Apollo Space Mission Historical Document

download Apollo Space Mission Historical Document

of 40

Transcript of Apollo Space Mission Historical Document

  • 7/30/2019 Apollo Space Mission Historical Document

    1/40

    Approved: Date: 6

    APOLLO GUIDANCE AND NAVIGATION PROGR

    Approved: DIR C OR

    INSTRUMENTATION LABORATORY

    To be published in the IEEE Transactions

    on Electronic Computers

    E-1880

    A CASE HISTORY OF

    THE AGC INTEGRATED LOGIC CIRCUITS

    Eldon C. Hall

    December 1965

    COPY

  • 7/30/2019 Apollo Space Mission Historical Document

    2/40

    ACKNOWLEDGEMENT

    This report was prepa red under DSR Project 55-238,sponsored Manned Spacecraft Center of the National

    Aeronautics and Space Administra tion through Contract NAS

    9-4065.

    The publication of this does not constitute ap-

    proval by the National Aeronautics and Space Administration

    of the findings or the conclusions contained therein. is

    published only for the exchange and stimulation of ideas.

    ii

  • 7/30/2019 Apollo Space Mission Historical Document

    3/40

    E-1880

    ACASE HISTORY

    OF THE AGC INTEGRATED LOGIC C I R C U I T

    ABSTRACT

    A case h i s t o r y of t h e i n t e g r a t ed c i r c u i t u se d f o r t h e

    lo g i c i n th e Apol lo Guidance Cir cu i t i s given. Achieving t h e

    re qui re d goa ls of low weigh t, volume, and power coupled wi th

    e xt re me h i gh r e l i a b i l i t y n e c e s s i t a t e d t h e u s e of o n e s i n g l e ,

    s imp le in t eg ra ted c i r c u i t f o r a l l l o g i c f u nc t io n s. A b r i e f

    d e s c r i p t i o n of th e evo lu t ion of t he computer des ign i s given

    along wi th a genera l d is cuss ion of some of the engineering and

    design problems which arise w i t h t h e u s e o f a s t an d a rd ized

    semicon du ctor mo n o l i th i c in t eg ra ted c i r c u i t .

    The f l i g h t q u a l i f i c a t i o n p r oc ed ur e is d esc r ib ed .

    A f t e r t h e q u a l i f i e d s u p p l i e r s l i s t has been formed, each l o t

    sh ipped from any qua l i f i ed su ppl ie r i s exposed t o a sc r een

    and burn- i n p rocedu re fo llowed b y f a i lu r e an a l y s i s o f

    g e n e r a t e d f a i l u r e s . The l o t i s accepted or r e j e c t e d o n t h e

    basis of the number of f a i l u r e s g en e ra ted and th e ty p es of

    fa i l u r e modes genera ted . The r e l i a b i l i t y h is t o r y o f t h e NOR

    Gate i s giv en showing di f fe r e nc e s among vendor s, showing

    dif fer enc es among l o t s shipped from a s i n g l e v en do r , and

    updat ed f i e l d f a i l u r e r a t e s .

    by Eldon C. HallDecember 1965

    1.

  • 7/30/2019 Apollo Space Mission Historical Document

    4/40

    TABLE OF CONTENTS

    Sec t ion

    I INTRODUCTION

    ENGINEERING ASPECTS OF THE COMPUTER

    R E L I A B I L I T Y

    R ELI AB I LI TY HI STQR Y DATA

    V SUMMARY

    3

    7

    20

    28

    32

    2.

  • 7/30/2019 Apollo Space Mission Historical Document

    5/40

    SECTION I

    INTRODUCTION

    M il i t a r y and s p ace o b j ec t i v e s r eq u i r e t h e ve r y l a t e s t

    i n t echno log ic a l deve lopment coup led wi th r e l i a b i l i t y goa ls

    t h a t r e q u i r e s u c c e ss f u l o p er a t i on f o r s e v e r a l y e a r s . A

    compromise must o f t e n be made between the use of new tech-

    nology and h igh r e l i a b i l i t y ob jec t ive s . With jud ic ious p lann ing

    t h i s compromise can be i n s t i t u t e d e f f e c t i ve l y . For example,

    in tegra ted c i rcu i t s us ing p lanar t echno logy have made new

    obje c t iv es poss ib le by reduc ing t he s i ze and weight o f a system

    w h i le i n t r od u c ing an imp o rt ant f u tu r e r e l i ab i l i t y g a in .

    The i n h er e n t r e l i a b i l i t y g a i n s must be implemented i n

    th e des ign s ta ges of th e computer. Hence t he decis ion t o u se

    o ne s imp le s i n g l e l o g i c e l em en t f o r t h e l o g i c i n the

    Guidance Computer. This re su lt e d i n hig h volume procurement

    o f t h e i n t eg r a t ed c i r c u i t f rom m u l t i p l e s o u r ce s, so t h a t t h e

    n eed ed h ig h r e l i ab i l i t y co u ld be developed and proven within

    a sho r t per iod of t i m e .

    The s ta nda rdi zat ion approach, which is p a r t i c u l a r l y

    adap tab le t o d i g i t a l computers , has been demonst rated w i t h

    th e Po l a r i s f l ig h t computer and extended wi th in te gra te d

    c i r c u i t s t o th e Apollo Guidance Computer. Both computers were

    designed t o use a th r ee inpu t NOR G ate a s t h e o n ly l o g i c element.

