AP Chem Week 28 Unit 10 Electrochemistry 2019

55
FLT I will be able to: Identify redox reactions and justify the identification in terms of electron transfer Design and/or interpret the results of an experiment involving a redox titration Make qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/or Faraday’s laws Analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions by completing Electrochemistry Notes

Transcript of AP Chem Week 28 Unit 10 Electrochemistry 2019

FLT•  Iwillbeableto:– Identifyredoxreactionsandjustifytheidentificationintermsofelectrontransfer– Designand/orinterprettheresultsofanexperimentinvolvingaredoxtitration– Makequalitativeorquantitativepredictionsaboutgalvanicorelectrolyticreactionsbasedonhalf-cellreactionsandpotentialsand/orFaraday’slaws– Analyzedataregardinggalvanicorelectrolyticcellstoidentifypropertiesoftheunderlyingredoxreactions

bycompletingElectrochemistryNotes

Electrochemistry

Review:Oxidation-ReductionReactions

Oxidation-Reduction•  Oxidation-Reduction(redox)reactionscanbeconsideredelectron-transferreactions

•  Overallreaction:2Mg(s)+O2(g)à2MgO(s)

2Mg(s)+O2(g)à2MgO(s)

EachOgains2e-tobecomeO2-

EachMgloses2e-tobecomeMg2+

•  Half-Reactions(showtheelectronsinvolved):

2Mgà2Mg2++4e- O2+4e-à2O2-

Oxidation-Reduction•  Oxidation–involvesthelossofelectrons•  Reduction–involvesthegainofelectrons•  LEOthelionsaysGER

Oxidation-Reduction•  Whenlookingatreactions,wecanassignoxidationstatestoseewhichsubstanceisoxidized,andwhichisreduced

CH4(g)+2O2(g)àCO2(g)+2H2O(g)

Loste-s(oxidized)

Gainede-s(reduced)

C:-4H:+1

O:0 C:+4O:-2

H:+1O:-2

Review:BalancingRedoxReactions

Balancing1.  Assignoxidationstatesandlabel2.  Separatetherxnintohalf-reactions3.  BalanceallatomsexceptHandO4.  BalanceOatomsbyaddingoneH2Omoleculeforeach

Oatomneeded5.  AcidicsolutionsàbalancehydrogenbyaddingH+.

BasicsolutionsàaddoneH2OmoleculeforeachHatomneeded,andthenaddthesamenumberofOH-atomsontheoppositeside.

6.  Balancethechargesbyaddinge-stothepositiveside.7.  Multiplerxnsbytheappropriatenumbertogetthe

electronstobalanceoutandcancel.8.  Addreactionstogether,cancelingouttermsthat

appearonoppositesides

Balancing•  Ex/Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s)

•  First,assignoxidationstatesandlabel

Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s) 0

+2

+3

0

Oxidized(loste-s)

Reduced(gainede-s)

Balancing•  Next,separateintohalfreactions:

Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s)

Oxidationhalf-rxnAl(s) à Al3+(aq)

Reductionhalf-rxnCu2+(aq) à Cu(s)

Al(s) àAl3+(aq)+3e-

2e-+Cu2+(aq)àCu(s)

2Al(s)à2Al3+(aq)+6e-

6e-+3Cu2+(aq)à3Cu(s)

2Al(s)+3Cu2+(aq)à2Al3+(aq)+3Cu(s)

Trythis:Fe2+(aq)+MnO4

-(aq)àFe3+(aq)+Mn2+(aq)

•  Answer:

5Fe2+(aq)+8H+(aq)+MnO4

-(aq)à5Fe3+(aq)+Mn2+(aq)+4H2O(l)

Trythis:BASICsolutionI-(aq)+MnO4

-(aq)àI2(aq)+MnO2(s)

AlsoReview:Titrations

Titrations•  Recall:Titrationsareavolumetricanalysiswecanusetodeterminetheamountofacertainsubstance

•  Inatitration,astandardsolution(ofKNOWNconcentration)isaddedgraduallytoasolutionofunknownconcentrationuntilthechemicalreactioniscomplete.

Titrations•  Acid-BaseTitrationMethod:1.  Analytesolution(ofunknownM)isplacedina

flaskorbeaker2.  Asmallamountofindicatorisadded3.  Titrantisplacedinaburetteandslowlyaddedto

theanalyteandindicatormixture4.  Theprocessisstoppedwhentheindicatorcauses

achangeinthecolorofthesolution5.  Thechangeinvolumeisusedtodeterminethe

volumeoftheanalytesolution

Titrations•  Justasanacidcanbetitratedagainstabase,wecantitrateanoxidizingagentagainstareducingagent.

•  Wecancarefullyaddasolutioncontaininganoxidizingagenttoasolutioncontainingareducingagent

•  Theequivalencepointisreachedwhenthereducingagentiscompletelyoxidizedbytheoxidizingagent

•  Westilluseanindicatorthatchangescolor.•  Theindicatorhasacharacteristiccolorofthereducedformandoxidizedform.Atorneartheequivalencepoint,asharpchangeincolorwilloccur.

