

Letsij :=

Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt) ∈ Rt .

Free resolution of the Steenrod Algebra Kyoto university

Page 72: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

We note that sij ∈ Syz(g1, . . . , gt), since

sij

g1...

gt

=(Xij

Xiei −

Xij

Xjej − (hij1, . . . , hijt)

) g1...

gs

= S(gi , gj)−

t∑ν=t

hijνgν = 0.

TheoremWith notation above, the collection {sij |1 ≤ i ≤ j ≤ t} isgenerating set for Syz(g1, . . . , gt).

Free resolution of the Steenrod Algebra Kyoto university

Page 73: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzgy for Gröbner basis

TheoremThere exists an algorithm to compute a generating set of

Syz(g1, . . . , gt)

using S-polynomials and the division algorithm for {g1, . . . , gt}.

Free resolution of the Steenrod Algebra Kyoto university

Page 74: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

OutlineIntroduction

Steenrod AlgebraThe Problem We Study and The Basic ToolAdams spectral sequence

Non-commutative Gröbner basisNon-commutative ringReview of Non-commutative Gröbner basisExample: Steenrod Algebra

Free resolutionSyzygy moduleSyzgy for Gröbner basisSyzygy for not Gröbner basis

Free resolution of the Steenrod Algebra Kyoto university

Page 75: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

Step 2: we consider

Syz(f1, . . . , fs) = Ker[Rs ×t [f1···fs]−−−−−→ R]

where {f1, . . . , fs} is not Gröbner basis.

Free resolution of the Steenrod Algebra Kyoto university

Page 76: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 77: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 78: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 79: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 80: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 81: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 82: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 83: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 84: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

I {f1, . . . , fs} ⊂ R: not Gröbner basis.I {g1, . . . , gt}: Gröbner basis of {f1, . . . , fs}.I F = t [f1 . . . fs], G = t [g1 . . . gt ].

I ∃S: s × t matrix, ∃T : t × s matrixs.t. F = SG and G = TF .

I compute a generating set {s1, . . . , sr} for Syz(g1, . . . , gt)I 0 = siG = si(TF ) = (siT )F ,

I 〈siT |i = 1, . . . , r〉 ⊂ Syz(f1, . . . , fs).I Is: s × s identity matrix,

(Is − ST )F = F − STF = F − SG = F − F = 0I the rows r1, . . . , rs of Is − TS are also in Syz(f1, . . . , fs).

Free resolution of the Steenrod Algebra Kyoto university

Page 85: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

TheoremWith the notation above we haveSyz(f1, . . . , fs) = 〈s1T , . . . , sr T , r1, . . . , rs〉.

Using the Gröbner basis for module, we can extend above

theorem for Syz(f1, . . . , fs) = Ker[Rs ×t [f1···fs]−−−−−→ Rd ].

Free resolution of the Steenrod Algebra Kyoto university

Page 86: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

TheoremWith the notation above we haveSyz(f1, . . . , fs) = 〈s1T , . . . , sr T , r1, . . . , rs〉.

Using the Gröbner basis for module, we can extend above

theorem for Syz(f1, . . . , fs) = Ker[Rs ×t [f1···fs]−−−−−→ Rd ].

Free resolution of the Steenrod Algebra Kyoto university

Page 87: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Syzygy for not Gröbner basis

Using above theorem, we can compute the free resolution.

Kerφi

""DDDDDDDD

φi+2 // Ri+1φi+1 //

;;wwwwwwwwwRi

φi // Ri−1

Free resolution of the Steenrod Algebra Kyoto university

Page 88: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I By above method, we can compute the free resolution ofA2-module H∗(X ; Z/2).

I Moreover, using the division algorithm, we have theminimal resolution.

I I am writing a computer program to compute the E2-termsof Adams spectral sequence. The program will be availablefrom the web page(http://www.math.kyoto-u.ac.jp/˜tomo_xi).

Free resolution of the Steenrod Algebra Kyoto university

Page 89: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I By above method, we can compute the free resolution ofA2-module H∗(X ; Z/2).

I Moreover, using the division algorithm, we have theminimal resolution.

I I am writing a computer program to compute the E2-termsof Adams spectral sequence. The program will be availablefrom the web page(http://www.math.kyoto-u.ac.jp/˜tomo_xi).

Free resolution of the Steenrod Algebra Kyoto university

Page 90: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

I By above method, we can compute the free resolution ofA2-module H∗(X ; Z/2).

I Moreover, using the division algorithm, we have theminimal resolution.

I I am writing a computer program to compute the E2-termsof Adams spectral sequence. The program will be availablefrom the web page(http://www.math.kyoto-u.ac.jp/˜tomo_xi).

Free resolution of the Steenrod Algebra Kyoto university

Page 91: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Summary

Our method works for any space X , Y

Es,t2∼= Exts,t

A2(H∗(X ; F2), H∗(Y ; F2)) ⇒ (2){Y , X}∗

On the other hand,There are many calculations for the special case X , Y = S0

Es,t2∼= Exts,t

A2(F2, F2) ⇒ πS

the stable homotopy groups of the sphere

Free resolution of the Steenrod Algebra Kyoto university

Page 92: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Summary

Our method works for any space X , Y

Es,t2∼= Exts,t

A2(H∗(X ; F2), H∗(Y ; F2)) ⇒ (2){Y , X}∗

On the other hand,There are many calculations for the special case X , Y = S0

Es,t2∼= Exts,t

A2(F2, F2) ⇒ πS

the stable homotopy groups of the sphere

Free resolution of the Steenrod Algebra Kyoto university

Page 93: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

(a part of) Known results

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Free resolution of the Steenrod Algebra Kyoto university

Page 94: Application of non-commutative Gröbner basis to ...

Introduction Non-commutative Gröbner basis Free resolution Application

Our results

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Free resolution of the Steenrod Algebra Kyoto university

Page 95: Application of non-commutative Gröbner basis to ...

Appendix

For Further Reading

For Further Reading I

William W. Adams and Philippe Loustaunau.An introduction to Gröbner bases, volume 3 of GraduateStudies in Mathematics.American Mathematical Society, Providence, RI, 1994.

Huishi Li.Noncommutative Gröbner bases and filtered-gradedtransfer, volume 1795 of Lecture Notes in Mathematics.Springer-Verlag, Berlin, 2002.

Free resolution of the Steenrod Algebra Kyoto university