Anouck FERROUD, Romain CHESNAUX, Silvain RAFINI · 2018. 3. 6. · Abstract n°2120 Anouck FERROUD,...

33
Abstract n°2120 Anouck FERROUD, Romain CHESNAUX, Silvain RAFINI [email protected] Numerical investigations of the spherical flow regimes induced by constant-rate pumping tests 25-29 th September, 2016

Transcript of Anouck FERROUD, Romain CHESNAUX, Silvain RAFINI · 2018. 3. 6. · Abstract n°2120 Anouck FERROUD,...

  • Abstract n°2120

    Anouck FERROUD, Romain CHESNAUX, Silvain [email protected]

    Numerical investigations of the spherical flow

    regimes induced by constant-rate pumping tests

    25-29thSeptember, 2016

  • 3

    1.1 Terms and concepts

    1. Introduction

    Pressure front pulse (or pressure wave)

    Cross flow area A(r) (equipotential surface)

    Radial distance r

    r

    Pumping well

    Aquifer

    Constant rate pumping test

    Flow lines

    Fig. 1: Conceptuel model of the pressure during a pumping test

  • 4

    1. Introduction

    1.2 Constant rate pumping tests : diagnostic tools

    Fig. 3: Log-log plot of ds/dlogt

    (Bourdet et al., 1989).Fig. 2: Semi-log plot of the s.

    Drawdowns

    Drawdown-log derivativeds/dlogt

    Much more sensitive signalHelp to select the most adapted analytical model

    Allows to investigate the flow regimes

    +

    " The new way " *

    s (

    m)

    ds/d

    log

    tt (s)

    t (s)

    * Mattar (1997)

    " The old way " *

    …But the physical interpretation = still enigmatic

  • 5

    1.3 Hydraulic interpretation of ds/dlogt

    1. Introduction

    n = 1 ; A ~ r0

    n = 2 ; A~ r

    n = 3 ; A ~ r²

    Generalized Radial flow (GRF) Model

    (Barker, 1988)

    A(r): cross-flow area

    r: radial distance from the well (m)

    n: flow dimension parameter (= flow regime)

    n reflects the geometry of the

    pressure wave when it diffused

    through the aquifer

    "Flow geometry combined to the

    hydraulic properties of the aquifer"

    (Beauheim et Roberts, 1998).

  • 6

    1.3 Hydraulic interpretation of ds/dlogt

    1. Introduction

    n = 3 ; A ~ r² spherical

    flow regime

    How to estimate n from transient well test data? n = 2.(1-v)

    n: flow dimension

    v: slope of ds/dlogt

  • 8

    2. Objectives and issue of the study

    Objective

    To develop advanced tools of intepretation of pumping tests

    based on ds/dlogt signal and Barker’s theory

    Issue

    What are the conceptual models producing a spherical flow

    regime?

  • 9

    1.4 Field data: observation of n in nature

    Previous study:

    Statistical occurrence of flow dimension in various geological

    environments n distribution in nature.

    2. Objectives and issue of the study

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 >3.6

    Flow dimension

    Interpretable n

  • 10

    1.4 Field data: spherical flow regime

    2. Objectives and issue of the study

    27 m3/s32 m3/s

    27 m3/s

    23 m3/s32 m3/s

    p = - 0.57 ; n = 3.1

    Prof : 76 m

    Diamètre : 304 mm

  • 12

    3.1 The model: HydroGeoSphere (HGS)

    3. Methodology

    HydroGeoSphere (Therrien et al., 2010, Aquanty, 2015)

    HGS = Spatially distributed and physically-based 3D modelling software.

    Discretization :

    • Finite element method,

    • Control-volume finite element method.

    Diffusivity equation

    For sub-surface and saturated flow:

    Numerical implementation:

    K: Hydraulic conductivity (m/s)

    Ss: Specific storage

    h: hydraulic head (m)

  • 13

    3. Methodology

    3.2 The conceptual models

    0 1500 3000

    xy

    z

    Well

    Pumped

    aquifer

    Initial head H = 200 m

    100

    0y = 3000 m

    50Const

    ant hea

    d b

    oundary

    H =

    200

    m

    Constant h

    ead b

    oundary H

    = 200 m

    0 500 1000

    xy

    z

    Well

    Inclined substratum

    Pumped

    aquifer

    Inactive zone

    Initial head = 600 m

    500

    0ywell

    = 1000 mα

    Partially penetrated aquiferInclined substratum

  • 15

    4.1 Propagation of frontal the equipotential surface

    4. Results

    Pumpedaquifer

    Inactive zone

    Inclined substratumWell

  • 16

    4.1 Propagation of frontal the equipotential surface

    4. Results

    Inactive zone

    Well

    A ~ r²Spherical flow regime

    A ~ rEarly cylindrical-radial flow

    regime

    n = 2

    0 500 1000

    xy

    z

    Well

    Inclined substratum

    Pumped

    aquifer

    Inactive zone

    Initial head = 600 m

    500

    0ywell

    = 1000 mα

  • 17

    4.2 The ds/dlogt signal: inclined substratum

    4. Results

    Inclined substratum

    Interpretation of the hydraulic

    signal and detection of the

    boundary conditions = more

    reliable

    0 500 1000

    xy

    z

    Well

    Inclined substratum

    Pumped

    aquifer

    Inactive zone

    Initial head = 600 m

    500

    0ywell

    = 1000 mα

    Constant-head hydraulic boundary

  • 18

    4.2 The ds/dlogt signal: inclined substratum

    4. Results

    0,01

    0,1

    1

    10

    1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09

    ds/d

    log

    t

    α5

    10

    20

    65

    75

    Spherical flow regime

    α: slope of the inclined substratum

    0 500 1000

    xy

    z

    Well

    Inclined substratum

    Pumped

    aquifer

    Inactive zone

    Initial head = 600 m

    500

    0ywell

    = 1000 mα

    α↘

  • 19

    4.2 The ds/dlogt signal: inclined susbtratum

    4. Results

    y = 4E-05x-0,487

    y = 0,0013x-0,49

    y = 0,0398x-0,49

    y = 37,4x-0,489

    0,000001

    0,00001

    0,0001

    0,001

    0,01

    0,1

    1

    10

    1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09

    ds/d

    logt

    t (s)

