Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies...

31
259 © Springer Nature Switzerland AG 2020 G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3 Appendix A: tDCS Studies in a Healthy Population Table A1 Studies investigating the impact of tDCS on language in healthy populations— demographic information Article Language Participants Mean age (SD) Educational level (SD) Iyer et al. (2005) English 30 RH (17F; 13M) 38.6 years (12.9 years) 16.2 years (2.6 years) Sparing et al. (2008) German 15 RH (5F; 10M) 26.9 years (3.7 years) n.r. Cerruti and Schlaug (2009) English 18 RH (13F; 5M) 25.5 years (2.6 years) n.r. de Vries et al. (2010) English 44 RH (19F; 25M); 10 RH (5F; 5M) 22.6 years (2.1 years); 23.7 years (2.4 years) 15.6 years (1.5 years); 15.3 years (1.3 years) Fertonani et al. (2010) Italian 12 RH (8F; 4M); 12RH (6F; 6M) 24.1 years (3.7 years); 21.8 years (1.0 years) n.r. Liuzzi et al. (2010) German 30 RH (18F; 12M) 24.9 years (0.6 years) >12 years Ross, McCoy, Wolk, Coslett, and Olson (2010) English 15 RH (11F; 4M) 25.6 years; range 19–37 years n.r. Ross, McCoy, Coslett, Olson, and Wolk (2011) English 14 RH (7F; 7M) 65 years; range 55–69 years n.r. Cattaneo et al. (2011) Italian 10 RH (6F; 4M) 23.6 years (3.2 years) Undergraduate students Fiori et al. (2011) Italian 10 RH (3F; 7M) 55 years (7.9 years) 14 years (2.4 years) Holland et al. (2011) English 10 RH (3F; 7M) 69 years; range 62–74 years n.r. Wirth et al. (2011) German 20 RH (10F; 10M) 23.5 years (3.7 years) 13 years (1.6 years) (continued)

Transcript of Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies...

Page 1: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

259© Springer Nature Switzerland AG 2020 G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

Appendix A: tDCS Studies in a Healthy Population

Table A1 Studies investigating the impact of tDCS on language in healthy populations—demographic information

Article Language Participants Mean age (SD)Educational level (SD)

Iyer et al. (2005) English 30 RH (17F; 13M) 38.6 years (12.9 years)

16.2 years (2.6 years)

Sparing et al. (2008)

German 15 RH (5F; 10M) 26.9 years (3.7 years) n.r.

Cerruti and Schlaug (2009)

English 18 RH (13F; 5M) 25.5 years (2.6 years) n.r.

de Vries et al. (2010)

English 44 RH (19F; 25M); 10 RH (5F; 5M)

22.6 years (2.1 years); 23.7 years (2.4 years)

15.6 years (1.5 years); 15.3 years (1.3 years)

Fertonani et al. (2010)

Italian 12 RH (8F; 4M); 12RH (6F; 6M)

24.1 years (3.7 years); 21.8 years (1.0 years)

n.r.

Liuzzi et al. (2010) German 30 RH (18F; 12M) 24.9 years (0.6 years) >12 yearsRoss, McCoy, Wolk, Coslett, and Olson (2010)

English 15 RH (11F; 4M) 25.6 years; range 19–37 years

n.r.

Ross, McCoy, Coslett, Olson, and Wolk (2011)

English 14 RH (7F; 7M) 65 years; range 55–69 years

n.r.

Cattaneo et al. (2011)

Italian 10 RH (6F; 4M) 23.6 years (3.2 years) Undergraduate students

Fiori et al. (2011) Italian 10 RH (3F; 7M) 55 years (7.9 years) 14 years (2.4 years)

Holland et al. (2011)

English 10 RH (3F; 7M) 69 years; range 62–74 years

n.r.

Wirth et al. (2011) German 20 RH (10F; 10M) 23.5 years (3.7 years) 13 years (1.6 years)

(continued)

Page 2: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

260

Article Language Participants Mean age (SD)Educational level (SD)

Jeon and Han (2012)

Korean 32 RH (20F; 12M) 37.3 years (13.0 years)

≥12 years

Meinzer, Antonenko et al. (2012)

German 20 RH (10F; 10M) 26.7 years (3.8 years) n.r.

Pisoni et al. (2012) Italian 12 RH (10F; 2M) 22.4 years (2.94 years)

14.7 years (2.1 years)

Vannorsdall et al. (2012)

English 24 RH (13F; 11M) 35.7 years (10.1 years)

>12 years

Meinzer et al. (2013)

German 20 RH (10F; 10M); 20 RH (10F; 10M)

68.0 years (5.7 years); 26.4 years (3.4 years)

15.9 years (1.2 years); 15.6 years (1.9 years)

Penolazzi et al. (2013)

Italian 90 RH (55F; 35M) 21.6 years (0.2 years) University students

Peretz and Lavidor (2013)

Hebrew 17 RH (11F; 6M) 24.4 years (3.0 years) Students

Fertonani et al. (2014)

Italian 20 RH (10F; 10M) 66.5 years (5.5 years) 10.5 years

Henseler, Mädebach, Kotz, and Jescheniak (2014)

German 36 RH (n.r.) 26.2 years (3.0 years) n.r.

Meinzer et al. (2014)

German 18 RH (9F; 8M) 68.4 years (5.2 years) n.r.

Ehlis et al. (2016) German 23 RH (14F; 9M); 23 RH (11F; 12M)

32.1 years (10.5 years); 24.3 years (2.4 years)

n.r.

Manuel and Schnider (2016)

French 13 RH (6F; 7M); 13 RH (9F; 4M)

24 years (5 years); 23 years (3 years)

n.r.

Meinzer, Yetim, McMahon, and de Zubicaray (2016)

English 24 RH (14F; 10M) 24.7 years (4.6 years) n.r.

Habich et al. (2017)

German 43 RH (22F; 21M 24.8 years (2.9 years) >12 years

Vannorsdall et al. (2016)

English 14 RH (8F; 6M) 22.3 years (2.4 years) 15.1 years (1.9 years)

Westwood, Olson, Miall, Nappo, and Romani (2017)

English 18 RH (10F; 8M); 20 RH (12F; 8M); 18 RH (13F; 5M)

21 years (2.8 years); 21 years (2.9 years); 19.8 years (2.8 years)

Undergraduate students

Binney et al. (2018)

English 23 RH, 1 AD (20F; 4M)

21.2 years; range 18–30 years

n.r.

AD ambidextrous, F female, M male, n.r. not reported, RH right-handed, SD standard deviation

Table A1 (continued)

Appendix A: tDCS Studies in a Healthy Population

Page 3: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

261

Tabl

e A

2 St

udie

s in

vest

igat

ing

the

impa

ct o

f tD

CS

on la

ngua

ge in

hea

lthy

popu

latio

ns—

met

hodo

logi

cal i

nfor

mat

ion

Art

icle

Act

ive

elec

trod

e lo

catio

n (s

ize)

Ref

eren

ce e

lect

rode

loca

tion

(siz

e)In

tens

ityTy

peN

o. o

f se

ssio

ns (

dura

tion)

Iyer

et a

l. (2

005)

F3 (

25 c

m2 )

R s

upra

orbi

tal r

egio

n (2

5 cm

2 )2 

mA

a/c/

s1

sess

ion

(20 

min

); 3

gro

ups

of 1

0 pe

ople

Spar

ing

et a

l. (2

008)

Wer

nick

e: C

P5 (

35 c

m2 )

CP6

(35

 cm

2 )2 

mA

a/c/

s1

sess

ion

(7 m

in)

per

type

, 4-h

in

terv

alC

erru

ti an

d Sc

hlau

g (2

009)

L D

LPF

C (

16 c

m2 )

R s

upra

orbi

tal r

egio

n (3

0 cm

2 )1 

mA

a/c/

s1

sess

ion

(20 

min

) pe

r ty

pe, 3

0-m

in

inte

rval

de V

ries

et a

l. (2

010)

Bro

ca: L

BA

44/

45 (

35 c

m2 )

R s

upra

orbi

tal r

egio

n1 

mA

a/s

1 se

ssio

n (2

0 m

in)

Fert

onan

i et a

l. (2

010)

L D

LPF

C (

35 c

m2 )

R s

houl

der

(35 

cm2 )

2 m

Aa/

c/s

1 se

ssio

n (8

 min

); 1

ses

sion

(10

 min

)L

iuzz

i et a

l. (2

010)

L M

1 (2

5 cm

2 )R

sup

raor

bita

l reg

ion

(25 

cm2 )

1 m

Aa/

c/s

4 da

ily s

essi

ons

(20 

min

)R

oss

et a

l. (2

010)

T3;

T4

(35 

cm2 )

Con

tral

ater

al c

heek

(35

 cm

2 )1.

5 m

Aa/

s1

sess

ion

(15 

min

) pe

r m

onta

ge a

nd

type

; 1-d

ay in

terv

alR

oss

et a

l. (2

011)

T3;

T4

(35 

cm2 )

Con

tral

ater

al c

heek

(35

 cm

2 )1.

5 m

Aa/

s1

sess

ion

(15 

min

) pe

r m

onta

ge a

nd

type

, 1-d

ay in

terv

alC

atta

neo

et a

l. (2

011)

Bro

caR

sup

raor

bita

l reg

ion

2 m

Aa/

s1

sess

ion

(20 

min

) pe

r ty

pe, i

nter

val

n.r.

Fior

i et a

l. (2

011)

L S

TG

: CP5

R o

ccip

ito-p

arie

tal r

egio

n1 

mA

a/c/

s1

sess

ion

(20 

min

) pe

r ty

pe, 6

-day

in

terv

alH

olla

nd e

t al.

(201

1)L

IFG

: FC

5 (3

5 cm

2 )R

fro

ntop

olar

cor

tex

(35 

cm2 )

2 m

Aa/

s2

sess

ions

(20

 min

) a/

s an

d s/

a,

5–7 

day

inte

rval

Wir

th e

t al.

(201

1)L

DL

PFC

(35

 cm

2 )R

sho

ulde

r (4

9 cm

2 )1.

5 m

Aa/

s1

sess

ion

(30 

min

)Je

on a

nd H

an (

2012

)L

DL

PFC

, F3;

R D

LPF

C, F

4 (3

5 cm

2 )C

ontr

alat

eral

sup

raor

bita

l are

a (3

5 cm

2 )1 

mA

a/s

1 se

ssio

n (2

0 m

in)

Mei

nzer

, Ant

onen

ko e

t al.

(201

2)B

roca

: L B

A44

/45

(35 

cm2 )

R s

upra

orb

ital r

egio

n (1

00 c

m2 )

1 m

Aa/

s1

sess

ion

(20 

min

) pe

r ty

pe, 1

-wee

k in

terv

alPi

soni

et a

l. (2

012)

L S

TG

(35

 cm

2 )R

sup

raor

bita

l reg

ion

(35 

cm2 )

2 m

Aa/

s1

sess

ion

(20 

min

) pe

r ty

pe, 1

-wee

ks

inte

rval

Van

nors

dall

et a

l. (2

012)

F3 (

27.0

4 cm

2 )C

z (2

7.04

 cm

2 )1 

mA

a/c/

s1

sess

ion

(30 

min

) pe

r ty

pe, 9

0-m

in

inte

rval

(con

tinue

d)

Appendix A: tDCS Studies in a Healthy Population

Page 4: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

262

Art

icle

Act

ive

elec

trod

e lo

catio

n (s

ize)

Ref

eren

ce e

lect

rode

loca

tion

(siz

e)In

tens

ityTy

peN

o. o

f se

ssio

ns (

dura

tion)

Mei

nzer

et a

l. (2

013)

L I

FG (

35 c

m2 )

R s

upra

orbi

tal r

egio

n (1

00 c

m2 )

1 m

Aa/

s1

sess

ion

(30 

min

)Pe

nola

zzi e

t al.