28

Titrations•  Ex/A16.42mLvolumeof0.1327MKMnO4solutionisneededtooxidize25.00mLofaFeSO4solutioninanacidicmedium.WhatistheconcentrationoftheFeSO4solutionifthenetionicequationis5Fe2++MnO4

-+8H+àMn2++5Fe3++4H2O•  First,findmolesofKMnO4,andthenusethebalancedequationtofindthemolesofFeSO4

•  Second,dividebythevolumeoftheFeSO4solutiontogetmolarity

Mini-CW

MiniCW•  BalancingWS!•  AnyunfinishedequationswillbeyourHWinadditiontothebookproblems.

Electrochemistry

Referencebacktothisslideafterwefinishelectrochem:

•  LEOsaysGER•  Oxidizingagentscausereduction•  Reducingagentscauseoxidation•  Galvaniccellsarespontaneous(battery)•  Eletrolyticcellsrequireexternale-source(DC)•  ANOX,REDCAT(anode–oxidationoccurs;cathode–reductionoccurs)

•  ElectrochemistryandEquilibrium=Buddies•  Atequilibrium,voltaiccellshavezerovoltage•  VoltaiccellshaveverylargeKvalues(favorable)•  Q=1atstandardconditions•  IfQincreasestoapproachK,voltagedecreases•  IfQdecreasestoapproachK,voltageincreases

Electrochemistry

ElectricCurrentsandRedox•  Inelectrochemistry,westudytherelationshipsbetweenelectricalandchemicalprocesses

•  Thisincludesbatteries,electroplating,fuelcells,hydrogenproduction,biologicalprocesses

•  Redoxrxnsinvolvethetransferofelectrons•  Wecanlookatenergyreleasedbyaspontaneouschemicalrxnbeingconvertedintoelectricity(ex/battery)

•  Wecanalsolookatprocesseslikeelectrolysis,whereweuseelectricalenergytoforceanonspontaneousrxntooccur

ElectricCurrentsandRedox•  Termstoknow:•  ElectricCurrent=theflowofelectriccharge– Current(I)isoftenrepresentedbythenumberofelectronspassingthroughpersecond(Amperes)

•  Voltage=thepotentialenergyperelectron

ElectricCurrentsandRedox•  Let’slookatredoxrxns:•  Sinceredoxrxnsinvolvethetransferofe-s,wecanlookatthemintermsofgeneratingelectricalcurrents

Zn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)•  What’shappeninginthisrxn?

39

ElectricCurrentsandRedoxZn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)

•  ZnmetalisplacedinasolutionofCu2+•  ThegreatertendencyofZntolosee-sresultsinZnbeingoxidizedandCu2+beingreduced

•  Let’sthink…•  Thee-sarebeingtransferreddirectlyfromZntoCu2+.ThecopperionacceptstheelectronsanddepositsontheZincassolidcopper.

ElectricCurrentsandRedoxZn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)

•  Canweseparatethezincatomsandcopperions,andforcetheelectrontransfertooccurthroughawireconnectingthetwohalf-rxns?

•  Yes!•  Theflowofe-swouldconstituteanelectricalcurrentandcouldbeusedtodoelectricalwork

ElectrochemicalCells

ElectricCurrentFlowingIndirectlyb/tAtoms

TheVoltaicCell•  ElectrochemicalCell=devicethatgenerateselectricitythroughredoxrxns

① Voltaic(Galvanic)CellAnelectrochemicalcellthatproducesanelectricalcurrentfromaspontaneousrxn

② ElectrolyticCellAnelectrochemicalcellthatconsumesanelectricalcurrenttodriveanonspontaneousrxn

TheVoltaicCell

TheVoltaicCell•  Twohalf-cells•  SaltBridge– Connectstwohalf-cellsandneutralizeschargebuildup,allowingtherxntocontinue

•  Electrodes=conductivesurfaces– Cathode=wherereductiontakesplace– Anode=whereoxidationtakesplace

47

Electrodes•  Anode– electrodewhereoxidationoccurs– anionsattractedtoit– connectedtopositiveendofbatteryinelectrolyticcell– losesweightinelectrolyticcell

•  Cathode– electrodewherereductionoccurs– cationsattractedtoit– connectedtonegativeendofbatteryinelectrolyticcell– gainsweightinelectrolyticcell• electrodewhereplatingtakesplaceinelectroplating

49

CurrentandVoltage•  Thecurrent=thenumberofe-sthatflowthroughthesystempersecond–  unit=Ampere–  1Aofcurrent=1Coulombofchargeflowingbyeachsecond–  1A=6.242x1018electrons/second–  Electrodesurfaceareadictatesthenumberofelectronsthatcanflow

