ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

55
ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 SURVEILLANCE OF SITE A AND PLOT M Report for 2005 by Norbert W. Golchert ESH/QA Oversight April 2006

Transcript of ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Page 1: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

ANL-06/01

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 SURVEILLANCE OF SITE A AND PLOT M Report for 2005 by Norbert W. Golchert ESH/QA Oversight

April 2006

Page 2: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

ii

Page 3: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

PREFACE

This report is prepared for the U. S. Department of Energy (DOE) by ESH/QA Oversight

(EQO) at Argonne National Laboratory (ANL). The results of the environmental monitoring

program at Site A and Plot M and an assessment of the impact of the site on the environment and the

public are presented in this publication. Funding to support this program was provided by the Office

of Legacy Management (LM) through the U. S. Department of Energy Grand Junction Office. This

report and some earlier issues of the annual reports are available on the Internet at

http://www.anl.gov/ESH/sitea.

Most of the tables and some of the figures were prepared by Jennifer Tucker of the Data

Management Team. Sample collection and field measurements were conducted under the direction

of Ronald Kolzow of the EQO Environmental Monitoring and Surveillance Group by:

Tony Fracaro

Dan Milinko

Rob Piorkowski

The analytical separations and measurements were conducted by the EQO Analytical Services

Group by:

Tim Branch

Theresa Davis

Alan Demkovich

Mary Salisbury

Emmer Thompson

Jianhua Zhang

This manuscript was typed and prepared for publication by Erica N. Carter (EQO).

iii

Page 4: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

iv

Page 5: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

TABLE OF CONTENTS

Page

PREFACE.............................................................................................................................iii

TABLE OF CONTENTS .................................................................................................... v

LIST OF TABLES ..............................................................................................................vii

LIST OF FIGURES ............................................................................................................. ix

ABSTRACT..........................................................................................................................xi

1.0 INTRODUCTION....................................................................................................1-1

1.1 Site History ......................................................................................................1-1

1.2 Site Characteristics ......................................................................................... 1-5

2.0 SUMMARY ..............................................................................................................2-1

3.0 MONITORING PROGRAM ..................................................................................3-1

3.1 Surface Water...................................................................................................3-2

3.2 Subsurface Water .............................................................................................3-5

3.2.1 Borehole Water - Plot M........................................................................3-5

3.2.2 Borehole Water - Site A.......................................................................3-10

3.2.3 Dolomite Hole Water...........................................................................3-10

3.2.4 Well Water ...........................................................................................3-17

4.0 SUMMARY OF POTENTIAL RADIATION DOSE AND RISK ESTIMATES........................................................................................4-1

4.1 Dose Estimates ................................................................................................4-1

4.2 Risk Estimates ................................................................................................4-1

5.0 REFERENCES.........................................................................................................5-1

v

Page 6: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

TABLE OF CONTENTS (Contd.)

Page

6.0 APPENDICES ..........................................................................................................6-1

6.1 Quality Assurance Program .............................................................................6-1

6.2 Applicable Standards .......................................................................................6-2

6.3 Analytical Methods..........................................................................................6-2

6.4 Distribution for ANL-06/01.............................................................................6-3

vi

Page 7: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

LIST OF TABLES

No. Title Page

3.1 Hydrogen-3 Content of Stream Next to Plot M, 2005..............................................3-4

3.2 Hydrogen-3 Content of Site A Area Ponds, 2005 ....................................................3-4

3.3 Hydrogen-3 in Plot M Borehole Water, 2005...........................................................3-7

3.4 Water Level Measurements in Boreholes Near Plot M, 2005 .............................................................................................................3-8

3.5 Strontium-90 Content of Borehole Water Samples Near Plot M, 2005.....................................................................................................3-9

3.6 Hydrogen-3 in Site A Borehole Water, 2005 ........................................................3-12

3.7 Water Level Measurements in Boreholes Near Site A, 2005 ............................................................................................................3-12

3.8 Strontium-90 Content of Borehole Water Samples Near Site A, 2005 ..................3-13

3.9 Hydrogen-3 in Dolomite Holes, 2005.....................................................................3-15

3.10 Water Level Measurements in Dolomite Holes, 2005............................................3-16

3.11 Hydrogen-3 Content of Wells Near Site A/Plot M, 2005 ......................................3-18

3.12 Annual Maximum and Average Hydrogen-3 Concentrations in the Red Gate Woods Wells.................................................................................3-19

4.1 Dose From Continuous Exposure to Hydrogen-3 at Selected Locations, 2005 ..........................................................................................4-2