(201

3)T

3-Fz

 × F

7-C

z;

T3-

F3 ×

 F7-

C3;

T

3-F3

 × F

7-C

3;

T3-

F3 ×

 F7-

C3

(35 

cm2 )

R s

upra

orbi

tal a

rea

(35 

cm2 )

; R

supr

aorb

ital a

rea

(35 

cm2 )

; T

4-F4

 × F

8-C

4 (3

5 cm

2 ); R

su

prao

rbita

l are

a (1

00 c

m2 )

2 m

Aa/

s1

sess

ion

(20 

min

)

Pere

tz a

nd L

avid

or (

2013

)W

erni

cke

(35 

cm2 )

R o

rbito

fron

tal c

orte

x (3

5 cm

2 )1 

mA

a/c/

s1

sess

ion

(10 

min

) pe

r ty

pe, 1

-wee

k in

terv

alFe

rton

ani e

t al.

(201

4)L

DL

PFC

(35

 cm

2 )R

sho

ulde

r (3

5 cm

2 )2 

mA

a/s

1 se

ssio

n (1

0 m

in)

Hen

sele

r et

 al.

(201

4)L

IFG

; L p

MT

G (

25 c

m2 )

R s

upra

orbi

tal r

egio

n (5

0 cm

2 )2 

mA

a/s

1 se

ssio

n (2

5 m

in)

per

mon

tage

, 1-

wee

k in

terv

alM

einz

er e

t al.

(201

4)L

 M1

(35 

cm2 )

R s

upra

orbi

tal r

egio

n (1

00 c

m2 )

1 m

Aa/

s1

sess

ion

(20 

min

) pe

r ty

peE

hlis

et a

l. (2

016)

Bro

ca: C

3 ×

 F3 

× F

7 (3

5 cm

2 )R

sup

raor

bita

l reg

ion

(35 

cm2 )

1 m

Aa/

c/s

1 se

ssio

n (2

0 m

in)

per

type

(a/

s or

c/

s), 4

8-h

inte

rval

Man

uel a

nd S

chni

der

(201

6)L

PPC

, P3;

R P

PC, P

4; L

D

LPF

C, F

3; R

DL

PFC

, F4

(35 

cm2 )

Con

tral

ater

al s

upra

orbi

tal r

egio

n (3

5 cm

2 )1 

mA

a/s

1 se

ssio

n (2

4 m

in)

per

mon

tage

and

ty

pe (

L, R

, s),

1-w

eek

inte

rval

Mei

nzer

, Yet

im e

t al.

(201

6)L

IFG

; L P

TC

(35

 cm

2 )R

sup

raor

bita

l cor

tex

(100

 cm

2 )1 

mA

a/s

1 se

ssio

n (2

0 m

in)

per

mon

tage

and

ty

pe (

IFG

, PT

C, s

), 1

-wee

k in

terv

alH

abic

h et

 al.

(201

7)L

DL

PFC

: F3

(35 

cm2 )

R s

upra

orbi

tal r

egio

n (3

5 cm

2 )1 

mA

a/s

1 se

ssio

n (2

0 m

in)

Van

nors

dall

et a

l. (2

016)

L D

LPF

C (

25 c

m2 )

Ver

tex:

Cz

(25 

cm2 )

1 m

Aa/

c1

sess

ion

(30 

min

); 2

mat

ched

gr

oups

Wes

twoo

d et

 al.

(201

7)L

IFG

, F7

(9 c

m2 )

; L I

FG, F

7 (2

5 cm

2 ); L

pM

TG

(25

 cm

2 )R

sup

raor

bita

l are

a (3

5 cm

2 ); R

su

prao

rbita

l are

a (3

5 cm

2 ); R

ch

eek

(35 

cm2 )

1 m

A;

1.5 

mA

; 1.

5 m

A

a/s

1 se

ssio

n (1

5 m

in; 2

5 m

in; 2

5 m

in)

per

type

(a/

s), 1

-wee

k in

terv

al

Bin

ney

et a

l. (2

018)

T3-

T4;

C3-

C4;

P3-

P4

(2 ×

 5 c

m2 )

Fpz;

Fpz

; Iz

(35 

cm2 )

2 m

Aa/

c1

sess

ion

(20 

min

) pe

r m

onta

ge,

inte

rval

n.r.

a an

odal

; B

A B

rodm

ann

area

; c

cath

odal

; D

LP

FC

dor

sola

tera

l pr

efro

ntal

cor

tex;

h h

our(

s);

IFG

inf

erio

r fr

onta

l gy

rus;

L l

eft;

mA

mill

iam

pere

(s);

n.r.

not

re

port

ed; p

MT

G p

oste

rior

mid

dle

tem

pora

l gyr

us; R

rig

ht; s

sha

m; S

TG

sup

erio

r te

mpo

ral g

yrus

Tabl

e A

2 (c

ontin

ued)

Appendix A: tDCS Studies in a Healthy Population

Page 5: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

263© Springer Nature Switzerland AG 2020 G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 6: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

264

Tabl

e B

1 St

udie

s in

vest

igat

ing

the

impa

ct o

f tD

CS

on la

ngua

ge in

pat

ient

pop

ulat

ions

—de

mog

raph

ic in

form

atio

n

Art

icle

Lan

guag

e

Patie

nts’

ha

nded

ness

(n

o. o

f F;

no

. of

M)

Mea

n ag

e (S

D)

Mea

n le

vel

of e

duca

tion

(SD

)Ty

pe o

f st

roke

Tim

e si

nce

stro

keTy

pe o

f ap

hasi

a (n

)L

esio

n ar

ea c

orte

x

Hes

se e

t al.

(200

7)E

nglis

h10

n.r.

(3F

; 7M

)63

.3 y

ears

; ra

nge

32–7

6 ye

ars

n.r.

iCV

A4–

8 w

eeks

po

Non

-flue

nt

apha

sia

L M

CA

(10

)

Mon

ti et

 al.

(200

8)It

alia

n8

RH

(4F

; 4M

)60

.38 

year

s (1

1.99

 yea

rs)

10.6

2 ye

ars

(1.7

2 ye

ars)

iCV

A (

7);

hCV

A (

1)24

–96 

mon

ths

poN

on-fl

uent

ap

hasi

a (B

A

4, G

A 4

)

Fron

tal c

ortic

al o

r su

bcor

tical

da

mag

e +

 pos

sibl

e da

mag

e to

pa

riet

al a

nd/o

r te

mpo

ral a

reas

Bak

er e

t al.

(201

0)E

nglis

h10

n.r.

(5F

; 5M

)65

.50 

year

s (1

1.44

 yea

rs)

14.0

0 ye

ars

(2.3

1 ye

ars)

CV

A12

–240

 mon

ths

poFl

uent

(A

A:

6); n

on-fl

uent

(B

A: 4

)

LH

dam

age

You

, Kim

, C

hun,

Jun

g, a

nd

Park

(20

11)

Kor

ean

21 R

H (

9F;

12M

)R

ange

49

–82 

year

sR

ange

6–

16 y

ears

iCV

ASu

bacu

teG

loba

l ap

hasi

aL

MC

A

Fior

i et a

l. (2

011)

Ital

ian

3 R

H (

M)

45 y

ears

; 65

 yea

rs;

74 y

ears

18 y

ears

; 13

 yea

rs;

13 y

ears

iCV

AC

hron

icN

on-fl

uent

ap

hasi

aSu

pram

argi

nal g

yrus

(2)

; ST

G

(1)

Flöe

l et a

l. (2

011)

Ger

man

12 R

H (

5F;

7M)

52.3

 yea

rs;

rang

e 39

–67 

year

s

n.r.

iCV

A21

–71 

mon

ths

poN

on-fl

uent

ap

hasi

aL

fro

ntal

, tem

pora

l, pa

riet

al +

 occ

ipita

l les

ions

; no

lesi

on in

RH

Frid

riks

son

et a

l. (2

011)

Eng

lish

8 n.

r. (n

.r.)

68.1

3 ye

ars

(10.

40 y

ears

)n.

r.C

VA

10–1

50 m

onth

s po

Flue

nt

apha

sia

L p

oste

rior

(su

b)co

rtex

Jung

et a

l. (2

011)

Kor

ean

37 n

.r.

(11F

; 26M

)>

65 y

ears

(22

);

<65

 yea

rs

(15 

year

s)

n.r.

iCV

A

(20)

, hC

VA

(1

6)

1 m

onth

s po

(13

),

1–3 

mon

ths

po

(24)

Flue

nt (

10);

no

n-flu

ent

(26)

aph

asia

Bro

ca’s

are

a, W

erni

cke’

s ar

ea,

arcu

ate

fasc

icul

us, i

nsul

a

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 7: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

265

Kan

g et

 al.

(201

1)K

orea

n10

RH

(2F

; 8M

)61

.9 y

ears

(2

.7 y

ears

)11

.6 y

ears

(1

.5 y

ears

)iC

VA

6–18

1 m

onth

s po

Non

-flue

nt

(GA

3, B

A 4

, T

MA

1),

flu

ent (

AA

: 2)

aph

asia

R B

roca

’s h

omol

ogue

are

a (F

8)

Vin

es, N

orto

n,

and

Schl

aug

(201

1)

Eng

lish

(1

Rus

sian

-E

nglis

h)

6 R

H (

M)

56.2

 yea

rs;

rang

e 31

.3–8

0.9 

year

s

n.r.

iCV

A15

–120

 mon

ths

poN

on-fl

uent

ap

hasi

aL

fro

ntal

lobe

Said

man

esh

et a

l. (2

012)

Pers

ian

20 R

H (

8F;

12M

)55

.93 

year

s (2

.4 y

ears

)n.

r.C

VA

60 m

onth

s po

Non

-flue

nt

apha

sia

Ant

erop

oste

rior

(9)

, pos

teri

or

(11)

Che

rney

et a

l. (2

013)

Can

tone

se1

RH

(M

)63

 yea

rs15

 yea

rsiC

VA

204 

mon

ths

poN

on-fl

uent

ap

hasi

an.

r.

Fior

i et a

l. (2

013)

Ital

ian

7 R

H (

2F;

5M)

58.4

 yea

rs;

rang

e 44

–71 

year

s

11.1

 yea

rs;

rang

e 5–

18 y

ears

iCV

A9–

84 m

onth

s po

Non

-flue

nt

apha

sia

L h

emis

pher

ic s

trok

e

Lee

et a

l. (2

013)

Kor

ean

11 n

.r. (

2F;

9M)

52.6

 yea

rs

(13.

4 ye

ars)

n.r.

CV

A8–

180 

mon

ths

poN

on-fl

uent

(B

A 4

, TM

A

2), fl

uent

(A

A: 5

)

Infe

rior

L M

CA

(9)

; L b

asal

ga

nglia

(2)

Mar

ango

lo,

Fior

i, C

ipol

lari

et

 al.

(201

3)

Ital

ian

8 R

H (

4F;

4M)

rang

e 37

–68 

year

sR

ange

5–

18 y

ears

CV

A6–

74 m

onth

s po

Non

-flue

nt

apha

sia

Cor

tical

L f

ront

o-te

mpo

ro-

pari

etal

(6)

; L

fron

to-p

arie

tal(

2)M

aran

golo

, Fi

ori,

Di P

aola

et

 al.

(201

3)

Ital

ian

7 R

H (

2F;

5M)

62.4

 yea

rs;

rang

e 46

–77 

year

s

13.2

 yea

rs;

rang

e 5–

18 y

ears

CV

A7–

96 m

onth

s po

Non

-flue

nt

apha

sia

LH

: fro

ntal

, par

ieta

l, te

mpo

ral

lobe

 + s

ubco

rtic

al a

reas

Mar

ango

lo,

Fior

i, C

alpa

gnan

o,

et a

l. (2

013)

Ital

ian

12 R

H (

4F;

8M)

59.6

 yea

rs;

rang

e 44

–71 

year

s

12.2

 yea

rs;

rang

e 5–

18 y

ears

CV

A5–

84 m

onth

s po

Non

-flue

nt

apha

sia

L s

ubco

rtex

(ca

psul

a ex

trem

a,

clau

stru

m, p

utam

en) (c

ontin

ued)

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 8: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

266

Sant

os e

t al.