    A l l log ic func t io ns a r e genera ted by in te rconn ec t ing the t h r e e

    in p u t NOR Gate w i th no ad d i t i o n a l l o g i c b lo ck s , r e s i s t o r s , or

    cap ac i t o r s . A t f i r s t g la nc e, it appears tha t us ing on ly one

    type o f lo g i c b lock g re a t ly increases th e number of blocks re-

    qui red f o r ' t h e computer. But , by jud i c iou s ly se le c t in g and

    o r g an i z in g t h e l o g i c f u n c t i o n s it is quick ly apparen t tha t f ew

    addi t ion a l b locks a r e necessary. The few addi t ional u n i t s

    r e q ui r e d a r e g r e a t l y c o u n te r b al an ce d by t h e i n cr e as e d r e l i a b i l i t y

    gain dur ing both t he manufactur ing of components and fa br ic at io n

    of t h e components i nt o modules.

  • 7/30/2019 Apollo Space Mission Historical Document

    6/40

    The lo g i c e lement u t i l i z ed i n th e Apol lo Guidance

    Computer is t h e t h r e e i n pu t NOR Gate as shown in Fig. 1. A t

    t h e t i m e t h a t t he d eci s io n was made t o u s e i n t e g r a t e d c i r c u i t s ,

    t h e NOR Gate, a s shown, was th e only device ava i l ab le i n la rg e

    q u a n t i t i e s . The s im p l i c i t y of t h e c i r cu i t a ll ow ed s ev e r a l manu-

    f ac tu r e r s t o p ro du ce i n t e r ch ang eab l e dev i ce s so t h a t r e a s o n ab l e

    compe tit i on was ass ure d. Because of rec en t pro ces s development

    i n i nt e g ra t e d c i r c u i t s , t h e NOR Gate has been ab le t o remain

    compet i t ive on b a s i s of speed, power and noise immunity.

    T h i s c i r c u i t i s used a t 3 V and b u t is r a te d a t and

    Unpowered temperature rating i s 150C. The b a s i c

    s i m p l i c i t y o f the t h r e e i n p ut g a t e a i d s a n e f f e c t i v e s c r e en i n g

    process . A l l t r a n s i s t o r s a n d r e s i s t o r s can be t e s t e d t o i n s u re

    product uniformity . The s i m p li c i t y o f t h e c i r c u i t a l s o a id s i n

    th e qu ick de te c t i on and d iagnos ing of i n s i d i ou s f a i l u r e s w it h ou t

    exte ns ive probing a s r equir ed with more complicated c i r cu i t s .

    One ad d i t i o n a l i n t eg r a t ed c i r c u i t used i n t h e A po ll o

    Guidance Computer is the memory sen se am pl if ie r. A s seen in

    Fig. 2 , t h e c i r c u i t is con sid era bly more complex than th e

    NOR Gate. The exper ience with t h i s more complicated ci r c u i t

    has been comparable with t he l og ic ga te . However, s i nc e it

    i s a l o w usage i t e m t h e r e is a v a i l a b l e less information of

    h i s t o r i c i n t e re s t , t h a t is, r e l i a b i l i t y i n f o r m a t i o n s u c h a s

    f a i l u r e rates and modes of f a i l u r e s . The b a l an ce of t h i s r e p or t

    r e l a t e s t o h i s t o r y o f t h e l o g i c g a te .

    4.

  • 7/30/2019 Apollo Space Mission Historical Document

    7/40

    rI

    I

    I

    IIIIIII

    I

    IIIIIIII

    IIIIII

    III

    I

    I

    I

    II

    """"""""""

    1

    f0

    +

    I

    IIIII

    III

    I

    5 .

  • 7/30/2019 Apollo Space Mission Historical Document

    8/40

    SENSE AMPLIFIER CIRCUIT

    S E N S ELINEINPUT

    REFERENCEVOLTAGE

    I

    + VOLTS

    I

    INTEGRATED CIRCUIT

    I

    I

    I

    I

    I

    I

    II

    I

    OUTPUT

  • 7/30/2019 Apollo Space Mission Historical Document

    9/40

    SECTION

    ENGINEERING ASPECTS O F THE APOLLO COMPUTER

    Figure 3 p i c t u r e s the Block Apollo Guidance Computer.

    Th is v e r s io n d i f f e r s from th e Block I Computer i n t h a t the

    memory, i ns t ru c t io n and input ou tp ut was inc rea se d. The Block

    Computer a l s o us es a d u a l g a t e i n a f l a t pa cka ge r a t h e r than

    the s i n g l e ga t e i n a TO-47 used i n Block I . Fig u res 4 and 5

    i l l u s t r a t e th e p ackaging t ech n iqu es used in the Block

    comput er. The Block l o g i c s t i c k s a r e made us i ng t h e f l a t

    package welded t o mul t i l ayer in te rcon nect ion boards . The

    modules a r e in te rconnecte d us ing a t r a y which is wired by

    machine w i r e wrap technique as shown i n F ig . 6 . Two i d e n t i c a l

    Displa y and keyboards a s shown i n Fig. 7 provide t h e man machine

    i n t e r f a c e w i t h the computer. Table I i s a general summary of

    the Block c ompute r c h a r a c t e r i s t i c s .

    Since the l o g i c d e s i g n of the compu te r was r e s t r i c t ed t o

    a s i ng le type of ga t e , a method t o p rov ide fan- in and fan- out

    expansion w a s provided a s shown i n F ig . 8 . Also, methods that

    w e r e used t o provide int erc onn ect ion s between l og ic and memory

    c i r c u i t s and c o nn e ct i on s t o ou ts id e world a r e shown i n F i g . 9.