4.2 Estimates of Hydrogen-3 Exposures to a Casual Visitor to Plot M, 2005................4-2

4.3 Annual Average Dose Equivalent in the U. S. Population .......................................4-3

4.4 Risk of Death From Various Events .........................................................................4-5

vii

Page 8: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

viii

Page 9: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

LIST OF FIGURES

No. Title Page

1.1 Location of Palos Forest Preserve on Chicago-Area Map .........................................1-2

1.2 Palos Forest Preserve Showing Location of Site A/Plot M Dolomite Holes and Picnic Wells...............................................................................1-3

3.1 Surface Water Sampling Locations Near Plot M .......................................................3-3

3.2 Map of Plot M Palos Site Showing Topography, Intermittent Stream, and Borehole Locations.............................................................3-6

3.3 Monitoring Wells at Site A ......................................................................................3-11

3.4 Locations of Dolomite Holes North of Plot M.........................................................3-14

3.5 Hydrogen-3 Concentrations in Opposite Red Gate Woods (#5159) and Red Gate Woods North (#5160) Wells From 1995 Through 2005 ...................3-20

ix

Page 10: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

x

Page 11: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

SURVEILLANCE OF SITE A AND PLOT M

Report for 2005

by

Norbert W. Golchert

ABSTRACT

The results of the environmental surveillance program conducted at Site A/Plot M in the

Palos Forest Preserve area for Calendar Year 2005 are presented. Based on the results of the

1976-1978 radiological characterization of the site, a determination was made that a surveillance

program be established. The characterization study determined that very low levels of hydrogen-3

(as tritiated water) had migrated from the burial ground and were present in two nearby hand-

pumped picnic wells. The current surveillance program began in 1980 and consists of sample

collection and analysis of surface and subsurface water. The results of the analyses are used to 1)

monitor the migration pathway of water from the burial ground (Plot M) to the handpumped

picnic wells, 2) establish if buried radionuclides other than hydrogen-3 have migrated, and 3)

monitor the presence of radioactive and chemically hazardous materials in the environment of the

area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average

and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to

be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since

1984 have indicated the presence of low levels of strontium-90 in water from a number of

boreholes next to Plot M. The results of the surveillance program continue to indicate that the

radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public

visiting the site, using the picnic area, or living in the vicinity.

xi

Page 12: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

xii

Page 13: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

1.0 INTRODUCTION

1.1 Site History

This report presents and discusses the surveillance data obtained during 2005. The

surveillance program is the ongoing activity that resulted from the 1976-1978 radiological

characterization of the former site of Argonne National Laboratory and its predecessor, the

University of Chicago's Metallurgical Laboratory. This site was part of the World War II Manhattan

Engineer District Project and was located in the Palos Forest Preserve southwest of Chicago, IL.

The Laboratory used two locations in the Palos Forest Preserve: Site A, a 19-acre area that

contained experimental laboratories and nuclear reactor facilities; and Plot M, a 150 ft x 140 ft area

used for the burial of radioactive waste. These locations are shown in Figure 1.1 and Figure 1.2.

Previous comprehensive reports on this subject1,2 provide additional detail and illustrations on

sampling locations and provide descriptive material along with the results through 1981. There are

annual reports for 1982 through 2004.3-25 While earlier data will not be repeated in this report,

reference is made to some of the results.

Operations at Site A began in 1943 and ceased in 1954. Among the research programs carried

out at Site A were reactor physics studies, fission product separations, hydrogen-3 recovery from

irradiated lithium, and work related to the metabolism of radionuclides in laboratory animals.

Radioactive waste and radioactively-contaminated laboratory articles from these studies were buried

at Plot M. At the termination of the programs, the reactor fuel and heavy water, used for neutron

moderation and reactor cooling, were removed and shipped to Oak Ridge National Laboratory. The

biological shield for the CP-3 reactor located at Site A, together with various pipes, valves, and

building debris, was buried in place in 1956.

1-1

Page 14: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

1-2

Page 15: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

1-3

Page 16: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Burial of radioactive waste at Plot M began in 1944 and was discontinued in 1949. Waste was

buried in six-foot deep trenches and covered with soil until 1948, after which, burial took place in

steel bins. The steel bins were removed in 1949 and sent to Oak Ridge National Laboratory for

disposal, but the waste buried in trenches was allowed to remain in place. Concrete sidewalls, eight

feet deep, were poured around the perimeter of the burial area and a one-foot thick reinforced

concrete slab was poured over the top. The concrete slab was covered with soil and seeded with

grass. Both the Site A and Plot M areas were decommissioned in 1956.

In 1973, elevated levels of hydrogen-3 (as tritiated water) were detected in two nearby hand-

pumped picnic wells (#5167 and #5159) and the hydrogen-3 was found to be migrating from the

burial plot into the surrounding soil and aquifers. As a result, a radiological survey of the entire

Palos Forest Preserve site was conducted with special emphasis on the Site A and Plot M areas.1

In 1990, elevated levels of radioactivity were discovered outside the original fenced area. An

expanded characterization and remediation program was conducted by DOE to remove residual

radioactivity and document the remediation of the area. This was completed in 1997.