(201

3)B

razi

lian-

Port

ugue

se19

RH

(1

0F; 9

M)

53.3

 yea

rs>

6 m

onth

s po

iCV

AC

hron

icN

on-fl

uent

ap

hasi

a (B

A:

8), fl

uent

(A

A: 7

), a

nd

mix

ed

apha

sia

(4)

LH

: fro

ntal

, par

ieta

l, te

mpo

ral

lobe

 + s

ubco

rtic

al a

reas

Vol

pato

et a

l. (2

013)

Ital

ian

8 n.

r. (2

F;

6M)

58.6

 yea

rs;

rang

e 42

–70 

year

s

12.3

 yea

rs;

rang

e 8–

18 y

ears

CV

A (

6 i;

2 h)

6–12

6 m

onth

s po

Non

-flue

nt

(TM

A: 1

);

fluen

t (A

A 2

, C

A 1

; WA

2;

TSA

1)

apha

sia

LH

: tem

poro

-par

ieta

l (2)

, pa

riet

al (

1), f

ront

o-pa

riet

al

(2),

tem

pora

l (1)

; sub

cort

ical

(2

)

Mar

ango

lo,

Fior

i, G

elfo

et

 al.

(201

4)

Ital

ian

7 n.

r. (2

F;

5M)

57.6

 yea

rs;

rang

e 49

–68 

year

s

11.1

 yea

rs;

rang

e 5–

18 y

ears

iCV

A10

–72 

mon

ths

poN

on-fl

uent

ap

hasi

aL

H: f

ront

o-te

mpo

ro-p

arie

to-

occi

pita

l cor

tex

(1);

fro

nto-

tem

poro

-par

ieto

cor

tex

(4);

fr

onto

-par

ieta

l cor

tex

(2)

Ros

so e

t al.

(201

4)Fr

ench

25 R

H

(13F

; 12M

)57

 yea

rs

(18 

year

s)14

.6 y

ears

(1

.2 y

ears

)iC

VA

>3 

mon

ths

po

(mea

n: 1

5 m

onth

s po

)

Non

-flue

ntL

esio

n in

Bro

ca’s

are

a (1

1);

inta

ct B

roca

’s a

rea

(16)

Ves

tito

et a

l. (2

014)

Ital

ian

3 n.

r. (1

F;

2M)

62 y

ears

; 65

 yea

rs;

67 y

ears

n.r.

iCV

A (

1);

hCV

A (

2)20

–64 

mon

ths

poN

on-fl

uent

(B

A: 2

),

fluen

t (A

A:

1)

Lef

t fro

nto-

tem

pora

l (1)

; lef

t fr

onta

l (1)

; lef

t tem

pora

l (1)

Cam

pana

et a

l. (2

015)

Ital

ian

20 R

H (

9F;

11M

)57

.1 y

ears

; ra

nge

37–7

5 ye

ars

12.5

 yea

rs;

rang

e 5–

18 y

ears

iCV

A6–

84 m

onth

s po

Non

-flue

nt

apha

sia

L M

CA

Tabl

e B

1 (c

ontin

ued)

Art

icle

Lan

guag

e

Patie

nts’

ha

nded

ness

(n

o. o

f F;

no

. of

M)

Mea

n ag

e (S

D)

Mea

n le

vel

of e

duca

tion

(SD

)Ty

pe o

f st

roke

Tim

e si

nce

stro

keTy

pe o

f ap

hasi

a (n

)L

esio

n ar

ea c

orte

x

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 9: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

267

Cip

olla

ri e

t al.

(201

5)It

alia

n6

RH

(3F

; 3M

)59

.1 y

ears

; ra

nge

46–7

5 ye

ars

11.6

 yea

rs;

rang

e 7–

16 y

ears

CV

A10

–79 

mon

ths

poN

on-fl

uent

ap

hasi

aFr

onto

-tem

poro

-par

ieta

l co

rtex

(4)

; tem

pora

l cor

tex

(1);

fro

nto-

pari

etal

cor

tex

(1)

de A

guia

r, B

astia

anse

et a

l. (2

015)

NA

9 R

H (

3F;

6M)

57 y

ears

; ran

ge

45–7

5 ye

ars

> 5

 yea

rsC

VA

(7

iCV

A; 2

hC

VA

)

8–92

 mon

ths

poN

on-fl

uent

(6

), fl

uent

(3)

LH

Gal

letta

and

V

ogel

-Eyn

y (2

015)

NA

1 R

H (

M)

43 y

ears

16 y

ears

CV

A20

 mon

ths

poFl

uent

an

omic

Tem

poro

-par

ieta

l cor

tex

Ric

hard

son,

D

atta

, D

moc

how

ski,

Parr

a, a

nd

Frid

riks

son

(201

5)

Eng

lish

8 R

H (

4F;

4M)

60.6

 yea

rs

(ran

ge

48–7

4 ye

ars)

n.r.

CV

A89

 mon

ths

po

(ran

ge

9–31

2 m

onth

s po

)

Non

-flue

nt

(BA

: 5),

flu

ent (

AA

: 3)

Fron

to-p

arie

tal c

orte

x

Shah

-Bas

ak

et a

l. (2

015)

Eng

lish

12 R

H (

2F;

10M

)63

.6 y

ears

; ra

nge

53–7

8 ye

ars

n.r.

CV

A7–

111 

mon

ths

poN

on-fl

uent

ap

hasi

aL

MC

A

Wu,

Wan

g, a

nd

Yua

n (2

015)

Chi

nese

12 R

H (

2F;

10M

)53

.2 y

ears

; ra

nge

39–5

7 ye

ars

14.8

 yea

rs;

rang

e 9–

19 y

ears

CV

A (

5 iC

VA

; 5

hCV

A)

3–6 

mon

ths

poN

on-fl

uent

(8

), fl

uent

(2

), m

ixed

(2)

Fron

to-t

empo

ro-p

arie

tal

cort

ex (

9); t

empo

ro-p

arie

tal

(1);

fro

nto-

pari

etal

(2)

Mei

nzer

, D

arko

w e

t al.

(201

6)

Ger

man

26 R

H (

8F;

18M

)59

.9 y

ears

; ra

nge

38–7

8 ye

ars

11.9

 yea

rs;

rang

e 7–

18 y

ears

iCV

A

(23)

; hC

VA

(3)

15–1

08 m

onth

s po

Non

-flue

nt

(BA

9; G

A

6), fl

uent

(W

A 9

; AA

2)

aph

asia

LH

Dar

kow

, Mar

tin,

Wür

tz, F

löel

, an

d M

einz

er

(201

7)

Ger

man

16 R

H (

6F;

10M

)56

.7 y

ears

(1

0.1)

12.8

 yea

rs;

rang

e 8–

18 y

ears

CV

A12

–169

 mon

ths

poM

ild a

phas

iaL

H

(con

tinue

d)

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 10: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

268

Mar

ango

lo,

Fior

i, C

alta

giro

ne,

Pisa

no, a

nd

Prio

ri (

2017

)

Ital

ian

12 (

6F;

6M)

Ran

ge

46–7

0 ye

ars

Ran

ge

8–18

 yea

rsC

VA

14–3

7 m

onth

s po

Non

-flue

nt

apha

sia

LH

Nor

ise,

Sa

cche

tti, a

nd

Ham

ilton

(20

17)

Eng

lish

14 R

H (

4F;

10M

)63

.3 y

ears

; ra

nge

50–7

6 ye

ars

n.r.

CV

A (

12

iCV

A; 2

hC

VA

)

8–11

6 m

onth

s po

Non

-flue

nt

apha

sia

LH

AA

ano

mic

aph

asia

; B

A B

roca

aph

asia

; C

A c

ondu

ctio

n ap

hasi

a; F

fem

ale;

GA

glo

bal

apha

sia;

hC

VA

hem

orrh

agic

cer

ebra

l va

scul

ar a

ccid

ent;

iCV

A i

sche

mic

ce

rebr

ovas

cula

r ac

cide

nt;

L l

eft;

LH

lef

t he

mis

pher

e; M

mal

e; M

CA

mid

dle

cere

bral

art

ery;

n n

umbe

r; n

.r. n

ot r

epor

ted;

R r

ight

; po

pos

tons

et;

SD s

tand

ard

devi

atio

n; T

MA

tran

scor

tical

mot

or a

phas

ia; T

SA tr

ansc

ortic

al s

enso

ry a

phas

ia; W

A W

erni

cke

apha

sia

Tabl

e B

1 (c

ontin

ued)

Art

icle

Lan

guag

e

Patie

nts’

ha

nded

ness

(n

o. o

f F;

no

. of

M)

Mea

n ag

e (S

D)

Mea

n le

vel

of e

duca

tion

(SD

)Ty

pe o

f st

roke

Tim

e si

nce

stro

keTy

pe o

f ap

hasi

a (n

)L

esio

n ar

ea c

orte

x

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 11: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

269

Tabl

e B

2 St

udie

s in

vest

igat

ing

impa

ct o

f tD

CS

on la

ngua

ge in

pat

ient

pop

ulat

ions

—m

etho

dolo

gica

l inf

orm

atio

n

Art

icle

Act

ive

elec

trod

e lo

catio

n (s

ize)

Ref

eren

ce e

lect

rode

loca

tion

(siz

e)In

tens

ityTy

peN

o of

ses

sion

s (d

urat

ion)

Hes

se e

t al.

(200

7)L

esio

ned

M1:

C3

or C

4 (3

5 cm

2 )C

ontr

alat

eral

orb

ital a

rea

1.5 

mA

a30

dai

ly s

essi

ons

(7 m

in)

Mon

ti et

 al.

(200

8)T

3-Fz

 + F

7-C

z (1

); o

ccip

ital (

2)

(35 

cm2 )

R s

houl

der

(35 

cm2 )

2 m

Aa/

c/s

(1);

c/s

(2)

1 se

ssio

n (2

0 m

in)

Bak

er e

t al.

(201

0)L

fro

ntal

cor

tex

(25 

cm2 )

R s

houl

der

(25 

cm2 )

1 m

Aa/

s5

daily

ses

sion

s (2

0 m

in)

per

type

, 7-d

ay in

terv

alY

ou e

t al.

(201

1)L

ST

G: C

P5 (

1.3)

; R S

TG

: CP6

(2)

(3

5 cm

2 )R

sup

raor

bita

l (1.

3); L

su

prao

rbita

l (2)

2 m

Aa(

1)/c

(2)/

s(3)

10 d

aily

ses

sion

s (3

0 m

in)

Fior

i et a

l. (2

011)

CP5

: Wer

nick

e’s

area

(35

 cm

2 )R

occ

ipito

-par

ieta

l1 

mA

a/s

5 da

ily s

essi

ons

(20 

min

)Fl

öel e

t al.

(201

1)R

tem

poro

-par

ieta

l cor

tex

(35 

cm2 )

L s

upra

orbi

tal (

100 

cm2 )

1 m

Aa/

c/s

3 se

ssio

ns (

20 m

in)

Frid

riks

son

et a

l. (2

011)

L p

ost c

per

ilesi

onal

are

a (2

5 cm

2 )C

ontr

alat

eral

for

ehea

d (2

5 cm

2 )1 

mA

a/c/

s5

daily

ses

sion

s (2

0 m

in)

per

type

, 3-w

eek

inte

rval

Jung

et a

l. (2

011)

Bro

ca’s

are

a: T

4-Fz

 → F

8-C

z (3

6 cm

2 )O

rbita

l (36

 cm

2 )1 

mA

a-tD

CS

10 s

essi

ons

(20 

min

)

Kan

g et

 al.

(201

1)R

IFG

(25

 cm

2 )L

orb

ital (

25 c

m2 )

2 m

Aa/

s5

daily

ses

sion

s (2

0 m

in)

per

type

, 1-w

eek

inte

rval

Vin

es e

t al.