    A l l high f requency in format ion t r an sf er between t he computer

    and per i fe ra l equ ipment i s accomplished w i t h t ransform er coupled

    c i r c u i t s as shown i n t h e to p view. The second row i s the t y p e

    o f c i r c u i t used in t h e memory in t e r f a ces and f o r l o w frequency

    DC l e v e l ty p e s ig n a l s . The r ece iv e r is shown on the r i g h t .

    The bottom r o w p ro v id es l o w f requency DC l e v e l i n p u t s .

    I n t e r e s t i n g and s u b t l e p ro bl em s a r i s e w i t h the use o f

    i n t eg r a te d c i r c u i t s . To i l l u s t r a t e , F i g . ( a ) d e p i c t s a

    v er y d e s i ra b l e c i r c u i t t h a t c an be used t o d r i v e l o n g cables

    for ground test equipment while requir ing no power drain from

    t he a i rb orne equ ipment . Figure 10 (b) shows the same c i r c u i t

    but includes some of the paras i t i c d i o d e s n o t u s u a l l y repre-

    s e n t ed i n t h e i n t e g r a t e d c i r c u i t . When p o i n t ( x ) rises above

    2 v o l t s , d i od e c a p a c i t o r coupling occurs th rough th e r e s i s t o r

    s u b s t r a t e which a c t i v a t e s the u n u s e d t r a n s i s t o r s . T h i s coupl ing

    7.

  • 7/30/2019 Apollo Space Mission Historical Document

    10/40

    Figure 3

    8

  • 7/30/2019 Apollo Space Mission Historical Document

    11/40

    W

    MODULE MOUNTING FRAME ANDMULTILAYER BOARDMICROLOGIC ASSEMBLED

    TO FINAL WELDING

    Figure 4

  • 7/30/2019 Apollo Space Mission Historical Document

    12/40

    10

  • 7/30/2019 Apollo Space Mission Historical Document

    13/40

    11

  • 7/30/2019 Apollo Space Mission Historical Document

    14/40

    Figure

    12

  • 7/30/2019 Apollo Space Mission Historical Document

    15/40

    AGC CHARACTER I CS

    Word LengthNumber SystemMemory Cycle TimeFixed Memory RegistersErasable Memory RegisterNumber of Normal Instructions

    Interrupt OptionsAddition TimeMultiplication TimeDouble Precision Addition TimeDouble Precision Multiplication Subroutine

    increment TimeNumber of CountersPower ConsumptionWeightSize

    nterrupt, I ncrement, etc.

    Time

    15 Bits 1 ParityOne's Complement11.736,864 Words2,048 Words

    1010

    23.446.835.1575

    11.729

    Watts +58 Pounds (Computer Only)1.0 Cubic Foot (Computer Only)

    Table I.

  • 7/30/2019 Apollo Space Mission Historical Document

    16/40

    LOGIC DESIGN

    SYMBOL FOP POWER NOT CONNECTED

    0

    OUTPUT

    0

    0

    0

    H I G H FAN OUT GATE

    HIGH FAN I N GATE

    Figure

  • 7/30/2019 Apollo Space Mission Historical Document

    17/40

    >OD

    +

    >d-

    lI

    I

    I

    6I-

    O

    a

    15

  • 7/30/2019 Apollo Space Mission Historical Document

    18/40

    00

    "

    "

    "

    16.

  • 7/30/2019 Apollo Space Mission Historical Document

    19/40

    i s a feedback path which slows up th e pu ls e rise times. The

    rise time w i l l be a f u n c t i o n o f t h e g a in of t h e unused t r a n s i s t o r

    and a l s o a f u nc t i o n o f r ep e t i t i o n r a t e of th e d r ive which tends

    t o t u r n t h e t r a n s i s t o r s o f f a t hi gh r e p e t i t i o n rates. Connecting

    a l l u nused i n p u ts t o t h e emitter (OV) w i l l preven t o r minimize

    the feedback thus speeding up the pu lse response. Another

    i n t e re st i ng and much dis cuss ed problem is t h a t o f no i s e i n

    l o g i c c i r c u i t s us in g i n t eg r a t ed c i r c u i t s . I t i s w e l l known

    t h a t a l l d i g i ta l computer s have no ise prob lems and the re a re

    w e l l known design techniques which when properly applied w i l l

    minimize these p ro bl ems . I n t h e e l e c t r i c a l d es ig n a s w e l l a s

    t h e mechanical d es ign there a r e t r a de o f f s t ha t must be made

    i n o r d e r t o meet a l l o f t h e ground r u l e s placed on the computer

    des igner . Noise i s o ne of t h e ma jo r co n s t r a in t s t h a t must be

    cons idered dur ing the design. One m u s t co n s ide r b o th s e l f

    induced and ex te rn al ly induced nois e. Although t h e cause is

    d i f f e r e n t f o r b ot h t y pe s , the e f f e c t is u s u a l l y the same and

    can be i l l u s t r a t e d by F ig . 11. From t h i s f ig ure it i s seen

    how s w it chin g cu r r en t s i n t h e c i r c u i t g ro un d p l an e can cau s e

    v o lt a ge t r a n s i e n t s t h a t w i l l er roneous ly switch t h e t r a n s i s t o r s

    shown. These ground cur r en t s can a l so be induced from the

    o u t s id e e i t h e r b y con du ct ed o r r ad i a t ed i n t e r f e r en ce . To

    maximize the immunity of the computer the des igner should ,

    1. S e l e c t c i r c u i t s t h a t ha ve maximum immunity:

    t h e r e is abou t a f ac to r of 2 r ea l izab le be tween

    the worst and best i n t e g r a t e d c i r c u i t s .

