Anode Materials · 2013-12-05 · 39. Hitachi Maxell to Launch Li-ion Battery Using Si-based Anode...

33
34 石墨系碳材表面形貌(a)球狀Beads(b)片狀Flakes(c)纖維狀Fibers(d)馬鈴薯狀Potatoes Anode Materials Anode Materials

Transcript of Anode Materials · 2013-12-05 · 39. Hitachi Maxell to Launch Li-ion Battery Using Si-based Anode...

  • 34石墨系碳材表面形貌(a)球狀Beads,(b)片狀Flakes,(c)纖維狀Fibers,(d)馬鈴薯狀Potatoes

    Anode MaterialsAnode Materials

  • 35

    Effect of the carbon type on the discharge profileEffect of the carbon type on the discharge profile

    Anode MaterialsAnode Materials

  • 36

    New Anode Material CandidateNew Anode Material Candidatess

    ~3μm

    CS of cycled Si thin-film>70μm

    CS of faded Si thin film

    Li metal

    SiO

    Li2.6 Co0.4 N

    Carbons

    Graphite

    Capacity / Ah/kg

    0

    1000

    2000

    3000

    40003000200010000

    Cap

    acity

    / A

    h/ c

    m3

    Li4.4 Sn

    Li4.4 Si

    LiC

    LiSi

    SnO

    Source: Maxell Sep./2005

    Si SnCost ($/kg) 54 80

    Capacity(Ah/kg) 4200 980Sp. Cost ($/Ah) 0.013 0.082

    Key issueMechanical degradation by

    volume expansion(fracture & disconnection)

  • 3730% higher capacity than current Li-ion battery

    Item Spec/materialNominal Capacity(0.2C) ave.

    910mAh3.15Wh

    Rated Capacity(0.2C) mini.

    865mAh3.00Wh

    Anode Material Co-Sn-C Amorphous

    Cathode material Li-CoO2,Li- (Ni,Co,Mn)O2

    Energy densityVolumetric(Wh/ l)

    478Wh/l

    Internal Impedance 70mΩCycle performance(0.5C discharge)

    60% @300cycles

    Model:14430

    SonySony--NexelionNexelion

  • 38

    30% higher capacity than current Li-ion battery

    SonySony--NexelionNexelion

  • 39

    Hitachi Maxell to Launch Li-ion Battery Using Si-based Anode Material

    Capacity +20%Charging time -30%

    -粒徑為nm大小的矽分散于非結晶SiO(氧化矽)內的“奈米

    矽複合體",而非結晶SiO可緩和矽的膨脹及縮小程度。-利用碳覆蓋SiO的粒子表面,以提高導電性,然後與原來的

    負極材料—石墨混合起來利用。

    Hitachi MaxellHitachi Maxell

    http://techon.nikkeibp.co.jp/english/NEWS_EN/20100426/182184/http://techon.nikkeibp.co.jp/article/NEWS/20090714/172963/?SS=imgview&FD=1312636522

  • 40

    SILX® Technology-Mitsui

    Data source: Mitsui Mining & Smelting Co., Ltd. Japan

    SILX® TechnologyConsists of unique network structure utilizing Silicon and CopperProvides significant improvement over proposed technologies

    the nano‐designed surface copper can stabilize the electrode1. giving conductivity to each silicon particle, 2. preventing Si particles from isolation and keeping the bette

    conductivity through whole electrode even after cycling.

  • 41

    SILX® Technology-Mitsui

    Data source: Mitsui Mining & Smelting Co., Ltd. Japan

    Capacity density1000Ah/l at charged state (SILX)Energy density 3300mAh, +690 Wh/L (cylindrical 18650)Rate performance+88% at ‐20oC, +65% at ‐30oC at 1CCycle life +80% at 500cycles (Coin 2032)

  • 42

    LiCoO2 /Li4 Ti5 O12傳統鋰離子電池

    負極表面無鈍化膜形成SEI: Solid Electrolyte Interphase

    阻抗低 (電池內阻低)穩定性高無鈍化膜分解熱產生

    LiCoO2 /C

    Anode Material-Li4 Ti5 O12

  • 43

    ToshibaToshiba--SCiBSCiB

    Excellent Safety(超高安全性)-任何操作情況下

    不爆炸、不燃燒

    Long Life(超長使用壽命)

    -電池充放電循環壽命可達5000次以上

    High Power(超高放電功率)

    -功率密度達到超高電容等級(>5000W/kg)

    Rapid Charging(超快速充電)

    -5分鐘可充飽電池(>90%)

    Cryogenic Operation

    (超低操作溫度)-可在-30℃下操作

    SCiB (Super Charge ion Battery)

  • 44

    Desirable Properties Impact on Battery•High ionic conductivity•Wide electrochemical window