The terminology used in previous reports is continued in this report. A hole drilled and

completed into the glacial drift is called a borehole. The soil samples obtained from the borehole are

called soil cores. Some boreholes have been cased and screened to form monitoring wells. Water

from such wells is called groundwater. Test wells drilled into the dolomite bedrock are called

dolomite holes or deep holes. Water from such wells is called dolomite water. The hand-pumped

picnic wells, which are completed into or close to the dolomite bedrock, are called water wells or

picnic wells. They are identified by a location name or well number. Except for well #5160, these

were in existence before this radiological and hydrological study of the area was begun.

1-4

Page 17: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

The results of radioactivity measurements are expressed in this report in terms of picocuries

per liter (pCi/L) and nanocuries per liter (nCi/L) for water samples. Radiation effective dose

equivalent calculations are reported in units of millirem (mrem) or millirem per year (mrem/y). The

use of the term dose throughout this report means effective dose equivalent. Other abbreviations of

units are defined in the text.

1.2 Site Characteristics

Geologically, Plot M is constructed on a moraine upland which is dissected by two valleys, the

Des Plaines River valley to the north and the Calumet Sag valley to the south. The upland is

characterized by rolling terrain with poorly developed drainage. Streams are intermittent and drain

internally or flow to one of the valleys. The area is underlain by glacial drift, dolomite, and other

sedimentary rocks. The uppermost bedrock is Silurian dolomite, into which both the picnic wells

and some of the monitoring wells are placed, as described in the text. The dolomite bedrock is about

200 feet thick. The overlying glacial drift has a thickness that ranges from 165 feet at Site A to zero

at the Des Plaines River and Calumet Sag Canal, and some of the monitoring wells terminate in this

layer. The depth to bedrock at Plot M is about 130 feet.

Hydrologically, the surface water consists of ponds and intermittent streams. When there is

sufficient water, the intermittent stream that drains Plot M flows from the highest point near Site A,

past Plot M, then continues near the Red Gate Woods well (# 5160 in Figure 1.2) and discharges into

the Illinois and Michigan (I&M) Canal. The groundwater in the glacial drift and dolomite forms two

distinct flow systems. The flow in the drift is controlled principally by topography. The flow in the

dolomite, which is recharged by groundwater from the glacial drift, is controlled by two discharge

areas, the Des Plaines River to the north and the Calumet Sag Canal to the south. Water usage in the

area is confined to the hand-pumped picnic wells. These wells are open to the dolomite and are

principally used in the warmer seasons.

1-5

Page 18: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

The climate is that of the upper Mississippi valley, as moderated by Lake Michigan, and is

characterized by cold winters and hot summers. Precipitation averages about 36 inches annually.

The largest rainfalls occur between April and September. The average monthly temperature ranges

from 21°F in January to 73°F in July. Approximately 8.9 million people reside within 50 miles of

the site; the population within a five-mile radius is about 150,000. The only portion of the Palos

Forest Preserve in the immediate area of Plot M and Site A that is developed for public use is the

Red Gate Woods picnic area (Figure l.2), although small numbers of individuals use the more

remote areas of the Palos Forest Preserve.

1-6

Page 19: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

2.0 SUMMARY

In early 2004, an evaluation was conducted to determine the optimum monitoring program for

Site A/Plot M. An evaluation of over 20 years of monitoring data indicated significant reduction of

hydrogen-3 and strontium-90 concentrations in surface water and groundwater. DOE-LM staff

worked closely with the property owner, representatives from the state of Illinois, Argonne National

Laboratory, local stakeholders, and the DOE Chicago Operations Office to establish an

environmental monitoring program that focuses on pathway and location that provide the most

information. A number of sampling locations were deleted, sampling frequency was changed, and

the analyses targeted hydrogen-3 and strontium-90. The streamlined program was implemented in

early 2004.

Surface water samples collected from the stream that flows around Plot M showed the same

hydrogen-3 concentration pattern seen in the past. Concentrations were at the ambient level of less

than 0.1 nCi/L upstream of the Plot, increased up to 98.9 nCi/L at the seep adjacent to the Plot, then

decreased further downstream.

The hydrogen-3 concentrations in the borehole and dolomite hole water follow a pattern

consistent with that observed in the past. The hydrogen-3 concentration was highest in those

boreholes nearest Plot M and downgradient of the Plot. Water from five of eight boreholes analyzed

for strontium-90 contained concentrations greater than the detection limit of 0.25 pCi/L.

Strontium-90 concentrations above 0.25 pCi/L have not been observed in the groundwater due to

atmospheric fallout from previous nuclear weapons testing and no other source is known. The

elevated strontium-90 levels (up to 1.93 pCi/L) found in some boreholes is probably due to

migration of strontium-90 before the Plot was capped. Strontium-90 is a relatively mobile

radionuclide and its presence in the borehole water is not unexpected. The strontium-90 results are

consistent with those measured in the past.