(201

1)R

pos

teri

or I

FG: 2

.5 c

m p

oste

rior

to

F8 (

16.3

 cm

2 )L

sup

raor

bita

l (30

 cm

2 )1.

2 m

Aa/

s3

daily

ses

sion

s (2

0 m

in)

per

type

, 7-d

ay in

terv

alSa

idm

anes

h et

 al.

(201

2)L

DL

PFC

(35

 cm

2 )R

DL

PFC

(35

 cm

2 )2 

mA

a/c/

s10

ses

sion

s (2

0 m

in)

Che

rney

et a

l. (2

013)

R S

TC

(8/

28 c

m2 )

Con

tral

ater

al o

rbita

l (48

 cm

2 )1 

mA

c30

ses

sion

s (1

3 m

in)

Fior

i et a

l. (2

013)

L I

FG, L

Wer

nick

e: C

P5 (

35 c

m2 )

Con

tral

ater

al f

ront

opol

ar c

orte

x (3

5 cm

2 )1 

mA

a/s

5 se

ssio

ns (

20 m

in)

Lee

et a

l. (2

013)

Sing

le: L

IFG

, F7

(35 

cm2 )

; bi

hem

isph

eric

, L a

-IFG

, R c

-IFG

(3

5 cm

2 )

Sing

le: L

buc

cina

tor

mus

cle

(35 

cm2 )

; bih

emis

pher

ic, L

(c

atho

de)

and

R (

anod

e)

bucc

inat

or m

uscl

e

2 m

Aa/

bihe

mis

pher

ic1

sess

ion

(30 

min

) pe

r ty

pe; 2

4-h

inte

rval (con

tinue

d)

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 12: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

270

Mar

ango

lo, F

iori

, C

ipol

lari

et a

l. (2

013)

Ano

de: L

IFG

, F5

(35 

cm2 )

Cat

hode

: R I

FG (

35 c

m2 )

2 m

AB

ihem

isph

eric

/s10

dai

ly s

essi

ons

(20 

min

) pe

r ty

pe; 1

4-da

y in

terv

alM

aran

golo

, Fio

ri, D

i Pa

ola

et a

l. (2

013)

Bro

ca, F

5; W

erni

cke,

CP5

(35

 cm

2 )C

ontr

alat

eral

fro

ntop

olar

cor

tex

(35 

cm2 )

1 m

Aa/

c/s

15 s

essi

ons

(20 

min

) pe

r ty

pe; 6

-day

inte

rval

Mar

ango

lo, F

iori

, C

alpa

gnan

o et

 al.

(201

3)

Bro

ca, F

5; W

erni

cke,

CP5

(35

 cm

2 )C

ontr

alat

eral

fro

ntop

olar

cor

tex

(35 

cm2 )

1 m

Aa/

s10

ses

sion

s (2

0 m

in)

per

type

and

mon

tage

; 14-

day

inte

rval

Sant

os e

t al.

(201

3)L

 M1

(35 

cm2 )

Con

tral

ater

al s

upra

orbi

tal r

egio

n (3

5 cm

2 )2 

mA

a10

ses

sion

s (2

0 m

in)

Vol

pato

et a

l. (2

013)

L B

roca

’s a

rea:

T3-

F7 (

35 c

m2 )

Con

tral

ater

al s

upra

orbi

tal r

egio

n (3

5 cm

2 )2 

mA

a/s

5 w

eekl

y se

ssio

ns (

20 m

in)

Mar

ango

lo, F

iori

, Gel

fo

et a

l. (2

014)

L I

FG, L

Wer

nick

e’s

area

(35

 cm

2 )R

IFG

(35

 cm

2 )2 

mA

a/s

10 s

essi

ons

(20 

min

)

Ros

so e

t al.

(201

4)L

IFG

(35

 cm

2 )C

ontr

alat

eral

sup

raor

bita

l reg

ion

(35 

cm2 )

1 m

Ac/

s1

sess

ion

(10 

min

); 1

-h

inte

rval

; 1 s

essi

on (

10 m

in)

Ves

tito

et a

l. (2

014)

L I

FG (

25 c

m2 )

Con

tral

ater

al s

upra

orbi

tal r

egio

n (2

5 cm

2 )1.

5 m

Aa/

s10

ses

sion

s (2

0 m

in)

Cam

pana

et a

l. (2

015)

L I

FG (

35 c

m2 )

Con

tral

ater

al f

ront

opol

ar c

orte

x (3

5 cm

2 )2 

mA

a/s

10 s

essi

ons

(20 

min

)

Cip

olla

ri e

t al.

(201

5)R

IFG

(35

 cm

2 )C

ontr

alat

eral

fro

ntop

olar

cor

tex

(35 

cm2 )

2 m

Aa/

s15

ses

sion

s (2

0 m

in)

de A

guia

r, B

astia

anse

et

 al.

(201

5)In

divi

dual

ly d

eter

min

ed (

35 c

m2 )

Indi

vidu

ally

det

erm

ined

(35

 cm

2 )1 

mA

a/c/

s10

ses

sion

s (2

0 m

in)

Gal

letta

and

Vog

el-E

yny

(201

5)L

Bro

ca/L

Wer

nick

e (3

5 cm

2 )R

Bro

ca/R

Wer

nick

e (3

5 cm

2 )1 

mA

a/s

10 s

essi

ons

(20 

min

)

Ric

hard

son

et a

l. (2

015)

L p

oste

rior

cor

tex

(35 

cm2 )

R s

upra

orbi

tal r

egio

n (3

5 cm

2 )2 

mA

a/H

D5

sess

ions

(20

 min

)

Tabl

e B

2 (c

ontin

ued)

Art

icle

Act

ive

elec

trod

e lo

catio

n (s

ize)

Ref

eren

ce e

lect

rode

loca

tion

(siz

e)In

tens

ityTy

peN

o of

ses

sion

s (d

urat

ion)

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 13: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

271

Shah

-Bas

ak e

t al.

(201

5)L

DL

PFC

, R D

LPF

CC

ontr

alat

eral

mas

toid

2 m

Aa/

c/s

10 s

essi

ons

(20 

min

)

Wu

et a

l. (2

015)

L p

oste

rior

per

isyl

vian

reg

ion

(24.

75 c

m2 )

R s

houl

der

(24.

75 c

m2 )

1.2 

mA

a/s

20 s

essi

ons

(20 

min

)

Mei

nzer

, Dar

kow

et a

l. (2

016)

L M

1: C

3 (3

5 cm

2 )R

sup

raor

bita

l reg

ion

(100

 cm

2 )1 

mA

a/s

8 se

ssio

ns (

20 m

in)

(2 ×

 1.5

 h/d

ay)

Dar

kow

et a

l. (2

017)

L M

1 (3

5 cm

2 )R

sup

raor

bita

l reg

ion

(100

 cm

2 )1 

mA

a/s

2 se

ssio

ns (

20 m

in)

Mar

ango

lo e

t al.

(201

7)R

cer

ebel

lar

cort

ex (

35 c

m2 )

R d

elto

id m

uscl

e (3

5 cm

2 )2 

mA

c/s

5 da

ily s

essi

ons

(20 

min

) pe

r ty

pe; 6

-day

inte

rval

Nor

ise

et a

l. (2

017)

a-L

IFG

(n 

= 3

); c

-L I

FG (

n =

 3);

a-

R I

FG (

n =

 1);

c-R

IFG

(n 

= 1

)C

ontr

alat

eral

mas

toid

2 m

Aa/

c/s

10 d

aily

ses

sion

s (2

0 m

in)

a an

odal

; c c

atho

dal;

DL

PF

C d

orso

late

ral p

refr

onta

l cor

tex;

h h

our(

s); I

FG

infe

rior

fro

ntal

gyr

us; L

left

; M1

prim

ary

mot

or c

orte

x; m

A m

illia

mpe

re(s

); n

num

-be

r; n

.r. n

ot r

epor

ted;

R r

ight

; s s

ham

; ST

G s

uper

ior

tem

pora

l gyr

us

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 14: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

272

Tabl

e B

3 St

udie

s in

vest

igat

ing

impa

ct o

f tD

CS

on la

ngua

ge in

pat

ient

pop

ulat

ion—

ther

apeu

tic in

form

atio

n

Art

icle

Inte

rven

tion

Out

com

e m

easu

res

Out

com

eFo

llow

-up

Hes

se e

t al.

(200

7)O

nlin

e na

min

g th

erap

y (n

ouns

)Si

gnifi

cant

impr

ovem

ent a

fter

atD

CS

(n =

 3)

Non

e

Mon

ti et

 al.

(200

8)N

o be

havi

oral

trea

tmen

tPi

ctur

e na

min

g (a

ccur

acy 

+ r

espo

nse

times

)Si

gnifi

cant

impr

ovem

ent a

fter

ctD

CS

(n =

 6)

Non

e

Bak

er e

t al.

(201

0)O

nlin

e pi

ctur

e-w

ord

mat

chin

g (n

ouns

)Pi

ctur

e na

min

g (a

ccur

acy)

Acc

urac

y im

prov

ed s

igni

fican

tly f

or tr

eate

d ite

ms

afte

r at

DC

S1 

wee

k

You

et a

l. (2

011)

Onl

ine

SLT

(a

(n =

 10)

, c

(n =

 11)

, s (

n =

 12)

)K

orea

n W

AB

Sign

ifica

nt im

prov

emen

t aft

er c

tDC

SN

one

Fior

i et a

l. (2

011)

Onl

ine

nam

ing

ther

apy

(nou

ns)

Pict

ure

nam

ing

(acc

urac

y +

 res

pons

e tim

e)at

DC

S m

ight

hav

e an

impo

rtan

t eff

ect o

n re

cove

ry o

f an

omia

Non

e

Flöe

l et a

l. (2

011)

Onl

ine

nam

ing

ther

apy

(nou

ns)

Pict

ure

nam

ing

Sign

ifica

nt im

prov

emen

t on

nam

ing,

esp

ecia

lly

afte

r at

DC

S3 

× 2

 wee

ks

Frid

riks

son

et a

l. (2

011)

Onl

ine

spok

en w

ord-

pict

ure

mat

chin

g (n

ouns

)Pi

ctur

e na

min

g (a

ccur

acy 

+ r

espo

nse

time)

 + p

ictu

re d

escr

iptio

n

atD

CS

> n

amin

g re

actio

n tim

e2 

× 3

 wee

ks

Jung

et a

l. (2

011)

Onl

ine

SLT

(ac

cord

ing

to

need

s of

PW

A)

Aph

asia

quo

tient

 + K

orea

n W

AB

Mos

t im

port

ant p

rogn

ostic

fac

tor:

initi

al

seve

rity

; mor

e im

prov

emen

t for

hC

VA

; si

gnifi

cant

impr

ovem

ent o

n al

l ite

ms

of

K-W

AB

; bet

ter

resu

lts in

flue

nt P

WA

with

in 1

 m

afte

r st

roke

 + s

ever

e ap

hasi

a

Non

e

Kan

g et

 al.

(201

1)O

nlin

e na

min

g th

erap

y (n

ouns

) +

 wor

d-pi

ctur

e m

atch

ing

Pict

ure

nam

ing

(acc

urac

y +

 rea

ctio

n tim

e)Im

prov

emen

t in

nam

ing

accu

racy

Non

e

Vin

es e

t al.

(201

1)O

nlin

e M

IT r

ando

mPi

ctur

e na

min

g, v

erba

l flue

ncy,

an

d pi

ctur

e de

scri

ptio

nA

sig

n>s;

in fl

uenc

y of

spe

ech

Non

e

Said

man

esh

et a

l. (2

012)

Onl

ine

nam

ing

ther

apy

(nou

ns)

Pict

ure

nam

ing,

wor

king

m

emor

y +

 aph

asia

quo

tient

atD

CS

enha

nces

WM

 + f

unct

iona

l rec

over

y in

PW

AC

hern

ey e

t al.