    2 . Provide good ground pla ne s and s ig na l pat hs.

    3 . Provide proper s h i e ld in g , g ro un ding and f i l t e r i n g

    of t h e computer, and a l l i n t e r f a c e wires.

    Obviously one must compromise here a l s o , o th e r w i se t h e

    p r o t e c t i o n as w e l l as t h e magni tude of the no ise would cont inue

    t o e s c u l a t e . I n the c h o i c e o f t h e NOR Gate, the Apollo Computer

    may have sa cr if ic ed some nois e immunity f o r s im pl ic it y and

    av a i la b i l i ty . Tes t ing o f th e f in i she d computer has shown th a t

    i t s s u s c e p t i b i l i t y is much lower than the limits s p e c i f i e d i n

    MIL-1-26600 which is t h e s p e c i f i c a t i o n f o r e l e ct r om a gn e ti c

    c o m p at i b i l it y . I n f a c t , i n o rd e r t o l o c a t e a r e a s o f wea kness,

    17.

  • 7/30/2019 Apollo Space Mission Historical Document

    20/40

    0

    0Z

    I-

    t-

    \

    \

    \

    \

    \

    \

    \

    \

    \

    \

    18

  • 7/30/2019 Apollo Space Mission Historical Document

    21/40

    spark d i scharges have been used dur ing te s t in g .

    r a d i a t i o n s u s c e p t i b i l i t y tests do n ot g en e r a t e l ev e l s

    enough t o i nd uce comp uter f a i l u r e . I n f a c t , MIL-1-26600

    i s weak in o ther a rea s when app l ied t o d i g i t a l computer s. For

    example, a power tr an si e nt between a power i n p u t l i n e and case

    is notor ious fo r induc ing t roub l es and loca t ing areas of weak-

    n es s , a l t ho ug h t h i s test is n o t a requirement of t h e MIL spec.

    The Apollo computer has been subj ect ed t o and passed t he se

    more s t r ingent tests.

    19.

  • 7/30/2019 Apollo Space Mission Historical Document

    22/40

    SECTION

    R ELI AB I LI TY

    Bec ause o f t h e h i g h r e l i a b i l i t y a p p l i c a t i on o f the

    Apol lo Gu idance Computer , t he r e l i a b i l i t y a s su rance o f t h e

    i n t eg r a te d c i r c u i t s w i l l be disc usse d. The procedu res have

    been p rev ious ly r epo r t ed i n deta i l , b u t w i l l be summarized

    h e r e .

    I t became immediately obvious that small-sample

    stress t e s t i n g c o ul d n o t g u a r an t e e t h a t e ac h pu rc ha se d lo t

    would meet t h e Apo llo i n t e g r at e d c i r c u i t f a i l u r e rate r equ i re-

    ments . The MIL-S-19500D s t a t i s t i c a l sampl ing procedure was both

    n o t a p p l i c a b l e n or p r a c t i c a l . F ur th er mo re , a s lo ng as a l l

    f a i l u r e modes w e r e no t com ple t e ly s c reenab l e , one-hundred

    p e r c en t s c re e ni ng a l o n e was n o t s u f f i c i e n t t o a t t a i n the

    r e qu i re d h ig h r e l i a b i l i t y g oa l s. A s t u d y of t h e v a r i ou s

    f a i l u r e modes o f i n t e g r a t e d c i r c u i t s c r e a t e d t h e dilemma

    whereby some of t h e f a i l u r e modes were e a s i l y s c re e ne d by

    s t andard s c reen ing t echn iques and o th e r s on ly occas iona l l y

    d e t e c t e d . N o assurance could be made with any reasonable

    c o nf i de n ce t h a t t h e d e v i c e s wi t h t h e s e t ro ub le so me d e f e c t s

    had been removed from t h e l o t . T o overcome t h i s problem,l o t a c c e p t a n c e cri ter ia w e r e establ ished which would

    i d e n t i f y w i t h h i g h c o nf i d e nc e t h o s e l o t s i n w hich i n s i d i o u s

    f a i l u r e modes were not p reva len t and scre ening had been

    adequat e . P rovid ing an e f fe c t i v e f a i l u r e mode de t ec t i o n

    syst em, t h e p rocedure f o r l o t acceptance i s based on

    hundred pe rcen t nondes t ruc t i ve tests and sample d e s t r u c t i v e

    t e s t i n g . A l l t h e f a i l u r e s g e ne ra te d f rom t h e t e s t i n g are

    complete ly analyzed . The f a i lu re s are t h e n c l a s s i f i e d b y

    grou ps and compared t o the acceptance criteria. must

    be emphasized that the l o t is a c ce p te d o r r e j e c t e d n o tonly because o f th e number o f f a i l u r e s b u t a l so on whether

    the f a i l u r e modes genera t ed were nonsc reenab l e o r i n s id ious

    and long t i m e dependent .

    20 .