Sampling of the forest preserve picnic wells shown in Figure 1.2 continued. In July 1988, the

Red Gate Woods North Well (#5160) was installed as a replacement drinking water supply for the

Red Gate Woods Well (#5167). The maximum and average hydrogen-3 concentrations of well

2-1

Page 20: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

#5160 were 1.01 nCi/L and 0.95 nCi/L, respectively. The well opposite the entrance to Red Gate

Woods (#5159) had a maximum hydrogen-3 concentration of 0.34 nCi/L and an annual average

concentration of 0.19 nCi/L. The previous pattern of relatively higher hydrogen-3 concentrations in

the winter and relatively lower concentrations (less than the detection limit of 0.1 nCi/L) in the

summer is not readily apparent for the wells due to the overall low measured hydrogen-3

concentrations. For the calculation of annual averages, all data, as measured, were retained in the

database and used to compute the average.

If water equal to the Red Gate Woods North Well (#5160) average concentration of 0.95 nCi/L

was the sole source of water for an individual, the annual dose from hydrogen-3 would be 0.044

mrem using the DOE dose conversion factor.26 Consumption of one liter of this water would

produce a dose of 6 x 10-5 mrem. Although the U. S. Environmental Protection Agency (EPA)

drinking water regulations27 are not applicable because the picnic wells do not meet the EPA

definition of a public drinking water supply, this concentration is less than 5% of the EPA annual

limit of 20 nCi/L. Table 4.3 provides a relative comparison of this calculated dose to natural and

other sources of radiation.

The results of this program show that the radioactivity remaining at Site A, Plot M, and the

Red Gate Woods area does not endanger the health or safety of the public visiting the site or those

living in the vicinity. The potential radiation doses are very low compared to the relevant standards.

2-2

Page 21: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3.0 MONITORING PROGRAM

The monitoring program is designed to assess the elevated hydrogen-3 (as tritiated water)

concentrations in some of the picnic wells in the Palos Forest Preserve. This is accomplished by

analyzing water from wells, deep holes, boreholes, and surface water in the area. Samples are

collected with a frequency ranging from quarterly to annually, depending on past results and

proximity to Plot M. During 2005, 144 samples were collected, 174 analyses were performed, and

92 field measurements were conducted. Since 2004, the monitoring program was reduced in scope

to focus on areas that have residual radioactivity. For the most part, individual results are presented

in the tables and compared to control, off-site, or upstream sample results. Where applicable, results

are compared to the U. S. Department of Energy Radiation Protection Standard of 100 mrem/y.26

The Site A/Plot M program follows the guidance for monitoring at DOE facilities.28 Although it is

recognized that Site A/Plot M is not a DOE facility, the same monitoring principles are applicable to

this site.

The uncertainties associated with individual concentrations given in the tables are the

statistical counting errors at the 95% confidence level. Because of the amount of hydrogen-3 data

presented on a few tables, the uncertainty values are not included. In such cases, the following

uncertainties apply:

Concentration (nCi/L) Uncertainty (% of Conc.)

0.1-1.0 40-5%

1-10 5-1%

> 10 1%

The measurement of hydrogen-3 in water has a detection limit is 0.1 nCi/L.

3-1

Page 22: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3.1 Surface Water

Two sets of water samples were collected during 2005 from the stream that flows around Plot

M, primarily during the spring when the ground was no longer frozen but saturated. The stream was

dry during the second half of the year. The sampling locations are shown in Figure 3.1. and

includes all the former sampling locations. The samples were analyzed for hydrogen-3 and the

results are shown in Table 3.1. The same concentration pattern in the water flowing around Plot M

was observed this year as in the past. Concentrations were low upstream of the Plot; increased as the

stream flowed past the Plot; where it received hydrogen-3 that leached out of the burial site; and

then decreased downstream due to dilution by precipitation.

Using the methodology prescribed in the DOE guidance,26 the committed effective dose

equivalent from consumption of water can be calculated. The total quantity of an ingested

radionuclide is obtained by multiplying the water concentration by the general public water

ingestion rate of 730 L/y.29 This annual intake is then multiplied by the 50-year Committed

Effective Dose Equivalent (CEDE) factor.30 The CEDE for hydrogen-3 in water is 6.3 x 10-5

rem/µCi. If a hypothetical individual used water with the same hydrogen-3 concentration as found

in the seep (Location #6) as his sole source of water, the annual dose based on the maximum 2005

concentration of 98.9 nCi/L would be about 4.5 mrem/y and the dose based on the annual average

seep concentration of 57.8 nCi/L would be 2.7 mrem/y. The DOE dose limit for the public is 100

mrem/y. In general, the hydrogen-3 concentrations vary from year to year and are dependent on

the amount of precipitation.