(201

3)O

nlin

e or

al r

eadi

ngW

AB

Impr

ovem

ent i

n A

Q +

 aud

itory

com

preh

ensi

onN

one

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 15: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

273

(con

tinue

d)

Fior

i et a

l. (2

013)

Onl

ine

nam

ing

ther

apy

(nou

ns +

 ver

bs)

Pict

ure

nam

ing

Impr

ovem

ent i

n no

un n

amin

g af

ter

atD

CS;

in

verb

nam

ing

afte

r at

DC

S IF

G1 

wee

k/4 

wee

ks

Lee

et a

l. (2

013)

Onl

ine

nam

ing

ther

apy

(nou

ns) 

+ r

eadi

ng

para

grap

hs

Pict

ure

nam

ing

(acc

urac

y +

 rea

ctio

n tim

e) +

 pic

ture

des

crip

tion

Impr

ovem

ent i

n na

min

g re

spon

se ti

me

for

uni-

and

bip

olar

tDC

SN

one

Mar

ango

lo, F

iori

, C

ipol

lari

et a

l. (2

013)

Onl

ine

rand

om S

LTPi

ctur

e na

min

g (r

eact

ion

time)

A s

ign>

s; 2

× f

ollo

w-u

p2 

× 1

 wee

k

Mar

ango

lo, F

iori

, Di

Paol

a et

 al.

(201

3)O

nlin

e sy

llabl

es/w

ord

repe

titio

nR

epet

ition

Impr

ovem

ent i

n re

petit

ion

accu

racy

aft

er

bihe

mis

pher

ic tD

CS

1 w

eeks

Mar

ango

lo, F

iori

, C

alpa

gnan

o et

 al.

(201

3)O

nlin

e co

nver

satio

nal

ther

apy

Spon

tane

ous

spee

chIm

prov

emen

t in

cont

ent u

nits

, ver

bs, a

nd

sent

ence

pro

duct

ion

afte

r at

DC

S1 

mon

th

Sant

os e

t al.

(201

3)O

nlin

e la

ngua

ge

prod

uctio

n (n

amin

g +

 ver

bal fl

uenc

y)

Com

preh

ensi

onIm

prov

emen

t of

spee

ch a

nd c

ompr

ehen

sion

Non

e

Vol

pato

et a

l. (2

013)

Offl

ine

SLT

Pict

ure

nam

ing

(acc

urac

y +

 rea

ctio

n tim

e)Im

prov

emen

t in

accu

racy

and

res

pons

e tim

e fo

r 1

patie

ntN

one

Mar

ango

lo, F

iori

, Gel

fo

et a

l. (2

014)

Onl

ine

conv

ersa

tiona

l th

erap

yIm

prov

emen

t in

cohe

sive

dev

ices

aft

er a

tDC

SN

one

Ros

so e

t al.

(201

4)O

nlin

e na

min

g th

erap

y (n

ouns

)Pi

ctur

e na

min

g (a

ccur

acy)

Hig

h in

teri

ndiv

idua

l var

iabi

lity

in n

amin

g ab

ility

impr

ovem

ent a

fter

ctD

CS

Non

e

Ves

tito

et a

l. (2

014)

Onl

ine

nam

ing

ther

apy

(nou

ns)

Pict

ure

nam

ing

(nou

n +

 ver

b ac

cura

cy)

Impr

oved

nam

ing

afte

r at

DC

S16

 wee

ks

Cam

pana

et a

l. (2

015)

Onl

ine

conv

ersa

tiona

l th

erap

yPi

ctur

e de

scri

ptio

n +

 ver

b/no

un

nam

ing

Impr

ovem

ent i

n pi

ctur

e de

scri

ptio

n, n

oun 

+ v

erb

nam

ing

Non

e

Cip

olla

ri e

t al.

(201

5)O

nlin

e M

ITC

ompr

ehen

sive

lang

uage

bat

tery

Impr

ovem

ent i

n re

petit

ion

accu

racy

aft

er a

tDC

S1 

wee

kde

Agu

iar,

Bas

tiaan

se

et a

l. (2

015)

Onl

ine

AC

TIO

N th

erap

yL

angu

age

batte

ry +

 cog

nitiv

e sc

reen

ing

Impr

ovem

ent i

n ve

rb p

rodu

ctio

nN

one

Gal

letta

and

Vog

el-E

yny

(201

5)O

nlin

e se

nten

ce

com

plet

ion

Sent

ence

com

plet

ion

of n

ouns

an

d ve

rbs

Impr

ovem

ent o

f ve

rb r

etri

eval

aft

er a

tDC

SN

one

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 16: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

274

Tabl

e B

3 (c

ontin

ued)

Ric

hard

son

et a

l. (2

015)

Onl

ine

audi

tory

pic

ture

m

atch

ing

task

(n

ouns

) +

 nam

ing

ther

apy

Pict

ure

nam

ing

(acc

urac

y +

 res

pons

e tim

e)Im

prov

emen

t of

nam

ing

accu

racy

and

res

pons

e tim

e1 

wee

k

Shah

-Bas

ak e

t al.

(201

5)O

nlin

e na

min

g th

erap

y (n

ouns

)W

AB

Tre

nd to

war

d im

prov

emen

t aft

er a

tDC

S L

D

LPF

C2 

mon

ths

Wu

et a

l. (2

015)

Onl

ine

nam

ing

ther

apy 

+ a

udito

ry

com

preh

ensi

on (

noun

s)

BD

AE

—C

hine

se v

ersi

onPA

CA

Impr

ovem

ent a

fter

atD

CS

Non

e

Mei

nzer

, Dar

kow

et a

l. (2

016)

Onl

ine

nam

ing

ther

apy

(nou

ns)

Pict

ure

nam

ing

(60

trai

ned;

284

un

trai

ned

item

s (=

tran

sfer

);

ever

yday

com

mun

icat

ion

(CE

TI 

+ P

CQ

) (=

gene

raliz

atio

n)

Post

-int

erve

ntio

n, n

amin

g> a

fter

a/s

tDC

S;

tran

sfer

in b

oth

grou

ps; g

ener

aliz

atio

n> a

fter

at

DC

S; f

ollo

w-u

p, tr

eatm

ent g

ains

m

aint

aine

d →

 eff

ectiv

enes

s of

inte

rven

tion;

fo

llow

-up,

eff

ects

for

trai

ned

item

s su

peri

or

afte

r at

DC

S; f

ollo

w-u

p, tr

ansf

er e

ffec

ts o

nly

mai

ntai

ned

afte

r at

DC

S; f

ollo

w-u

p,

gene

raliz

atio

n ef

fect

sup

erio

r af

ter

atD

CS;

all

patie

nts

belie

ved

that

they

had

rec

eive

d at

DC

S

6 m

onth

s

Dar

kow

et a

l. (2

017)

Onl

ine

nam

ing

ther

apy

AA

T +

 pic

ture

nam

ing

Enh

ance

d ac

tivity

and

con

nect

ivity

with

in

nam

ing

netw

ork

afte

r a-

tDC

SN

one

Mar

ango

lo e

t al.

(201

7)O

nlin

e ve

rb g

ener

atio

n/ve

rb n

amin

gIm

prov

emen

t in

verb

gen

erat

ion

accu

racy

1 w

eek

Nor

ise

et a

l. (2

017)

Onl

ine

SLT

Pict

ure

nam

ing

Impr

ovem

ent i

n flu

ency

aft

er r

eal t

DC

S at

2-

wee

k fo

llow

-up

only

for

PW

A w

ith s

ever

e ba

selin

e

2 w

eeks

AA

T A

aken

se A

phas

ia T

est,

atD

CS

anod

al tr

ansc

rani

al d

irec

t cur

rent

stim

ulat

ion,

AQ

aph

asia

quo

tient

, BD

AE

Bos

ton

Dia

gnos

tic A

phas

ia E

xam

inat

ion,

CE

TI

com

mun

icat

ive

effe

ctiv

enes

s in

dex,

ctD

CS

cath

odal

tran

scra

nial

dir

ect c

urre

nt s

timul

atio

n, D

LP

FC

dor

sola

tera

l pre

fron

tal c

orte

x, h

CV

A h

emor

rhag

ic c

ereb

ro-

vasc

ular

acc

iden

t, IF

G in

feri

or f

ront

al g

yrus

, L le

ft, M

IT m

elod

ic in

tona

tion

ther

apy,

n n

umbe

r, PA

CA

Psy

chol

ingu

istic

Ass

essm

ent i

n C

hine

se A

phas

ia, P

CQ

pa

rtne

r co

mm

unic

atio

n qu

estio

nnai

re, P

WT

pat

ient

s w

ith a

phas

ia, s

ign

stat

istic

ally

sig

nific

ant,

SLT

spe

ech-

lang

uage

ther

apy,

stD

CS

sham

tran

scra

nial

dir

ect

curr

ent s

timul

atio

n, W

AB

Wes

tern

Aph

asia

Bat

tery

Art

icle

Inte

rven

tion

Out

com

e m

easu

res

Out

com

eFo

llow

-up

Appendix B: tDCS Studies in Aphasic Patient Populations

Page 17: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

275

Appendix C: Clinical fMRI Scan History Form

Name: ____________________________________ Date: ___________________

• What language do you speak most in daily life? _______________________________

• What language did you speak most before age 8? _______________________________

• Any complications at your birth/delivery? _______________________________

E.g., anything require a stay in the Neonatal Intensive Care unit

• Have you ever been diagnosed with Reading _______________________________

Disability or Dyslexia?

• At what age was your first seizure? _______________________________

Have you had neurosurgery before? Yes No

Do you know what side of the brain your seizures are coming from?

Left | Right | Both | Don’t Know

Notes

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

© Springer Nature Switzerland AG 2020G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

Page 18: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

276

Scoring: Edinburgh Handedness Inventory: Short Form

Source: Veale, S. (2014). Edinburgh Handedness Inventory – Short Form: a revised version based on confirmatory factor analysis. Laterality, 19(2), 164–77.

www.jaimieveale.com/wp-content/uploads/2014/04/Edinburgh-Handedness-Inventory-short-form.pdf

Appendix C: Clinical fMRI Scan History Form

Page 19: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

277© Springer Nature Switzerland AG 2020 G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

Appendix D: Example Clinical Report

Patient: PATIENT Handedness: Left

DOB, Age: –.–.– (42 years) Primary language: English

Sz onset: 30 years Years of education: 12 years

Sz focus: Left temporal Research fMRI Date: –.–.–

Report date: –.–.–

Referrer: X MD

Neuropsychologist: Y PhD

Background. PATIENT 1 is a 35 year-old woman who developed seizures aged 30. Her seizures are consistently left temporal per vEEG. MRI was unremarkable with the exception of subcortical white matter hyperintensities. The possibility of a left temporal encephalocele was raised but is uncertain. She has average overall cognitive functioning (FSIQ = 103, VCI = 98, PRI = 105), verbal memory (RAVLT LD Z = −0.5), and naming skill (BNT Z = −0.3). PATIENT is strongly left-handed (Edinburgh Handedness Inventory—Short Form laterality quotient = −100).

Question: Language lateralization.Technical (see also final page):

• Tasks: (1) Object naming [OBJ], (2) verbal naming (VRN), and (3) audi-tory naming [ARN]. Language: English. Speed: typical (3 s/item).

• Movement: Average. Excluding images with >1 mm movement or >3SD of signal variation effectively removes 1% (OBJ), 9% (VRN), and 6% (ARN) of images. In an average scan, < =5% of scans are impacted by motion.

Page 20: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

278

• Registration: Average, very slight misalignment in some regions.• Model: Based on the above, reported data use models that are artifact

corrected.

Summary: Overall, this language mapping (Map 1) suggests:

– Broca’s: Left. – Wernicke’s: Left.

This is a good-quality and clearly left-dominant language map.In reviewing individual tasks, PATIENT did not engage Wernicke’s area on the

object naming task. As a result, a conjunction of two tasks—verbal naming (read-ing, eyes open) and auditory naming (listening, with eyes closed)—is reviewed (see images). All areas—Broca’s, Wernicke’s, Exner’s, basal temporal language area, SMA, and the angular gyrus—appear left-dominant.