  • 7/30/2019 Apollo Space Mission Historical Document

    23/40

    i

    The Apollo Guidance and Navigation Specification,

    ND 1002248, is th e c e nt r a l document on which each procured

    l o t q u a l i f i c at i o n i s based. document sp ec if ie s th e

    p ro ce du re s re q ui r ed f o r l o t a c c ep ta nc e r e s u l t i n g i n f l i g h tq u a l i f i e d p a r t s . I n p a r t i c u l a r , ND 1002248 , spec i f i es t he

    d e t a i l s o f:

    1.

    2.

    3 .

    4.

    5 .

    6 .

    7.

    The operational and environmental stress tes t

    procedures and sequence r e f e rr e d t o a s

    the screen and burn- in procedure. The sc reen

    and burn- in procedure was des igned t o de te ct

    fa i l u r e modes which could occur d ur ing t h e normal

    stress and environmental app l i ca t i on of t h e

    device.

    The e l ec t r ic a l parameter tests t o be performeddur ing the screen and burn- in procedure. The

    tests as d e f i n ed were determined during the

    engineer ing eval uat ion and were chosen t o

    de te c t f a i l u r es and as su re p roper computer

    D ef in i t i o n s o f f a i l u r e s . F a i l u r e s h av e b een

    d e fi n ed a s c a t a s t r o p h i c , s e v e r a l c a t e g o r i e s of

    non- ca tas troph ic, induced, and inspec t i on fa i l u r es .

    Al loca t ion o f f a i l u r es . The cond i t i ons are def ined

    f o r removal from the screen and burn- in procedureo f f a i l u r e s which a r e t o be f or wa rd ed t o f a i l u r e

    a n a l y s i s .

    Classes of fa i l u re modes. Fa i l ur e modes ar e

    c l a s s i f i e d a c co rd i ng t o s c r e e n a b i l i t y and

    d e t e c t a b i l i t y .

    Maximum acceptable number of f a i l u r e s p e r c l a s s of

    f a i l u r e mode f o r a l l 100% e l e c t r i c a l parameter

    test s t a t i o n s .

    Maximum acc ep ta bl e number of f a i l u r e s f o r non-

    e l e c t r i c a l tests and a l l sample electrical para-meter tests.

    21.

  • 7/30/2019 Apollo Space Mission Historical Document

    24/40

    8 .

    9.

    10.

    To

    The r e p o r t r e q ui r e d f o r e ac h f l i g h t q u a l i f i e d l o t .

    The report must co n ta in th e co mp le te h i s to ry o f

    t h e l o t w it h t h e s p e c i f i c d a t a a nd a n a l y s i s r e q u ir e d

    or f l i g h t q u a l i f i c a t i o n .

    D at a and f a i l e d p a r t s s t o r a g e . I n o r d e r t o a s s u r e

    t r a c e a b i l i t y and f u t u r e a n a l y s i s sh ou ld f i e l d

    f a i l u r e s oc c u r , t h e co n d i t io n s of d a t a and f a i l e d

    p a r t s s t o r a ge a r e g iv en .

    Contra c tua l requ i rements t o implement l o t

    f i c a t i o n .

    a s s i s t t h e u n d e rs t and ing o f th e l o t accep tan ce p ro-

    cedures , a genera l d is cuss i on of th e semiconductor pa r t vendor

    s e l e c t i o n and f l i g h t q u a l i f i c a t i o n p r oc ed ur e s w i l l be given

    a s performed f o r t he Apollo Guidance and Navigation Computer.

    The process begins w i t h an assessment of t he vendor ' s

    a b i l i t y t o s u p pl y d e v i c e s , t h e i n s t i t u t i o n of component

    s t an d a rd iza t i o n i n d es ig n s , and th e p r e l im in a ry s tu dy of

    device f a i l u r e A block diagram of t h i s p r e l i m i n a r y

    evaluation which precludes any production procurement is

    g iv en in F ig . 1 2 . The qual i f ica t ion procurements which

    s u pp ly p a r t s f o r t h e q u a l i f i c a t i o n t e s t i n g and e n g in e er i ng

    ev a lu a t io n s e s t ab l i sh ed th e man u fac tu re r ' s d ev ice p ro cess in g .

    One of t h e i n d i r e c t r e su l t s o f t h e i n i t i a l p ro cu re me nt s i s

    th e ear ly de te c t io n of new fa i l u r e modes. The conclus ionso f th e f a i l u r e an a ly ses a r e th en f ed b ack t o th e man ufactu re r

    who i n t u r n a t t em p ts c o r r e c t i v e a c t i o n . T hi s c y c l i c p ro ce du re

    is continued u n t i l th e most obvious problems have been el i minat ed

    Ad d i t io n a l ly , t h e e a r ly d e tec ted f a i l u r e modes cou pled wi th p as t

    e x pe r i en c e a r e u t i l i z e d t o d es i gn the q u a l i f i c a t i o n t e s t i n g .

    The formal ized qua l i f i ca t i on t es t i ng beg ins when th e

    v en d o r s h av e su p p l i ed d ev ices r ep re sen ta t iv e of t h e i r f i n a l i z e d

    manufactur ing process. It is e x tr e me ly i m po rt a nt t h a t a l l

    q u a l i f i c a t i o n a n d e n g i n e e r i n g t e s t i n g be performed on devices

    f ab r i ca ted f ro m th e i d en t i ca l p ro cess u sed t o su pp ly compu terp ro d u ct io n d ev ices . The q u a l i f i c a t io n tests s u b j e c t t h e

    22 .

  • 7/30/2019 Apollo Space Mission Historical Document

    25/40

    2 3 .