•  Potentialdifference=thedifferenceinpotentialenergybetweenthereactantsandproducts–  unit=Volt–  1Vofforce=1Jofenergy/Coulombofcharge–  thevoltageneededtodriveelectronsthroughtheexternalcircuit

–  amountofforcepushingtheelectronsthroughthewireiscalledtheelectromotiveforce,emf

CellPotential

CellPotential•  CellPotential(Ecell)=thedifferenceinpotentialenergybetweentheanodeandthecathodeinavoltaiccell

•  Dependsontherelativetendenciesofthereactantstoundergooxidationandreduction

•  Cellpotentialunderstandardconditionsiscalledthestandardemf,E°cell– 25°C,1atmforgases,1Mconcentrationofsolution– sumofthecellpotentialsforthehalf-reactions

•  Overall,thecellpotentialisameasureoftheoveralltendencyforaredoxrxntooccur.Thelowerthecellpotential,thelowerthetendency

CellNotation•  shorthanddescriptionofVoltaiccell•  electrode|electrolyte||electrolyte|electrode•  oxidationhalf-cellonleft,reductionhalf-cellontheright

•  single|=phasebarrier–  ifmultipleelectrolytesinsamephase,acommaisusedratherthan|

– oftenuseaninertelectrode•  doubleline||=saltbridge•  Ex/Zn(s)|Zn2+(aq)||Cu2+(aq)|Cu(aq)

Fe(s)|Fe2+(aq)||MnO4-(aq),Mn2+(aq),H+(aq)|Pt(s)

CellPotential•  Ahalf-rxnwithastrongtendencytooccurhasalarge+half-cellpotential

•  Whentwohalf-cellsareconnected,thee-sflowsothatthehalf-rxnwiththestrongertendencywilloccur

•  ThesevaluesarestandardizedbySHE,orthestandardhydrogenelectrode,whichisassignedapotentialdifferenceof0v

Half-CellPotentials•  SHEreductionpotentialisdefinedtobeexactly0v•  half-reactionswithastrongertendencytowardreductionthantheSHEhavea+valueforE°red

•  half-reactionswithastrongertendencytowardoxidationthantheSHEhavea-valueforE°red

•  E°cell=E°oxidation+E°reduction– E°oxidation=-E°reduction– +E°cellmeanstherxnisspontaneous– whenaddingE°valuesforthehalf-cells,donotmultiplythehalf-cellE°values,evenifyouneedtomultiplythehalf-rxnstobalancetheequation

Example•  CalculateE°cellforthereactionat25°C:Al(s)+NO3

-(aq)+4H+

(aq)àAl3+(aq)+NO(g)+2H2O(l)Steps:1.  Separatetherxnintotheoxidationand

reductionhalf-reactions2.  FindtheE°foreachhalf-reactionandsum

CalculateE°cellforthereactionat25°CAl(s)+NO3

−(aq)+4H+

(aq)→Al3+(aq)+NO(g)+2H2O(l)

Separate the reaction into the oxidation and reduction half-reactions

ox: Al(s) → Al3+(aq) + 3 e−

red: NO3

−(aq) + 4 H+

(aq) + 3 e− → NO(g) + 2 H2O(l)

find the E° for each half-reaction and sum to get E°cell

E°ox = −E°red = +1.66 v E°red = +0.96 v E°cell = (+1.66 v) + (+0.96 v) = +2.62 v

Example•  Willtherxnbelowbespontaneousunderstandardconditions?

Fe(s)+Mg2+(aq)àFe2+(aq)+Mg(s)

Predictifthefollowingreactionisspontaneousunderstandardconditions

Fe(s)+Mg2+(aq)→Fe2+(aq)+Mg(s)Separate the reaction into the oxidation and reduction half-reactions

ox: Fe(s) → Fe2+(aq) + 2 e−

red: Mg2+

(aq) + 2 e− → Mg(s)

look up the relative positions of the reduction half-reactions

red: Mg2+(aq) + 2 e− → Mg(s)

red: Fe2+(aq) + 2 e− → Fe(s)

since Mg2+ reduction is below Fe2+ reduction, the reaction is NOT spontaneous as written

the reaction is spontaneous in the reverse direction

Mg(s) + Fe2+(aq) → Mg2+

(aq) + Fe(s) ox: Mg(s) → Mg2+

(aq) + 2 e− red: Fe2+

(aq) + 2 e− → Fe(s)

sketch the cell and label the parts – oxidation occurs at the anode; electrons flow from anode to cathode

Practice-SketchandLabeltheVoltaicCellFe(s)⏐Fe2+(aq)⏐⏐ Pb2+(aq)⏐Pb(s),WritetheHalf-ReactionsandOverallReaction,andDeterminethe

CellPotentialunderStandardConditions.

ox:Fe(s)→Fe2+(aq)+2e−E°=+0.45V

red:Pb2+(aq)+2e−→Pb(s)E°=−0.13V

tot:Pb2+(aq)+Fe(s)→Fe2+(aq)+Pb(s)E°=+0.32V