Note: fMRI activations are arbitrarily discrete. Rather than representing islands of language cortex, they represent cortex where blood flow is most strongly associ-ated with a given task. Cortex surrounding these areas is typically also responsive, though to a lesser extent, and the activation here may be overly inclusive. This map will not show all language areas.

These images are available for review in the epilepsy conference.—Signature—Map 1: Conjunction of verbal responsive naming and auditory naming. Areas

of activity shown were identified separately on each of these two separate tasks. Note: right of image = left of brain. This map was created in two steps: (1) for each task separately, comparing the task with its own control to create contrasts at three thresholds [p < 0.005; p < 0.0005; p < 0.00005] and (2), for each threshold level, taking the overlap of each task contrast. The highest threshold is yellow, the lowest is red.

Comment: This patient completed the practice tasks before scanning without issue. During scanning, she was uncomfortable and moved markedly during the

Appendix D: Example Clinical Report

Page 21: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

279

second run (visual responsive naming) with four large readjustments of her head during the last portion of the run. The other two runs included some occasional, minor movements. The tablet indicating the left hemisphere can be seen on the right of the image in the first few slices of the axial image. Skull stripping was adequate (some residual cerebrospinal fluid left around the perimeter of the skull), while a very slight misalignment in some brain areas was evident when registration of the functional and structural runs was reviewed. When the three separate tasks were reviewed, all three yielded clear maps showing all six language regions with the exception that Wernicke’s area was not visible on the object naming task at any threshold, potentially due to a lack of patient engagement during the task. As a result, the latter two tasks were combined in the final conjunction analysis.

Report Addendum

The protocol used is described below after Benjamin et al. (2017), with tasks and parameters modified as follows:

1. Object naming + verb generation > matched baseline (visually scrambled image).

Standard version (English): blocks of eight objects, 3 s each.

2. Visual naming + verb generation > matched baseline (visually scrambled image).

Standard version (English): blocks of eight objects, 3 s each.

3. Auditory naming + verb generation > matched baseline (white noise).

Standard version (English): blocks of eight objects, 3 s each.

The patient was instructed in all tasks in detail pre-scan. They were instructed to sub-vocalize all responses but not talk or move. Instructions were confirmed before and after each run. All tasks used a block design with six pairs of 24 s of task followed by 24 s of rest.

1. Object naming. A black-and-white line drawing of an object was presented. The subject’s task was to name the object and something they could do with it. This is a modified version of, e.g., Rutten et al. (2002). In the matched control, the patient was instructed to attend to and watch the same stimuli with parts randomly shuffled (visual white noise).

2. Visual naming. A brief written description of an item was presented (e.g., “tall pink bird”). The task was again to name the item (e.g., answer—flamingo) and something they could do with it (e.g., look at it). This is a modified version of the comprehension task in Gaillard et al. (2004). The control task included the same visual stimuli, scrambled (visual white noise).

3. Auditory responsive naming. An auditory cue (sentences similar to [2]) was presented. The patient’s task was again to name the object and something they could do with it. This is a modified version of the comprehension task in

Appendix D: Example Clinical Report

Page 22: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

280

Gaillard et al. (2004). In the control task, the patient listened to the same stimuli, scrambled (auditory white noise).

Acquisition: All T2∗ sequences were acquired with parameters TR = 984 ms/TE = 30 ms/FA = 62°, 2.5 mm × 2.5 mm × 2.5 mm, 51 slices, and 387 volumes (2 dropped). Standard T2 and MPRage acquisitions were also completed.

Analysis is consistent with norms for the field, with adjustments as followed (Benjamin et al., 2018): Preprocessing: For all runs, the initial two images were dropped (B0 effects). Structural images were skull-stripped. Within SPM12, the three T2∗ runs were realigned. The T2 image was then coregistered with the MPRage. The T2∗ images were then aligned to the MPRage-coregistered T2. Images were smoothed (8 mm). Alignment of all images was evaluated visually. Quality assur-ance: Raw data were reviewed (select images and using a cine loop). Analysis with the artifact detection toolbox (ART) was also completed. T maps were reviewed for indication of motion. Modeling: Data were analyzed using the GLM. Regressors included task and matched baseline; to allow artifact-correction, additional regres-sors were included to remove the impact of each outlier image. Thresholding: Images were initially thresholded at p < 0.05 and then iteratively adjusted to obtain an optimal representation of the language areas noted above. Images were then combined to identify areas of common activation (conjunction analysis). Preference was for a map combining all three images and then for a map with two images from tasks drawing on different modalities.

Appendix D: Example Clinical Report

Page 23: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

281© Springer Nature Switzerland AG 2020 G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

Baker, J.  M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimula-tion to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236. https://doi.org/10.1161/STROKEAHA.109.576785

Benjamin, C. F. A., Li, A. X., Blumenfeld, H., Constable, R. T., Alkawadri, R., Bickel, S., … Hirsch, L. J. (2018). Presurgical language fMRI: Clinical practices and patient outcomes in epi-lepsy surgical planning. Human Brain Mapping, 39, 2777. https://doi.org/10.1002/hbm.24039

Benjamin, C.  F. A., Walshaw, P.  D., Hale, K., Gaillard, W.  D., Baxter, L.  C., Berl, M.  M., … Bookheimer, S. Y. (2017). Presurgical language fMRI: Mapping of six critical regions. Human Brain Mapping, 38, 4239–4255. https://doi.org/10.1002/hbm.23661

Binney, R.  J., Zuckerman, B.  M., Waller, H.  N., Hung, J., Ashaie, S.  A., & Reilly, J. (2018). Cathodal tDCS of the bilateral anterior temporal lobes facilitates semantically-driven verbal fluency. Neuropsychologia, 111, 62–71.

Campana, S., Caltagirone, C., & Marangolo, P. (2015). Combining voxel-based lesion-symptom mapping (VLSM) with A-tDCS language treatment: Predicting outcome of recovery in nonflu-ent chronic aphasia. Brain Stimulation, 8(4), 769–776.

Cattaneo, Z., Pisoni, A., & Papagno, C. (2011). Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals. Neuroscience, 183, 64–70. https://doi.org/10.1016/j.neuroscience.2011.03.058

Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefron-tal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980–1987.

Cherney, L. R., Babbitt, E. M., Hurwitz, R., Rogers, L. M., Stinear, J., Wang, X., … Parrish, T. (2013). Transcranial direct current stimulation and aphasia: The case of Mr. C. Topics in Stroke Rehabilitation, 20(1), 5–21. https://doi.org/10.1310/tsr2001-5

Cipollari, S., Veniero, D., Razzano, C., Caltagirone, C., Koch, G., & Marangolo, P. (2015). Combining TMS-EEG with transcranial direct current stimulation language treatment in apha-sia. Expert Review of Neurotherapeutics, 15(7), 833–845. https://doi.org/10.1586/14737175.2015.1049998

Darkow, R., Martin, A., Würtz, A., Flöel, A., & Meinzer, M. (2017). Transcranial direct current stimulation effects on neural processing in post-stroke aphasia: Neural tDCS effects in aphasia. Human Brain Mapping, 38(3), 1518–1531. https://doi.org/10.1002/hbm.23469

References

Page 24: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

282

de Aguiar, V., Bastiaanse, R., Capasso, R., Gandolfi, M., Smania, N., Rossi, G., & Miceli, G. (2015). Can tDCS enhance item-specific effects and generalization after linguistically moti-vated aphasia therapy for verbs? Frontiers in Behavioral Neuroscience, 9, 190. https://doi.org/10.3389/fnbeh.2015.00190

De Vries, M.  H., Barth, A.  C., Maiworm, S., Knecht, S., Zwitserlood, P., & Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22(11), 2427–2436.

Ehlis, A.-C., Haeussinger, F. B., Gastel, A., Fallgatter, A. J., & Plewnia, C. (2016). Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on corti-cal activation during word fluency. NeuroImage, 140, 134–140. https://doi.org/10.1016/j.neuroimage.2015.12.047

Fertonani, A., Brambilla, M., Cotelli, M., & Miniussi, C. (2014). The timing of cognitive plastic-ity in physiological aging: A tDCS study of naming. Frontiers in Aging Neuroscience, 6, 131. https://doi.org/10.3389/fnagi.2014.00131

Fertonani, A., Rosini, S., Cotelli, M., Rossini, P.  M., & Miniussi, C. (2010). Naming facilita-tion induced by transcranial direct current stimulation. Behavioural Brain Research, 208(2), 311–318. https://doi.org/10.1016/j.bbr.2009.10.030

Fiori, V., Cipollari, S., Di Paola, M., Razzano, C., Caltagirone, C., & Marangolo, P. (2013). tDCS stimulation segregates words in the brain: Evidence from aphasia. Frontiers in Human Neuroscience, 7, 269. https://doi.org/10.3389/fnhum.2013.00269

Fiori, V., Coccia, M., Marinelli, C. V., Vecchi, V., Bonifazi, S., Ceravolo, M. G., … Marangolo, P. (2011). Transcranial direct current stimulation improves word retrieval in healthy and non-fluent aphasic subjects. Journal of Cognitive Neuroscience, 23(9), 2309–2323. https://doi.org/10.1162/jocn.2010.21579

Flöel, A., Meinzer, M., Kirstein, R., Nijhof, S., Deppe, M., Knecht, S., & Breitenstein, C. (2011). Short-term anomia training and electrical brain stimulation. Stroke, 42(7), 2065–2067. https://doi.org/10.1161/STROKEAHA.110.609032

Fridriksson, J., Richardson, J. D., Baker, J. M., & Rorden, C. (2011). Transcranial direct current stimulation improves naming reaction time in fluent aphasia: A double-blind, sham-controlled study. Stroke, 42(3), 819–821. https://doi.org/10.1161/STROKEAHA.110.600288

Gaillard, W. D., Balsamo, L., Xu, B., McKinney, C., Papero, P. H., Weinstein, S., … Theodore, W.  H. (2004). fMRI language task panel improves determination of language dominance. Neurology, 63(8), 1403–1408.

Galletta, E. E., & Vogel-Eyny, A. (2015). Translational treatment of aphasia combining neuro-modulation and behavioral intervention for lexical retrieval: Implications from a single case study. Frontiers in Human Neuroscience, 9, 447. https://doi.org/10.3389/fnhum.2015.00447

Habich, A., Klöppel, S., Abdulkadir, A., Scheller, E., Nissen, C., & Peter, J. (2017). Anodal tDCS enhances verbal episodic memory in initially low performers. Frontiers in Human Neuroscience, 11, 542. https://doi.org/10.3389/fnhum.2017.00542

Henseler, I., Mädebach, A., Kotz, S. A., & Jescheniak, J. D. (2014). Modulating brain mecha-nisms resolving lexico-semantic interference during word production: A transcranial direct current stimulation study. Journal of Cognitive Neuroscience, 26(7), 1403–1417. https://doi.org/10.1162/jocn_a_00572

Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W., & Kirker, S. G. B. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25, 9–15.

Holland, R., Leff, A. P., Josephs, O., Galea, J. M., Desikan, M., Price, C. J., … Crinion, J. (2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology, 21(16), 1403–1407. https://doi.org/10.1016/j.cub.2011.07.021

Iyer, M. B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., & Wassermann, E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology, 64, 872–875.