  • 7/30/2019 Apollo Space Mission Historical Document

    26/40

    dev ices from var ious vendors t o th e extremes of and, t o a

    l im i ted ex ten t , beyond usage cond i t ions in an a t tempt t o

    de te ct f a i l u r e modes which could occur i n normal app l ica t ions .

    The engineer ing evalua t ion s a re performed s imultaneous ly

    w i t h t h e q u a l i f i c a t i o n p ro ced u re s t o d e t er m in e d ev i ce s peed ,

    ca pa bi l i ty , noi se immunity , and ope ra t in g temperature

    range. From t h i s eva lua ti on, t h e optimum computer design is

    developed. I t is a t t h i s t i m e t h a t tests ar e conducted t o

    d e te r min e t h e e l ec t r i c a l p a ram ete rs w hich w i l l insure p roper

    dev ice opera t ion i n every usage mode and t o es ta bl is h the

    l o g i ca l d e s ig n rules f o r the computer.

    The qua l i f i ca t i on and eng ineer ing eva lua t ions de te rmine

    tho se vendors who a re cap able of supplyin g the semiconductor

    pa r t and who do no t ex h i b i t any g ross r e l i a b i l i t y prob lems .

    T h e q u a l i f i c a t i o n tests a l on e a r e i n s u f f i c i e n t t o d et er mi ne

    t h e a b i l i t y o f a vendor t o c o n t r o l h i s p r oc e s s, b u t l a r g e

    volume da ta fed back f rom screen and

    burn- i n s u p p l i e s ex t en s iv e vend or h i s t o r y .

    U t i l i z i n g the data generated dur ing the eng ineer ing

    ev a lu a t i o n s an d q u a l i f i c a t i o n tests, t h e s p e c i f i c a t i o n c o n t r o l

    document (SCD) is prepared . The SCD is the document t o which

    p r o d u c t i o n p a r t s are boug ht. Based on the q u a l i f i c a t i o n by

    vendors, the q u a l i f i e d s u p p l i e r s l i s t is formed which

    s p e c i f i e s th e vendors from whom the produc t ion par t s s h a l l

    be procured.

    Once the SCD and QSL have been released, produc t ion

    procurement may begin. Figu re 13 pi ct ur es the genera l f low

    o f p a r t s an d d a t a as r e qu i re d f o r f l i g h t q u a l i f i c a t i o n . The

    devices procured by l o t s proceed through the screen and

    i n test sequence.

    Upon of screen and burn- in, the l o t is s t o r e d

    u n t i l f a i l u r e a na l y si s is completed. A l l f a i l e d u n i t s are

    ca ta logued , ana lyzed , and c l as s i f i ed t o complete the l o t

    assessment, followed by a w r i t t e n r e p o r t . I f t h e l o t

    passed , a l l the d e v ic e s t h a t pa ss ed a l l tests can be i d e n t i-

    f i e d as a f l i g h t q u a l i f i ed p a r t w i t h a new p a r t number and

    24 .

  • 7/30/2019 Apollo Space Mission Historical Document

    27/40

    25

    I

  • 7/30/2019 Apollo Space Mission Historical Document

    28/40

    s e n t f o r produ cti on usage. Only t h e semiconductor p a r t w i t h

    t h e f l i g h t q u a l i f i c a t i o n p a r t number c a n be used i n f l i g h t

    q u a l i f i ed compu te r a s semb l i es . From fa i l u r e an a ly s i s , r e j ec ted

    p a r t s p ro ce ed t o reject s t o ra ge where they w i l l be a v a i l a b l e

    f o r f u t u r e s t ud y i f re q u ir e d . I n the e ve nt t h a t t h e l o t

    fa i l ed because o f c i rcumstances no t comple te ly def ined th rough

    f a i l u r e c l as s i f i c a t i on , t h e l o t can be f l i g h t q u a l i f i e d b y

    waiver . The waiver must be au thor ized by NASA and w i l l

    accompany the computer. c e r t a i n l i m i t e d c as e s , p a r t s f rom

    a f a i l e d l o t may be r e su bmi t t ed f o r r e sc r een in g .

    The accumulated d at a from t h e scr een and burn- in pro-

    cedure (Fig . 14) and f a i l u r e a n a l y s i s are u t i l i z e d t o f u r t h e r

    ev a lu a te t h e v en do r p ro d u c t io n ca p a b i l i t y and h i s d ev ice

    q u a l i t y and r e l i a b i l i t y . T h i s i n t u r n a f f e c t s a v e n do r ' s

    c o nt i nu e d s t a t u s as a q u a l i f i e d s u p p l i e r .

    2 6 .

  • 7/30/2019 Apollo Space Mission Historical Document

    29/40

    S SEQUENCE

    FailuresRemoved

    Visual I

    1

    failures toAnalysis Electrical Test

    1

    I Thermal Cycle(Sample

    I I

    Centrifuge

    Failures to

    Analysis Test

    Life hrs

    Failures toAnalysis Electrical Test To Lot

    Figure 14

  • 7/30/2019 Apollo Space Mission Historical Document

    30/40

    SECTION I V

    RELIABILITY HISTORY AND DATA

    The r e l i a b i l i t y h is t o r y of t h e NOR Gate w i l l exemplify

    some of t h e d i f f i c u l t i e s encoun t ered and succes ses ach ieved i n

    b u i l d in g a d i g i t a l c omputer u t i l i z i n g i n t e gr a t e d c i r c u i t s .