To monitor any potential surface runoff in other areas, samples were collected quarterly from

five surface water bodies in the vicinity of Site A. They are: the pond northwest of Site A; the pond

southeast of Site A; Horse Collar Slough; Tomahawk Slough; and Bull Frog Lake. Most of these

locations can be identified in Figure 1.2. The samples were analyzed for hydrogen-3 and the results

are collected in Table 3.2. All hydrogen-3 concentrations were below the detection limit of 0.1

nCi/L.

3-2

Page 23: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-3

Page 24: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.1 Hydrogen-3 Content of Stream Next to Plot M, 2005

(Concentrations in nCi/L)

Date Collected Location Number* January 5 April 22

1 < 0.1 < 0.1

6 (Seep) 16.7 98.9

7 7.0 15.2

8 2.7 14.9

* See Figure 3.1

Table 3.2

Hydrogen-3 Content of Site A Area Ponds, 2005

(Concentrations in nCi/L)

Date Collected Location*

March 7 May 31 August 24 October 18

NW Site A < 0.1 < 0.1 < 0.1 < 0.1

SE Site A < 0.1 < 0.1 < 0.1 < 0.1

Bull Frog Lake < 0.1 < 0.1 < 0.1 < 0.1 Horsecollar Slough < 0.1 < 0.1 < 0.1 < 0.1

Tomahawk Slough < 0.1 < 0.1 < 0.1 < 0.1

* See Figure 1.2

3-4

Page 25: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-5

3.2 Subsurface Water

3.2.1 Borehole Water - Plot M

A number of the boreholes drilled in the Plot M area (Figure 3.2) cased with plastic pipe and

screens, were installed to serve as sampling points within the glacial drift. Water samples were

collected and water level measurements were made in selected Plot M boreholes approximately

quarterly, weather permitting. Each borehole was emptied of water and allowed to recharge before

sampling. The shallow boreholes responded to the spring precipitation as indicated by an increase in

water levels followed by a drop during summer and fall when moisture was used for plant growth.

The water levels in the deeper boreholes, generally deeper than 100 ft, were relatively constant

throughout the year.

All the water samples were analyzed for hydrogen-3 and the results are collected in Table 3.3.

The hydrogen-3 concentrations varied widely as in past years. The measured water levels in the

boreholes are in Table 3.4. Since the measurement of the water levels is made relative to a

benchmark at the top of the well casing, a decrease in numerical value indicates a rise in water level.

Higher hydrogen-3 concentrations in borehole water correlate with higher hydrogen-3 concentration

in split-spoon soil cores obtained when the boreholes were constructed. In general, the magnitude

of the hydrogen-3 concentrations are similar to those observed over the past several years.

Page 26: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-6

Page 27: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.3

Hydrogen-3 in Plot M Borehole Water, 2005

(Concentrations in nCi/L)

Date Collected Borehole Number

Depth (ft) February 14 May 23 August 10 October 31

2 39.41 8.4 10.7 12.3 1291.0

3 40.00

592.0 625.0 612.0 671.0

4 36.05 565.0 563.0 554.0 530.0

6 40.30 41.7 39.6 54.1 DRY

9 40.00* 1285.0 DRY DRY DRY

10 40.00* 0.2 46.4 DRY DRY

11 39.30 117.0 118.9 146.0 158.0

26 60.65 < 0.1 44.0 164.0 335.0

35 105.50 209.0 157.9 254.0 249.0

* Slant hole drilled at 45º to a depth of 40 ft below the surface.

3-7

Page 28: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.4

Water Level Measurements in Boreholes Near Plot M, 2005

(Units of feet below the benchmark at the top of the well)

Date Measured Borehole Number

Depth (ft) February 14 May 23 August 10 October 31

2 39.41 21.39 23.85 30.88 35.07

3 40.00

32.42 29.69 34.10 38.00

4 36.05 15.29 15.46 22.19 27.92

6 40.30 30.60 30.26 36.01 DRY

11 39.30 16.57 21.88 28.96 34.63

26 60.65 42.07 45.18 47.53 51.00

35 105.50 93.58 93.50 94.15 94.30

3-8

Page 29: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

As part of a search for radionuclides other than hydrogen-3 in the borehole monitoring wells,

sets of large volume water samples were collected to obtain greater sensitivity in the analysis. One

set of samples was collected on May 23, 2005, and another set was collected October 31, 2005.

Samples were collected from all boreholes that yielded sufficient water for analysis. The samples

were analyzed for strontium-90 and the results are shown in Table 3.5. Strontium-90 concentrations

greater than the detection limit of 0.25 pCi/L were found in five of the eight sampled boreholes.