References

Page 25: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

283

Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcra-nial direct current stimulation. Annals of Rehabilitation Medicine, 36(5), 585. https://doi.org/10.5535/arm.2012.36.5.585

Jung, I.-Y., Lim, J. Y., Kang, E. K., Sohn, H. M., & Paik, N.-J. (2011). The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Annals of Rehabilitation Medicine, 35(4), 460. https://doi.org/10.5535/arm.2011.35.4.460

Kang, E.  K., Kim, Y.  K., Sohn, H.  M., Cohen, L., & Paik, N. (2011). Improved picture nam-ing in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restorative Neurology and Neuroscience, 29(3), 141–152. https://doi.org/10.3233/RNN-2011-0587

Lee, S. Y., Cheon, H.-J., Yoon, K. J., Chang, W. H., & Kim, Y.-H. (2013). Effects of dual transcra-nial direct current stimulation for aphasia in chronic stroke patients. Annals of Rehabilitation Medicine, 37(5), 603. https://doi.org/10.5535/arm.2013.37.5.603

Liuzzi, G., Freundlieb, N., Ridder, V., Hoppe, J., Heise, K., Zimerman, M., … Hummel, F. C. (2010). The involvement of the left motor cortex in learning of a novel action word lexicon. Current Biology, 20(19), 1745–1751. https://doi.org/10.1016/j.cub.2010.08.034

Manuel, A.  L., & Schnider, A. (2016). Effect of prefrontal and parietal tDCS on learning and recognition of verbal and non-verbal material. Clinical Neurophysiology, 127(7), 2592–2598. https://doi.org/10.1016/j.clinph.2016.04.015

Marangolo, P., Fiori, V., Calpagnano, M. A., Campana, S., Razzano, C., Caltagirone, C., & Marini, A. (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 7, 539. https://doi.org/10.3389/fnhum.2013.00539

Marangolo, P., Fiori, V., Caltagirone, C., Pisano, F., & Priori, A. (2017). Transcranial cerebellar direct current stimulation (tDCS) enhances verb generation but not verb naming in poststroke aphasia. Journal of Cognitive Neuroscience, 30, 1–12.

Marangolo, P., Fiori, V., Cipollari, S., Campana, S., Razzano, C., Di Paola, M., … Caltagirone, C. (2013). Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. European Journal of Neuroscience, 38(9), 3370–3377. https://doi.org/10.1111/ejn.12332

Marangolo, P., Fiori, V., Di Paola, M., Cipollari, S., Razzano, C., Oliveri, M., & Caltagirone, C. (2013). Differential involvement of the left frontal and temporal regions in verb naming: A tDCS treatment study. Restorative Neurology and Neuroscience, 1, 63–72. https://doi.org/10.3233/RNN-120268

Marangolo, P., Fiori, V., Gelfo, F., Shofany, J., Razzano, C., Caltagirone, C., & Angelucci, F. (2014). Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restorative Neurology and Neuroscience, 2, 367–379. https://doi.org/10.3233/RNN-130323

Meinzer, M., Antonenko, D., Lindenberg, R., Hetzer, S., Ulm, L., Avirame, K., … Floel, A. (2012). Electrical brain stimulation improves cognitive performance by modulating functional con-nectivity and task-specific activation. Journal of Neuroscience, 32(5), 1859–1866. https://doi.org/10.1523/JNEUROSCI.4812-11.2012

Meinzer, M., Darkow, R., Lindenberg, R., & Flöel, A. (2016). Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain, 139(4), 1152–1163. https://doi.org/10.1093/brain/aww002

Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 12470–12478. https://doi.org/10.1523/JNEUROSCI.5743-12.2013

Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., Ulm, L., & Floel, A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Frontiers in Aging Neuroscience, 6, 253. https://doi.org/10.3389/fnagi.2014.00253

References

Page 26: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

284

Monti, A., Cogiamanian, F., Marceglia, S., Ferrucci, R., Mameli, F., Mrakic-Sposta, S., … Priori, A. (2008). Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 451–453. https://doi.org/10.1136/jnnp.2007.135277

Norise, C., Sacchetti, D., & Hamilton, R. (2017). Transcranial direct current stimulation in post-stroke chronic aphasia: The impact of baseline severity and task specificity in a pilot sample. Frontiers in Human Neuroscience, 11, 260. https://doi.org/10.3389/fnhum.2017.00260

Penolazzi, B., Pastore, M., & Mondini, S. (2013). Electrode montage dependent effects of tran-scranial direct current stimulation on semantic fluency. Behavioural Brain Research, 248, 129–135. https://doi.org/10.1016/j.bbr.2013.04.007

Peretz, Y., & Lavidor, M. (2013). Enhancing lexical ambiguity resolution by brain polariza-tion of the right posterior superior temporal sulcus. Cortex, 49(4), 1056–1062. https://doi.org/10.1016/j.cortex.2012.03.015

Pisoni, A., Papagno, C., & Cattaneo, Z. (2012). Neural correlates of the semantic interference effect: New evidence from transcranial direct current stimulation. Neuroscience, 223, 56–67. https://doi.org/10.1016/j.neuroscience.2012.07.046

Richardson, J. D., Datta, A., Dmochowski, J., Parra, L. C., & Fridriksson, J. (2015). Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia. NeuroRehabilitation, 1, 115–126. https://doi.org/10.3233/NRE-141199

Ross, L. A., McCoy, D., Coslett, H. B., Olson, I. R., & Wolk, D. A. (2011). Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Frontiers in Aging Neuroscience, 3, 16. https://doi.org/10.3389/fnagi.2011.00016

Ross, L. A., McCoy, D., Wolk, D. A., Coslett, H. B., & Olson, I. R. (2010). Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia, 48(12), 3671–3674. https://doi.org/10.1016/j.neuropsychologia.2010.07.024

Rosso, C., Perlbarg, V., Valabregue, R., Arbizu, C., Ferrieux, S., Alshawan, B., … Samson, Y. (2014). Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimulation, 7(5), 627–635. https://doi.org/10.1016/j.brs.2014.06.004

Rutten, G. J. M., Ramsey, N. F., van Rijen, P. C., & van Veelen, C. W. M. (2002). Reproducibility of fMRI-determined language lateralization in individual subjects. Brain and Language, 80, 421–437.

Saidmanesh, M., Pouretemad, H. R., Amini, A., Nillipour, R., & Ekhtian, H. (2012). Effects of transcranial direct current stimulation on working memory in patients with non-fluent aphasia disorder. Research Journal of Biological Sciences, 7(7), 290–296.

Santos, M. D., Gagliardi, R.  J., Mac-Kay, A. P. M. G., Boggio, P. S., Lianza, R., & Fregni, F. (2013). Transcranial direct-current stimulation induced in stroke patients with aphasia: A pro-spective experimental cohort study. Sao Paulo Medical Journal, 131(6), 422–426. https://doi.org/10.1590/1516-3180.2013.1316595

Shah-Basak, P. P., Norise, C., Garcia, G., Torres, J., Faseyitan, O., & Hamilton, R. H. (2015). Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Frontiers in Human Neuroscience, 9, 201. https://doi.org/10.3389/fnhum.2015.00201

Sparing, R., Dafotakis, M., Meister, I.  G., Thirugnanasambandam, N., & Fink, G.  R. (2008). Enhancing language performance with non-invasive brain stimulation—A transcranial direct current stimulation study in healthy humans. Neuropsychologia, 46(1), 261–268. https://doi.org/10.1016/j.neuropsychologia.2007.07.009

Vannorsdall, T. D., Schretlen, D. J., Andrejczuk, M., Ledoux, K., Bosley, L. V., Weaver, J. R., … Gordon, B. (2012). Altering automatic verbal processes with transcranial direct current stimu-lation. Frontiers in Psychiatry, 3, 73. https://doi.org/10.3389/fpsyt.2012.00073

Vannorsdall, T.  D., Van Steenburgh, J.  J., Schretlen, D.  J., Jayatillake, R., Skolasky, R.  L., & Gordon, B. (2016). Reproducibility of tDCS results in a randomized trial: Failure to replicate

References

Page 27: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

285

findings of tDCS-induced enhancement of verbal fluency. Cognitive and Behavioral Neurology, 29(1), 11–17.

Veale, S. (2014). Edinburgh Handedness Inventory – Short Form: a revised version based on con-firmatory factor analysis. Laterality, 19(2), 164–177.

Vestito, L., Rosellini, S., Mantero, M., & Bandini, F. (2014). Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: A pilot study. Frontiers in Human Neuroscience, 8, 785. https://doi.org/10.3389/fnhum.2014.00785

Vines, B. W., Norton, A. C., & Schlaug, G. (2011). Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Frontiers in Psychology, 2, 230. https://doi.org/10.3389/fpsyg.2011.00230

Volpato, C., Cavinato, M., Piccione, F., Garzon, M., Meneghello, F., & Birbaumer, N. (2013). Transcranial direct current stimulation (tDCS) of Broca’s area in chronic aphasia: A con-trolled outcome study. Behavioural Brain Research, 247, 211–216. https://doi.org/10.1016/j.bbr.2013.03.029

Westwood, S. J., Olson, A., Miall, R. C., Nappo, R., & Romani, C. (2017). Limits to tDCS effects in language: Failures to modulate word production in healthy participants with frontal or tem-poral tDCS. Cortex, 86, 64–82. https://doi.org/10.1016/j.cortex.2016.10.016

Wirth, M., Rahman, R. A., Kuenecke, J., Koenig, T., Horn, H., Sommer, W., & Dierks, T. (2011). Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia, 49(14), 3989–3998. https://doi.org/10.1016/j.neuropsychologia.2011.10.015

Wu, D., Wang, J., & Yuan, Y. (2015). Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neuroscience Letters, 589, 115–120. https://doi.org/10.1016/j.neulet.2015.01.045

You, D. S., Kim, D.-Y., Chun, M. H., Jung, S. E., & Park, S. J. (2011). Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain and Language, 119(1), 1–5. https://doi.org/10.1016/j.bandl.2011.05.002

Software

SPM12: http://www.fil.ion.ucl.ac.uk/spm/FSL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ART: http://web.mit.edu/swg/

References

Page 28: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

287© Springer Nature Switzerland AG 2020G. P. D. Argyropoulos (ed.), Translational Neuroscience of Speech and Language Disorders, Contemporary Clinical Neuroscience, https://doi.org/10.1007/978-3-030-35687-3

AActivation, 11, 12, 14, 22, 49, 50, 52, 58, 59,

62, 86, 88, 91, 96–98, 100, 101, 122, 124, 130, 146, 147, 157, 160, 163, 164, 206, 210, 212–220, 223, 228–230, 242, 278, 280

Age, 12, 48, 70, 76, 91, 94, 96, 106, 124, 212, 213, 228, 234, 250

Aging, 21, 22, 24, 96, 122Agrammatic PPA/PPA-G, 27–29, 32, 34Agrammatism, 122, 123, 145, 244Alzheimer’s disease (AD), 2, 22–31, 35Anatomy/anatomical/neuroanatomy/

neuroanatomical, 3, 6, 7, 9, 50, 73, 74, 95, 125, 142, 146, 147, 149, 178–181, 188, 206, 218, 230, 241, 242, 244, 247, 252, 253

Angular gyrus/gyri, 207, 209, 217, 230, 278Animal models, 1, 2, 14, 49, 51–62Anodal transcranial direct current stimulation

(anodal tDCS/atDCS), 33, 34, 84, 88, 90, 92–94, 96, 99, 102, 103, 105, 149, 159, 163, 247

Aphasia, 2, 6–14, 22, 88, 122, 164, 182, 243Apraxia of speech/speech apraxia (AoS), 59,

101–103, 105, 106, 184, 244Articulation/articulatory, 7, 8, 59, 72, 90, 93,

101, 102, 105, 128, 143, 145, 189, 243, 248

Ataxia/ataxic, 93, 104, 143, 163Auditory, 7, 30, 33, 34, 49, 50, 52, 54, 56, 57,

60–62, 129, 132, 157, 159, 167, 216–219, 229, 230, 243, 245, 277, 279, 280

BBasal temporal language area, 207, 210, 213,

230, 278Bilateral, 34, 87, 90, 96, 131, 143, 183,

208–210, 230, 247Blood flow, 12, 214, 221, 226, 278Blood oxygen level-dependent (BOLD), 146,