    Table is a summary o f t he r e l i a b i l i t y da t a fo r the

    NOR Gate accumulated up t o October 1964. This d a t a h a s b e e n

    p r e v i o us l y d is c u ss e d i n d e t a i l2

    b u t is presen t ed he r e t o show

    th e extreme di ff er en ce s among manufacturers . The e l e c t r i c a l

    f a i l u r e d e f i n i t i o n s d u ri n g s c r e e n and bu r n- in were any in-

    operab l e dev i ces or any dev i ce exceeding t h e e l e c t r i ca l

    sp ec i f ica t io ns . The percentages inc lud e approximate ly 0 .05

    t o combined i nduced f a i l u re s and t e s t i n g e r ro r s . The

    i n i t i a l q u a l i f i c a t i o n r e s u l t s a r e a l s o i n cl ud ed i n T able

    where t he f a i l u re de f i n i t i on was an i noperab l e dev ice . The

    extreme di ff er en ce s among the manufacturers is a l so r e f l e c t e d

    i n t he f a i l u re modes genera t ed du r ing bo th the i n i t i a l q ua l i f i-

    ca t io n and scree n and burn- in. For the d a t a i n T a b le

    Manufacturer A r a re ly e xh ib i t ed t h e nonsc reenab l e, and /o r

    long- t ime dependent f a i l u r e modes while both Manufacturers

    B and C c o n s i s t e n t l y d i d . The i n op e r ab l e f a i l u r e s g e n er a t ed

    a t computer us e cond i t ions fo r Manufacturers B and C were of

    th e nonscreenable , long- t ime dependent f a i l u r e modes.

    I t is i n t e r e s t i n g t o n o t e t h a t the same dev i ces used t o

    genera t e the data of Vendor A of Table have s i nc e exh ib i t ed a

    f i e l d f a i l u r e r a t e of h o ur s a t 90% conf idence a s of 3

    30 September 1965 w i t h o ne o p e r a t i o n a l f a i l u r e . The same

    devices of Vendors B and C have not improved their f a i l u r e

    r a t e s b e ca u se a d d i t i o n a l f a i l u r e s h av e oc c ur r ed .

    The more s u b t l e d i f f e r e n c e s i n q u a l i t y and r e l i a b i l i t y

    may be obse rved i n va r i a t i o ns of l o t s shipped from one manu-

    f a c t u r e r . The d a t a of F i g. 1 5 i n d i c a t e s the num er i ca l va r i a t i ons

    2 8 .

  • 7/30/2019 Apollo Space Mission Historical Document

    31/40

    OCT 64

    A

    B

    C

    P R E QUALIFICATIONFAILURES

    5

    26

    58

    & BURN-INFAILURES

    TOTAL

    3 . 8

    5.0

    2nd & 3rd

    0.3

    1.7

    FAILURE RATES AT US ECONDITIONS

    90% CONFIDENCE

    0.005% hrs (0 FAILURES)

    hrs (2 FAILURES)

    1.8% (26 FAILURES)

    SEPT VENDOR A- ( 1 FAILURE)

    VENDOR C-N O IMPROVEMENT

    Table

  • 7/30/2019 Apollo Space Mission Historical Document

    32/40

    -3

    0

    0 0 0 0

    0

    30

  • 7/30/2019 Apollo Space Mission Historical Document

    33/40

    f o r t h e NOR Gate from one qu al if ie d manufacturer. Here, only

    th e i n o pe r abl e f a i l u r e s a r e p lo t t e d and i n du ced f a i l u r e s and

    te s t in g e r ro r s have been e l imina ted from th e da ta . These

    NOR Gates were exposed t o t he scr een and burn-

    in procedure a sshown i n Fig. Each poi nt in Fig . 15 rep res ent s a shipment

    l o t of t o 5000 NOR Gates. Figur e 15 (a ) shows th e per-

    c e n t c a t a st r o p h i c f a i l u r e s a t t h e incoming e l e c t r i c a l tests.

    Figure 15 (b) shows th e percen t c a tas t roph i c f a i l u r es which

    were g ene r at ed a f t e r s t r e s s in g w i th i ncoming ca t a s t r o p h i c

    fa i l u r es removed. There a r e fewer po i n t s p lo t te d i n F ig . 15

    (b) than i n Fig. 15 ( a ) , since some lo ts n ot u se d f o r f l i g h t

    hardware w e r e not exposed t o screen and burn- in . There was

    no buying o f th e th re e inpu t NOR Gate between June and October

    1964, so t h a t t h e l i n e p ro du ci ng t h e i n t e g r a t e d c i r c u i t wastemporar i ly d iscont inued. A s a r e su l t when t he p roduc t ion

    l i n e was r e in s t a t ed , s ev e r a l lo ts a f t e r October 1964 indic ated

    a new region of i ns ta bi l i ty . A t t h a t time rapid feedback t o

    th e manufacturer from th e cus tomers resu l t ed i n subsequent

    decrease o f c a tas t roph i c f a i lu re s dur ing the sc reen and burn-

    in p rocedure .

    31 .

  • 7/30/2019 Apollo Space Mission Historical Document

    34/40

    SECTION V

    SUMMARY

    Controversy still e x i s t s w i t h r e s p ec t t o t h e d e c i s io n

    made i n th e des ign o f t h e Guidance Computer. I n p a r t i c u l a r

    s t an d a rd iza t io n of lo g ic g a te s i s claimed t o have many di sadv an-

    t ag es . B ut , a s a result o f s t a n d a r d i z a t i o n t h e NOR Gates o f t h e

    Apo llo Computer h as been ab le to e s t ab l i s h th e r e l i ab i l i t y wi th

    o p e r a ti n g f a i l u r e r a t e s l owe r t h an e v er b e f o r e r e a l i z e d .