    K (m/s)10-5

    10-3

    10-2

    10-1

    0 500 1000

    xy

    z

    Well

    Inclined substratum

    Pumped

    aquifer

    Inactive zone

    Initial head = 600 m

    500

    0ywell

    = 1000 mα

    m: y intercept

    T↗

    y = 1E-06x-1,491

    1,E-05

    1,E-04

    1,E-03

    1,E-02

    1,E-01

    1,E+00

    1,E+01

    1,E+02

    1,00E-05 1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

    m

    K (m/s)

    log 𝑚 ≈ −1,5. log(𝐾)

  • 20

    4. Results

    0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    ds/d

    log

    (t)

    t (s)

    bwell

    1%

    2%

    3%

    4%

    5%

    10%

    25%

    50%

    75%

    90%

    100%

    0 1500 3000

    xy

    z

    Well

    Pumped

    aquifer

    Initial head H = 200 m

    100

    0y = 3000 m

    50

    Const

    ant hea

    d b

    oundary

    H =

    200

    m

    Constant h

    ead b

    oundary H

    = 200 m

    bwell↘

    bwell

  • 22

    5. Discussion and conclusion

    The derivative approach doesn’t need more data, but it gives much more

    information!

    - qualititative: analysis of flow geometry

    - quantitative: estimation of hydraulic properties with more reliability

    Non-uniqueness of the flow regimes!!!

    Partially penetrated aquifer n = 3

    An inclined substratum n = 3

    Geological settings = essential to inteprret a pumping test!

    Sequences of n = help to reduce the non uniqueness!

    Sensistivity analysis empirical equation estimation of K from a ds/dlogt

    curve fitting

  • 02/11/2013Application et développement d’outils diagnostiques hydro-géo-physiques et géochimiques

    pour la détermination des propriétés hydrauliques et physiques des aquifères 23

    Marie-Claire Houmeau painting

    Anouck FERROUD, Romain CHESNAUX, Silvain [email protected]

    Quebec (CANADA)

  • 24

    Well

  • 25

    Algorithm of Bourdet et al. (1989)

  • 26Bonus

    Estimation de n

    General solution

    Generalized difffusivity equation

    Laplace transformation

    Hyp:

    Constant head head at the boundaries

    Initial head = 0 m at the begining

  • 27Bonus

    Estimation de n

    For a little u,

    𝑑ℎ

    𝑑𝑙𝑜𝑔𝑡= 𝑡

    𝑑ℎ

    𝑑𝑡= 2,3. 𝐶. 𝑣 𝑡𝑣

    Slope of ds/dlogt

  • 28

    Rafini, S., & Larocque, M. (2012). Numerical modeling of the hydraulic

    signatures of horizontal and inclined faults. Hydrogeology Journal, 20(2),

    337-350

  • 29

    1.4 Field data: spherical flow regime

    1. Introduction

    27 m3/s32 m3/s

    27 m3/s

    23 m3/s32 m3/s

    p = - 0.57 ; n = 3.1

    Prof : 76 m

    Diamètre : 304 mm

    Fig.: Hydraulic signal of s and ds/dlogt of the Mout_3 well,

    Vendée, Pays-de-la-Loire, France.

    Hyp 1 : Partial penetration

    Geology: Granitic sand

  • Case study 2

    Altered granitic aquifer

    30

    Water supply from the weathered horizon to the fissured

    rock (Dewandel et al. 2006).

    Fig. 13: Conceptual model of a partly eroded palaeo-weathering profile on hard rock

    (Dewandel et al. 2006). Partial penetration or

    Partial completion

    Hydrogeological interpretationSpherical flow

    and/orLeaky effects Wellbore effects

    (Dewandel et al. 2006)

    Fig. 14: Illustrations of a partial penetration /completion.http://www.fekete.com/

    http://nptel.ac.in/courses/105103026/20

    http://petrowiki.org/

  • 0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    s(m

    )

    t (s)

    Boundaries and

    hydraulic properties

    Tested parameter

    3D grid

    0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    s(m

    )

    t (s)

    0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    ds/d

    log

    (t)

    t (s)

    0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    ds/d

    log

    (t)

    t (s)

    bs

    100%

    bs2%

    100%

    bs

    100%

    bs2%

    100%

    Confined aquifer

    Well

    5. Discussion

    3.2 The conceptual model 1: inclined substratum

  • Screen thickness bs (m)

    0,001

    0,01

    0,1

    1

    10

    1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 1,E+10

    ds/d

    log

    (t)

    t (s)

    bs

    1%

    2%

    3%

    4%

    5%

    10%

    25%

    50%

    75%

    90%

    100%

    Boundaries and

    hydraulic properties

    Tested parameter

    3D grid

    Confined aquifer

    5. Discussion

  • 33

    1.4 Field data: spherical flow regime

    2. Objectives and issue of the study

    Geology: clay; sand; rock