Levels above 0.25 pCi/L would not be expected in this water from fallout, and no other source is

known. The highest strontium-90 concentration in 2005 was 1.93 pCi/L in water from Borehole

#11. The results are less than the State of Illinois Class 1 Ground Water Quality Standard value of 8

pCi/L. Historically, the highest concentration was found in 1991, 10.7 pCi/L in Borehole #11 (68

feet). In the past, Borehole #6, which is between the buried waste and the stream that flows around

Plot M, showed measurable strontium-90 concentrations. The data suggest that small but

measurable amounts of strontium-90 have migrated from the waste into the surrounding glacial drift.

Table 3.5 Strontium-90 Content of Borehole Water Samples Near Plot M, 2005

(Concentrations in pCi/L) Borehole Number*

Depth (ft) May 23 October 31

2 39.41 < 0.25 0.34

3 40.00 < 0.25 < 0.25

4 36.05 < 0.25 < 0.25

6 40.30 1.02 DRY

9 40.00** DRY DRY

10 40.00** < 0.25 DRY

11 39.30 1.93 1.64

26 60.65 0.71 < 0.25

35 105.50 < 0.25 0.30 * See Figure 3.2 ** Slant hole

3-9

Page 30: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3.2.2 Borehole Water - Site A

In late 1993, four boreholes (BH-41, BH-42, BH-43, and BH-44), were installed at Site A (see

Figure 3.3) to improve Site A perimeter monitoring. In 1994, 12 monitoring wells were constructed

at Site A to support the expanded characterization of this area. With the characterization study

completed in the spring of 1995, the wells were transferred to the monitoring program for continued

use as part of the surveillance network. These wells are also shown in Figure 3.3. Although still

shown in the figure, the fence was removed in April 1998. Dedicated pumps and associated

equipment were installed in July of 1995. In July 2002, Borehole #43 was closed because it was

continually dry. The samples are collected quarterly and analyzed for hydrogen-3, and semi-

annually for strontium-90.

Hydrogen-3 results for all the Site A boreholes are shown in Table 3.6. Water levels were also

measured in these boreholes and these measurement results appear in Table 3.7. The hydrogen-3

concentrations were all low, but the pattern throughout the year was consistent. The elevated

hydrogen-3 levels in Borehole #41 are probably from the site landfill, while the hydrogen-3 in

Borehole #55 and Borehole #56 most likely is from the buried CP-3 biological shield. The results of

the strontium-90 analyses are shown in Table 3.8. The elevated strontium-90 results appear to track

with elevated hydrogen-3 results. For example, Boreholes #55 and #56 had measurable levels of

hydrogen-3 and strontium-90 throughout the year.

3.2.3 Dolomite Hole Water

At the present time, 14 wells are cased into the dolomite zone to monitor the movement of any

radionuclides in this aquifer. Most of the dolomite holes are located north of Plot M and east of the

Red Gate Woods North Well (#5160), as shown in Figure 1.2 and/or Figure 3.4.

3-10

Page 31: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-11

Page 32: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.6

Hydrogen-3 in Site A Borehole Water, 2005

(Concentrations in nCi/L)

Date Collected Borehole Number

Depth (ft) February 9 May 11 August 8 November 3

41 25.83 0.1 0.2 0.3 0.3

51 116.40 0.1 < 0.1 < 0.1 < 0.1

52 165.00 0.2 < 0.1 < 0.1 0.1

54 63.40 0.2 0.2 0.2 0.2

55 87.20 4.8 3.9 4.6 5.3

56 102.40 3.3 3.3 2.9 3.1

Table 3.7

Water Level Measurements in Boreholes Near Site A, 2005

(Units in feet below the benchmark at the top of the well)

Date Measured Borehole Number

Depth to Bottom (ft) February 9 May 11 August 8 November 3

41 25.83 3.84 2.15 11.64 16.44

51 116.40 103.44 103.76 103.85 103.67

52 165.00 131.31 131.68 132.77 133.17

54 63.40 55.48 53.32 54.84 56.79

55 87.20 55.81 54.06 67.23 84.97

56 102.40 87.89 86.64 86.66 87.32

3-12

Page 33: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.8

Strontium-90 Content of Borehole Water Samples Near Site A, 2005

(Concentrations in pCi/L)

Date Collected Borehole Number

Depth (ft) February 9 August 8

41 25.83 < 0.25 < 0.25

51 116.40 < 0.25 < 0.25

52 165.00 < 0.25 < 0.25

54 63.40 < 0.25 < 0.25

55 87.20 1.83 1.51

56 102.40 3.80 2.45

However, only ten of the dolomite holes are sampled in the revised program. Water was

collected from the dolomite holes quarterly. All samples were analyzed for hydrogen-3 and the

results are in Table 3.9. Water levels were also measured in the dolomite holes and these

measurements are in Table 3.10.