    •High thermal stability•High chemical stability with battery components

    •Forming favorable solid-electrolyte-interface layer on anode/cathode

    •Low vapor pressure and lowmelting temperature

    •Non-toxic and environmentally friendly

    •Low cost

    •High ionic conductivity•Wide electrochemical window

    •High thermal stability•High chemical stability with battery components

    •Forming favorable solid-electrolyte-interface layer on anode/cathode

    •Low vapor pressure and lowmelting temperature

    •Non-toxic and environmentally friendly

    •Low cost

    •High power•Long battery life

    - Long calendar life- Long cycle life

    •High cycling efficiency•Wide temperature

    application range•High safety•Low battery cost

    •High power•Long battery life

    - Long calendar life- Long cycle life

    •High cycling efficiency•Wide temperature

    application range•High safety•Low battery cost

    ElectrolytesElectrolytes

  • 45

    Solvent•Binary solvent:-EC/DMC-EC/DEC

    •Ternary solvent -EC/DMC/EMC-EC/DEC/EMC

    •Binary solvent:-EC/DMC-EC/DEC

    •Ternary solvent -EC/DMC/EMC-EC/DEC/EMC

    Salt

    •LiPF6

    •LiBF4

    •LiN(CF3 SO3 )2

    •LiPF6

    •LiBF4

    •LiN(CF3 SO3 )2

    Electrolyte

    •Conductivity:>10-3 (Ωcm)-1

    •Voltage window:0-4.8V (vs. Li)

    •Conductivity:>10-3 (Ωcm)-1

    •Voltage window:0-4.8V (vs. Li)

    Current StateCurrent State--ofof--thethe--art Electrolyte in Lithiumart Electrolyte in Lithium--ion Batteriesion Batteries

    ElectrolytesElectrolytes

  • 46

    Characteristics of Organic SolventsCharacteristics of Organic Solvents

    ElectrolytesElectrolytes

  • 47

    Characteristics of SaltsCharacteristics of Salts

    ElectrolytesElectrolytes

  • 48

    Conductivity (in Conductivity (in mSmS/cm) of 1M LiPF/cm) of 1M LiPF66 solutions in various solventssolutions in various solvents

    ElectrolytesElectrolytes

  • 49

    Conductivity (in Conductivity (in mSmS/cm) of 1M LiPF/cm) of 1M LiPF66 solutions in ternary solvent mixturessolutions in ternary solvent mixtures

    ElectrolytesElectrolytes

  • 50

    Functions of SeparatorFunctions of SeparatorSeparate anode and cathodeRetain electrolyte for ionic condition Separate anode and cathodeRetain electrolyte for ionic condition

    SeparatorsSeparators

  • 51

    •Maintain Solution Conductivity-High permeability -High wetability-Minimal thickness

    •Stable in Battery Environment-Chemical stability -Mechanical stability -Thermal stability

    •Safety-Optimal melting point -Non-toxic and environmental friendly

    •Low cost

    •Maintain Solution Conductivity-High permeability -High wetability-Minimal thickness

    •Stable in Battery Environment-Chemical stability -Mechanical stability -Thermal stability

    •Safety-Optimal melting point -Non-toxic and environmental friendly

    •Low cost

    Separator FunctionalitySeparator Functionality

    SeparatorsSeparators

  • 52

    Common Separator Membrane Materials•Polypropylene (PP)•Polyethylene (PE)•PP/PE/PP

    •Polypropylene (PP)•Polyethylene (PE)•PP/PE/PP

    Current State-of-the-art Separator in Lithium-ion Batteries

    PP and PE have chemical and physical properties well Suited for Li-ion batteries

    •Maintains solution conductivity, σ

    >10-3 S/cm•Unreactive to carbonate solvents and Li electrolyte salts •High thermal stability, >120°C•Mechanically durability at < 50μm•Pore size < 5μm

    •Maintains solution conductivity, σ

    >10-3 S/cm•Unreactive to carbonate solvents and Li electrolyte salts •High thermal stability, >120°C•Mechanically durability at < 50μm•Pore size < 5μm

    SeparatorsSeparators

  • 53

    Binder

    Commercial binderPVDF : Poly Vinylidene FluorideSBR : Styrene Butadiene RubberCMC: Carboxyl Methyl Cellulose

    C C

    H H

    H

    ( )n C

    H

    C

    H

    C

    H H

    C

    H

    H

    ( )m

    SBR

    PVDF

  • 54

    Battery Manufacturing ProcessBattery Manufacturing Process

    Cathode

    Anode

    active material +binder +solvent

    Coating

    Mixing

    Paste

    active material +binder +solvent

    Mixing

    Paste

    Electrode ElectrodePressing

    Slitting

    Separator

    Windingor

    Stacking

    Jerry rollor stack

    Electrode ElectrodePressing

    Slitting

    Coating

    Jerry rollor stack in can

    Electrolyte filling

    CellSealing

    Cell

    Formation

    Electrode Assembly

    Positive electrodecurrent collector

    (+) Solid electrode

    Solid Polymer Electrolyte

    Negative electrodecurrent collector

    (-) Solid electrode

    Al foil

    Cu foil

  • 55

    Electrode AssemblyElectrode Assembly

    (+)