163, 190, 224, 225Broca/Broca’s area, 6, 7, 34, 72, 86, 92, 93,

100, 102, 127, 129–131, 157, 160, 209, 210, 212, 229, 230, 234, 242–245, 278

Brodmann area (BA), 8, 93, 233, 243

CCathodal transcranial direct current

stimulation (cathodal tDCS/ctDCS), 23, 84, 92–95, 98, 149, 158–160

Caudate nucleus, 72–74, 163Cerebellar brain inhibition (CBI), 149, 150,

163, 164Cerebellum, 3, 50, 74, 142Children/childhood, 2, 3, 47–50, 54–59, 61,

62, 69–76, 124, 182Compensation/compensatory, 2, 3, 6, 11, 13,

22, 29, 59, 72–75, 82, 98, 104, 124, 160, 165, 188, 191, 251

Comprehension, 7, 24, 26, 27, 30, 33, 34, 47, 49, 89, 92, 122–124, 127, 129, 132, 157, 167, 208, 209, 228, 243, 245–248, 279

Computerized cognitive training (CCT), 29, 30

Index

Page 29: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

288

Connectivity, 9, 23, 50, 85, 96, 146, 165, 166, 188, 214, 251

Consonant, 52Continuous theta-burst stimulation (cTBS),

126, 131, 148, 156, 158Contralateral, 10, 11, 86, 87, 102, 103, 142,

145, 148, 149Contralesional, 11, 13, 98, 101, 104,

124–127, 129Cortex/cortical, 4, 6, 23, 49, 71, 82, 125, 142,

178, 251

DDeclarative learning/declarative memory,

3, 71–76Developmental language disorder (DLD), 1, 2,

70, 72–74, 76Diffusion tensor imaging (DTI), 8, 146, 181,

182, 186, 188, 191, 251Diffusion-weighted imaging (DWI), 181Direct cortical stimulation (DCS), 179–181,

184, 187, 188, 190, 191Dominance/dominant, 11, 124, 132, 178, 182,

187, 188, 190, 191, 206, 208–210, 215, 217, 218, 228–230, 234, 278

Dorsolateral prefrontal cortex (DLPFC), 31, 34, 86, 90, 91, 95, 146, 163

Dysarthria, 93, 101–104, 106, 143, 163–165, 184

Dyslexia/developmental dyslexia (DD), 1, 2, 47–62, 70, 71, 74, 144

EElectrical cortical stimulation (ECS), 208,

210–213, 229Electroencephalography (EEG), 49, 86,

183, 208Epilepsy, 1, 4, 23, 187, 188, 206–227,

230–233, 278Excitation, 90, 104, 125Executive functions (EF), 23–26, 29,

30, 69, 242Exner’s area, 210, 230

FFacilitation/facilitatory, 31, 85, 125, 127, 128,

148, 149, 158, 159, 164, 165Fiber/fiber tracking (FT), 7, 8, 149, 181, 182,

186, 188, 191, 251Fluency, 7, 24–26, 29–32, 34, 47–49, 54, 71,

89, 91, 96, 128, 130, 143, 145, 146,

150, 156, 158, 159, 163, 215–217, 220, 245, 247

Fractional anisotropy (FA), 146, 181Fronto-temporal dementia (FTD), 22, 34Functional connectivity (FC), 8–10, 23, 98,

103, 105, 127, 146, 149, 159, 163, 165, 252

Functional magnetic resonance imaging (fMRI), 1, 8, 49, 103, 129, 157, 190, 206–227, 275–276, 278

GGene/genetics, 1, 2, 47–62, 97Gray matter (GM), 145, 247

HHemodynamic response function (HRF), 222Hippocampus, 75, 207, 210

IInferior frontal gyrus (IFG), 11, 22, 34, 73, 86,

91, 92, 100, 102, 103, 105, 126, 127, 129, 131, 146, 160, 209, 243, 247

Inhibition, 23, 85, 89, 90, 101, 104, 105, 129, 148, 149

Intermittent theta-burst stimulation (iTBS), 126, 130, 131, 148, 163, 164

Interventions, 2, 21–36, 49, 70, 98, 122, 158, 247

Ipsilateral, 9, 10, 103, 146, 150, 185, 208Ipsilesional, 101, 125, 129

LLanguages, 1, 6, 21, 48, 70, 122, 142,

206, 241Lateralization, 96, 144, 146, 187, 190, 191,

208–211, 213, 234, 277Learning, 2, 10, 23, 52, 70, 84, 123, 159, 250Left hemisphere (LH), 11, 22, 30, 31, 34, 98,

100–102, 122, 124, 126, 130–132, 166, 208, 210, 243, 245

Lesion, 4, 6, 7, 11, 12, 98, 99, 101, 102, 124, 143–145, 148, 158, 160, 166, 180, 183, 185, 188, 210, 211, 241–253

Lesion-symptom mapping (LSM), 4, 241–253

Lexical, 24, 25, 27, 28, 31–33, 75, 86, 89, 91, 92, 122, 150, 156, 157, 159

Logopenic PPA/PPA-L, 27, 28, 32–35

Index

Page 30: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

289

MMagnetic resonance imaging (MRI), 105,

145–147, 178, 180–183, 186, 190, 221, 225, 227, 243, 248, 251, 252, 277

Magnetoencephalography (MEG), 49, 190, 191

Memory, 2, 3, 23–25, 27–30, 54, 55, 59, 69–76, 94, 131, 145, 156–158, 164, 206, 208, 210, 215, 242, 243, 250, 277

Middle temporal gyrus (MTG), 209, 210, 245

Mild cognitive impairment (MCI), 2, 24–31MilliAmpères (mA), 85, 148, 189Montreal Neurological Institute (MNI), 225,

230, 246, 250

NNaming, 11, 23, 73, 86, 145, 179, 207, 243Navigated repetitive transcranial magnetic

stimulation (nrTMS), 179–183, 185–192

Navigated transcranial magnetic stimulation (nTMS), 180–184, 187–189, 191, 192

Neuron/neurons, 9, 10, 13, 23, 50, 51, 54, 57, 59, 60, 73, 82, 84–85, 87, 88, 95–97, 125, 147, 149, 160, 166, 179, 180, 191

Neuronavigation/neuronavigational/neuronavigated, 4, 178, 180, 182, 186, 188

Noun/nouns, 26–28, 32, 123, 157

OOccipital, 94, 207

PParietal, 7, 8, 50, 92, 96, 105, 163, 207, 217,

230, 243Patient/patients, 1, 7, 22, 83, 122, 143, 178,

206, 241Perception, 30, 52, 58, 60, 165, 167Perilesional, 11, 12, 22, 88, 98, 100, 104, 105,

124–126, 166Perisylvian, 7, 11, 12, 50, 86, 163, 187,

188, 249Phonology/phonological, 27, 31, 33, 47–50,

72, 89–92, 94, 98, 122, 143–146, 184

Plastic/plasticity, 9, 10, 13, 14, 23, 30, 31, 35, 54–56, 61, 62, 75, 82, 84, 124, 125, 131, 147, 149, 178, 251

Positron emission tomography (PET), 11, 50, 129, 160, 218, 225

Postoperative, 178, 188, 189, 207, 212, 213, 217

Post-stroke, 2, 6–13, 22, 34, 98, 99, 127, 129–131, 248, 251

Prefrontal, 8, 24, 91, 96, 148, 159, 164Preoperative/presurgical, 4, 178–192,

206–227, 230, 233Primary progressive aphasia (PPA), 2, 8,

22–29, 31–35Priming, 25, 87, 88, 123, 127, 156, 157, 159Procedural deficit hypothesis (PDH), 72–76Production, 9, 26–28, 31–34, 59, 60, 86, 89,

91–93, 102, 104–106, 123, 124, 128, 157, 209, 243, 245–247

RReading, 26, 47, 70, 86, 122, 144, 211, 248Recovery, 2, 6, 22, 75, 97, 122, 186, 208, 248Rehabilitation/rehabilitatory, 2, 3, 6–14, 95,

99, 103, 105, 122–133, 165, 253Repetitive transcranial magnetic stimulation

(rTMS), 1, 3, 4, 23, 29–31, 33, 34, 122, 125–133, 148, 157, 158, 160, 163, 178–192

Right hemisphere (RH), 2, 11, 12, 22, 31, 86, 100, 101, 124, 126, 127, 129, 131, 156, 166, 208, 209

SSemantic PPA/PPA-S, 27–29, 32, 34, 35Semantic/semantics, 25–35, 71, 76, 89–92, 94,

96, 104, 122, 130, 131, 143, 144, 156, 159, 163, 178, 184, 185, 191, 207, 215–218, 220, 247

Sentence/sentences, 27, 30, 32, 34, 59, 122–124, 128, 157, 159, 167, 247, 279

Sham, 31, 34, 84, 93, 102, 103, 126–132, 164, 166, 167

Single nucleotide polymorphism (SNP), 52, 57–60

Skull, 85, 95, 97, 147, 149, 167, 223, 228, 279

Speech, 1, 23, 49, 70, 122, 142, 184, 206, 242

Statistical, 73, 206, 216–217, 222–226, 228, 229, 234, 245, 246, 249, 252

Index

Page 31: Appendix A: tDCS Studies in a Healthy Population978-3-030-35687-3...261 Table A2 Studies investigating the impact of tDCS on language in healthy populations—methodological information

290

Stroke, 6, 9, 12, 13, 22, 98, 100–102, 104, 122, 126, 127, 130, 165, 166, 244, 245, 247–249, 251

Subcortical, 4, 7, 10, 142, 178, 188, 189, 252Superior temporal gyrus (STG), 73, 90, 91,

125, 129, 146, 160, 207, 217, 230, 244, 247, 248

Supramarginal gyrus/gyri, 59Surgery, 1, 4, 150, 179, 181, 187–189, 192,

206–213, 218Synapsis/synapses, 10, 12Synaptic, 10, 23, 30, 55, 82, 88, 125Syntax/syntactic, 8, 24–26, 32, 34, 89, 92,

104, 123, 144

TTasks, 3, 8, 24, 48, 73, 123, 143, 179, 206, 243Temporal cortex/temporal gyrus, 49, 52, 91,

92, 210, 213, 230, 245Temporal lobe epilepsy (TLE), 207, 209,

210, 212Therapy, 2, 3, 14, 30–35, 61, 83, 87–89, 92,

97–101, 103, 105, 106, 122, 125, 127–132, 165, 250

Theta-burst stimulation (TBS), 130, 148Training, 4, 10, 12–14, 24, 30, 32, 33, 35, 49,

55, 56, 61, 88, 93, 94, 97, 102, 105, 123, 124, 127, 129, 164, 192, 214, 217, 222, 230

Transcranial direct current stimulation (tDCS), 1, 23, 89, 103, 147, 242, 259, 263, 269–274

Tumors, 1, 4, 8, 150, 178, 181, 187–190, 192, 207, 211, 212, 216–217, 234, 247, 248, 251

UUnilateral, 10, 87, 100, 101

VVerb/verbs, 25–28, 31–34, 75, 157, 164, 165,

219, 220, 279Visual, 49, 61, 62, 74, 91, 94, 122, 144, 156,

158, 159, 183, 189, 208, 211, 216–219, 228, 246, 279, 280

Vowel, 102Voxel-based lesion-behavior mapping

(VLBM), 247, 249–253Voxel-based lesion-symptom mapping

(VLSM), 145, 245–247Voxel-based morphometry (VBM),

145, 247Voxels, 181, 208, 211, 213, 217, 220–226,

228, 245–247, 249, 250, 252

WWada test, 190, 191, 206, 207Wernicke/wernicke’s area, 7, 86, 160, 209,

212, 213, 229, 230, 234, 243, 278, 279

White matter (WM), 6, 58, 59, 96, 98, 125, 146, 178, 181, 188, 189, 191, 221, 243, 247, 251, 277

Word/words, 7, 25, 48, 72, 86, 122, 144, 215

Working memory, 24, 25, 27, 59, 73, 89, 95, 150, 165, 215, 242, 243, 250

Writing, 26, 70, 86, 102, 122, 129, 144, 242

Index