The results of the hydrogen-3 analyses of the dolomite holes are consistent with concentrations

measured in the past. All of the dolomite holes had measurable hydrogen-3 concentrations. The

highest hydrogen-3 levels are in the eight dolomite holes, DH 9 to DH 15 and DH 17, which are the

furthest north and near the surface stream that flows next to Plot M (see Section 3.2). The

distribution of hydrogen-3 in these wells supports the USGS interpretation31 that a large hydrogen-3

plume underlies the stream. The plume has spread downward as well as downgradient resulting in

the current configuration of the hydrogen-3 concentrations in the dolomite. The other dolomite hole

with elevated hydrogen-3 is DH 3, which is immediately downgradient from Plot M. Previous

analyses of soil core samples indicated the presence of hydrogen-3 down to the drift-dolomite

interface at DH 3.

3-13

Page 34: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-14

Page 35: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.9

Hydrogen-3 in Dolomite Holes, 2005

(Concentrations in nCi/L)

Date Collected Dolomite Hole

Number February 7 May 9 August 2 October 27 3 1.4 1.3 0.9 1.4

4 < 0.1 0.1 0.1 0.2

9 1.3 1.2 1.1 1.2

10 1.5 1.6 1.5 1.5

11 2.2 2.1 2.1 2.0

12 2.8 2.7 2.6 2.5

13 1.3 1.2 1.2 1.2

14 2.2 2.2 2.0 1.9

15 1.8 1.8 1.7 1.8

17 0.3 0.3 0.4 0.3

3-15

Page 36: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.10

Water Level Measurements in Dolomite Holes, 2005

(Units in feet below the benchmark at the top of the well)

Date Measured Dolomite Hole

Number February 7 May 9 August 2 October 27 3 98.03 97.95 99.28 99.90

4 93.15 93.12 94.45 95.04

9 72.68 71.86 72.91 73.33

10 63.97 64.01 65.89 65.91

11 75.67 75.66 77.00 77.51

12 76.84 76.85 78.15 78.77

13 77.68 77.72 79.01 79.61

14 71.85 71.85 73.17 73.78

15 79.47 79.53 80.80 81.39

17 74.68 74.70 76.00 76.61

3-16

Page 37: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3.2.4 Well Water

Sampling was conducted quarterly at two forest preserve picnic wells located north of Plot M

and shown in Figure 1.2. All the samples were analyzed for hydrogen-3 and the results are listed in

Table 3.11. In addition, the Red Gate Woods North Well (#5160) has not been available to the

public since 1999 because of high fecal coliform levels. The hydrogen-3 concentrations in the wells

have decreased to the level where the earlier pattern of high concentrations in the winter and low

concentrations in the summer is not readily detectable. The maximum and average hydrogen-3

concentrations since 1996 for wells #5160, and #5159 are presented in Table 3.12. The hydrogen-3

concentration over the past few years is illustrated in Figure 3.5, which is a plot of the hydrogen-3

concentrations in wells #5160 and #5159. The hydrogen-3 concentration in the Red Gate Woods

North Well (#5160) increased to about 2.2 nCi/L in November 1995 and has shown a gradual

decrease in concentration during 1996, 1997, and 1998, remained constant throughout all of 1999,

but gradually increased in 2000 and 2001. In mid-June 2002, the hydrogen-3 concentration in well

#5160 decreased by a factor of two, declined slowly for the rest of the year, but increased again in

the spring of 2003 and then continued to decrease through the end of 2005 This sudden change was

unanticipated since none of the upgradient wells showed any dramatic changes in hydrogen-3

concentrations.

3-17

Page 38: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Table 3.11

Hydrogen-3 Content of Wells Near Site A/Plot M, 2005 (Concentrations in nCi/L)

Date Collected

Red Gate North 5160

Opposite Red Gate

5159

February 2 0.89 0.34

May 4 1.01 0.18

July 20 0.96 0.13

November 2 0.95 < 0.1

Average 0.95 0.19

3-18

Page 39: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-19

TABLE 3.12

Annual Maximum and Average Hydrogen-3 Concentrations in the Red Gate Woods Wells

(Concentrations in nCi/L)

Year

Red Gate Woods North (#5160) Maximum Annual Average

Opposite Red Gate Woods (#5159)

Maximum Annual Average

19 6 9

2. 9 1

1. 6 5

0.55

0. 3 3

19 7 9

1. 6 2

1. 0 0

1.13

0. 5 3

19 8 9

1. 3 2

1. 3 0

0.72 0. 7 4

19 9 9

1. 2 2

1. 7 0

2.14 0. 5 4

20 0 0

1. 4 5

1. 3 3

2.20 0. 0 7

20 1 0 1. 9 5 1. 9 4

0.27 0. 6 1

2002 1.47 1.04

3.17 0.45 2003 1.78 1.06 1.49 0.43 2004 1.08 1.00 0.34 0.17 2005 1.01

0.95 0.34 0.19

Page 40: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

0

0.5

1

1.5

2

2.5

3

3.5

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

Well 5159

Well 5160

Figure 3.5 Hydrogen-3 Concentrations in Opposite Red Gate Woods (#5159) and Red Gate

Woods North (#5160) Wells From 1995 Through 2005.