    (-)

    (+) (-)

    WindingWinding

    StackingStacking+Winding+Winding

    Separator

    AnodeCathode

    StackingStacking

  • 56

    Cell DesignCell Design

    Cylindrical type Prismatic type Laminated type

  • 57

    360V, 16kWhCell Module Pack4 Cells 22 Modules (88 cells)

    Speed: 80 mph (130 km/h) Range: 100 mi (160 km)

    Speed: 125 mph (200 km/h) Range: 236 mi (378 km)

    Small Format vs. Large Format CellSmall Format vs. Large Format Cell

    11 Modules (6831 cells)621 Cells

    50 Ah

    2 Ah

  • 58

    High Power

    Higher capacity

    18650 Cell Developments18650 Cell Developments

    >2.6 Ah~ 1C discharging rate

    2.0Ah-2.2Ah2-5C discharging rate

    10C discharging rate

    High Energy

    High Pow

    er

  • 59

    EV Cell DevelopmentsEV Cell Developments

  • 60

    EV Battery DevelopmentsEV Battery Developments

    AESC: Automotive Energy Supply Corporation (NEC+Nissan)

  • 61

    Battery Management System Battery Management System Development TrendDevelopment Trend

    ProtectionPCM(protection circuit modules)

    BSU

    ProtectionPCM(protection circuit modules)

    BSU

    InformationLimited information

    Simplex communication

    InformationLimited information

    Simplex communication

    InformationProcessed multi-information

    Duplex communication(CANBus protocol)

    InformationProcessed multi-information

    Duplex communication(CANBus protocol)

    PCM

    Smart Battery

    BMS(Battery Management

    System)

    Application3C products

    EV products

    http://www.shopping.hp.com/can/handhelds/handhelds/1/storefronts;jsessionid=Fb11vnEbXL1m5ZixG1GUv1pzpfmyVymcPVeUzm2ISFIpJi9He1pp!-23571563http://techon.nikkeibp.co.jp/article/NEWS/20080123/146098/http://www.autobloggreen.com/photos/ultra-motor-a2b/974069/http://green.autoblog.com/gallery/2008-chevrolet-equinox-fuel-cell

  • 62

    Battery Management System Battery Management System

    Mechanical & Electronic Integration(機電整合)•communication interface (溝通介面)•power interface (電氣介面)•high voltage Connectors (高電壓接頭)

    Cell & cell assembly (電芯及電芯組裝)•cell selection and grouping (電芯選用及群組)•cell array & cell holder design (電芯串並聯排列)•cell connection & welding (電芯焊接連接)

    Thermal management (散熱管理)•air or liquid cooling (氣體或液體冷卻)•thermal radiation material design (散熱材料設計)

    System electronics (電氣系統)•battery management system (電池管理系統)•software & firmware control (軟體及韌體監控)•electrical circuit (電子線路)

  • 63

    LIB Technology Status/PotentialLIB Technology Status/Potential

  • 64

    Future Research AreaFuture Research Area

  • 65

    電池性能在不同應用產品的最佳化電池性能在不同應用產品的最佳化

    能量

    Energy

    功率/動力

    Power

    耐久性/使用壽命Durability

    安全性

    Safety

    成本

    Cost

    循環壽命

    Cycle Life

    對的材料Right material

    對的電池設計Right cell design

    對的應用Right application

    Trade-off relationship in various battery performances

    LIB Design for Different ApplicationsLIB Design for Different Applications

  • 66

    Thank you for kind attention!!Thank you for kind attention!!謝謝聆聽!!謝謝聆聽!! 歡迎指教!!歡迎指教!!

    SafetySafetyReliabilityReliability

    EfficiencyEfficiencyIntelligentIntelligentEnergy system solution

    投影片編號 34投影片編號 35New Anode Material Candidates投影片編號 37投影片編號 38投影片編號 39SILX® Technology-MitsuiSILX® Technology-Mitsui投影片編號 42投影片編號 43投影片編號 44投影片編號 45Electrolytes投影片編號 47投影片編號 48投影片編號 49投影片編號 50投影片編號 51投影片編號 52投影片編號 53Battery Manufacturing ProcessElectrode Assembly投影片編號 56投影片編號 57投影片編號 58EV Cell DevelopmentsEV Battery Developments投影片編號 61投影片編號 62LIB Technology Status/PotentialFuture Research AreaLIB Design for Different Applications投影片編號 66