    T o dat e , four tee n Block I computers have been bu i l t

    and a r e i n f i e l d use f o r f l i g h t s i m ul a ti o n, s p a c e cr a f t i n t e g r a t i o ntest , an d v a r io u s q u a l i f i ca t io n tests. These computers have

    accumulated 38,442.0 hours of oper at in g time as o f 30 September 1965.

    The f i r s t prototype computer was opera t in g i n Ju ly 1963 wi th th e

    R ay th eo n b u i l t f l i g h t co mp u te r o p e ra t in g i n January 1964.

    32.

  • 7/30/2019 Apollo Space Mission Historical Document

    35/40

    REFERENCES:

    1. J. P ar t r i d g e , E.C. H a l l , L.D. Hanley, "The Appl ica t ion

    of F ai lu re Analys is i n Procur ing and Screening of

    I n t eg r a t ed p r e s en t ed a t the Fourth Annual

    Symposium of P h ys i cs of F a i l u r e i n E l ec t r o n i c s ,

    November 1 6 , 1965.

    2 . J. P ar t r i d g e , L.D. Hanley, E.C. H a l l , "Progress

    R ep or t on A t t a in ab l e R e l i a b i l i t y o f I n t eg r a t ed

    Ci rcu i t s f o r Sys tems Microe lec t ron ics

    and Large Systems, Edited by Wiley, Spandorfer1965.

    33 .

  • 7/30/2019 Apollo Space Mission Historical Document

    36/40

  • 7/30/2019 Apollo Space Mission Historical Document

    37/40

    4

    E- 1880

    DISTRIBUTION LIST

    Internal

    Adams

    J . Arnow (Lincoln)

    R.

    P. F. Siraco

    A. Boyce

    R. Boyd

    R. Byers

    G. Cherry

    N. CluettE. Copps

    W. Coleman

    R. Crisp

    G. Cushman

    J. Dahlen

    J.

    E. Duggan

    J.

    R. Euvard

    J. B. FeldmanP.

    S. Felix

    J. Flanders

    J. Fleming

    L.

    J. Gilmore

    F. Grant

    D. Grief

    Eldon Hall (100)

    W.Heintz

    T. Hemker

    E. Hickey

    D. Hoag

    F. Houston

    L. B. Johnson

    M. Johnston

    B. Katz

    A. Koso

    M. Kramer

    W. KupferA. Laats

    D. Ladd

    J. L a r se n

    L. Larson

    J.

    T. J.

    T. M.

    D. Lickly

    R.

    MartinageG.

    J.

    R.

    R. Millard

    Jam es Mi l l er

    John Miller

    R. Mudgett

    J. Nevins

    J.

    E. OlssonW. Pat terson

    M.

    M. Richter

    J. Rhode

    K. Samuelian

    Sarmanian

    G. Schmidt

    W. Schmidt

    R. Scholten

    E. Schwarm

    J. SciegiennyN. S e a r s

    J.

    W.

    T. Shuck

    J. Sitomer

    W. Stameris

    J. Stone

    J. Suomala

    W. Tanner

    R. Ther r i enW. Toth

    M. Trageser

    R. Weatherbee

    R, White

    L. Wilk

    M. Wolff

    R.

    W. Wrigley

    D. Yankovich

    Apollo LibraryL i b r a r y (6 )

  • 7/30/2019 Apollo Space Mission Historical Document

    38/40

  • 7/30/2019 Apollo Space Mission Historical Document

    39/40

    External

    W. RhineNASA

    I,. Holdridge (NAA

    T. Heuermann

    AC Electronics

    Kollsman

    Raytheon

    Major H. Wheeler

    MSC:National Aeronaut ics and Space AdministrationManned Spacecraft CenterApollo Document Distribution OfficeHouston, Texa s 77058

    National Aeronautics and Space AdministrationLangley Research Ce nterHampton, VirginiaAttn: Mr. A. T.

    GAEC:Grumman Aircraft Engineering CorporationData Operations and Services, Plant 25Bethpage, Long Isl and, New YorkAttn: Mr. E. Stern

    NAA :North Ame ri can Aviation, Inc.Space and Information S ystem s Division12214 BoulevardDowney, CaliforniaAttn: Apollo Data Requi reme nts

    Dept. 41-096-704

    NAA RASPO:NASA Resident Apollo Space craf t Pr og ra m OfficeNorth Ame ri can Aviation, Inc.Space and Information Syst ems DivisionDowney, Cali fornia 90241

    National Aer onautics and Space AdministrationResident Apollo Spacecraft Program Officer

    Dept. 32-31AC Electr onics Division of Ge nera l MotorsMilwaukee 1, WisconsinAttn: Mr. W. Swingle

    ACSP RASPO:

    (25

    +

    (18 +

  • 7/30/2019 Apollo Space Mission Historical Document

    40/40

    External

    ACSP RASPO:Mr. Pe te r sonBureau of Naval Weapon sc Raytheon CompanyFoundry AvenueWaltham, Massachusetts

    M r . S. SchwartzDOD, DCASD, Ga rden Ci ty60 5 Stewart AvenueGarden City, L. I . , N.Attn: Quality Ass ura nce

    D. R. KohlsAFPROAC Electr onics Division of General Motors

    Milwaukee 1, Wisconsin 53201