3-20

Page 41: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Before the Red Gate Woods Well (#5167) was sealed, the hydrogen-3 concentrations had

decreased to below the detection limit. The hydrogen-3 concentrations in the well opposite Red

Gate Woods (#5159) are more irregular and may be related to the amount of precipitation. The

hydrogen-3 concentrations increased by almost a factor of ten in mid-November 2002 and then

decreased to the prior levels by March 2003 and remained at about 0.3 nCi/L for the rest of the year.

This pattern occurred before, in early 1996, to a lesser degree in early 1997 and early 1998, and

more pronounced in early 1999. In mid-April 2003 the concentrations returned to their previous

levels (See Figure 3.5) and averaged 0.19 nCi/L for 2005.

The hydrogen-3 concentrations in Well #5160 have been very steady, ranging from 1.0 nCi/L

to 1.5 nCi/L over the past several years. The exception being a decrease to about 0.7 nCi/L in June

2002 through April 2003. If water equal to the Red Gate Woods North well average concentration

of 0.95 nCi/L was the sole source of water for an individual, the annual dose from the hydrogen-3

would be 0.044 mrem. If an individual consumed one liter of this water, the dose would be 6 x 10-5

mrem.

3-21

Page 42: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

3-22

Page 43: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

4-1

4.0 SUMMARY OF POTENTIAL RADIATION DOSE AND RISK ESTIMATES

4.1 Dose Estimates

The dose to an individual from drinking water containing radionuclides associated with Plot M

can be estimated employing the DOE methodology. If a hypothetical individual were exposed

continuously to hydrogen-3 at various locations near Plot M, the dose could be estimated. Assuming

a person drank water from the seep (Location #6), or water from well #5160, the dose from exposure

for all of 2005 at the maximum and annual average concentrations is collected in Table 4.1. This

scenario assumes that the individual's sole source of water is at the identified location.

A more meaningful estimation is for the occasional visitor to the Plot M area. Assuming a

visitor drinks one liter of water from the surface stream or picnic well, the dose from this exposure is

estimated and presented in Table 4.2. As defined here, the maximum total dose received by an

occasional visitor is the combination of surface water and drinking water from the Red Gate Woods

North Well (#5160). This maximum dose would be 0.0001 mrem per visit.

In order to put the doses into perspective, comparisons can be made to annual average doses

received by the public from natural or other generally accepted sources of radiation. These are listed

in Table 4.3. It is obvious that the magnitude of the doses potentially received near Plot M from

residual radioactive substances remaining from work conducted in this area are insignificant

compared to these sources.

4.2 Risk Estimates

Risk estimates of possible health effects from radiation doses to the public from Plot M have

been made to provide another perspective in interpreting the radiation doses.

Page 44: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

TABLE 4.1

Dose From Continuous Exposure to Hydrogen-3 at Selected Locations, 2005

Maximum

Annual Average

Pathway

Conc

Dose

Conc

Dose

DOE Dose Limit

Average

Carcinogenic Risk

Surface Water

Seep

98.9 nCi/L

4.5 mrem/y

57.8 nCi/L

2.7 mrem/y

100 mrem/y

2 x 10-6

Well Water

Red Gate Woods North (#5160)

1.01 nCi/L

0.046 mrem/y

0.95 nCi/L

0.044 mrem/y

100 mrem/y

3 x 10-8

TABLE 4.2

Estimates of Hydrogen-3 Exposures to a Casual Visitor to Plot M, 2005

Pathway

Quantity

Maximum Dose

Annual Average

DOE

Dose Limit

Average

Carcinogenic Risk Surface Water

Seep

One Liter

0.006 mrem

0.004 mrem

100 mrem/y

3 x 10-9

Well Water

Red Gate Woods North (#5160)

One Liter

0.00006 mrem

0.00006 mrem

100 mrem/y

4 x 10-11

4-2

Page 45: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

TABLE 4.3

Annual Average Dose Equivalent in the U. S. Population*

Source (mrem)

Natural Sources Radon 200 Internal (40K and 226Ra) 39 Cosmic 28 Terrestrial 28

Medical

Diagnostic X-rays 39 Nuclear Medicine 14

Consumer Products Domestic Water Supplies, 10 Building Materials, etc.

Occupational (Medical 1

Radiology, Industrial Radiography, Research, etc.)

Nuclear Fuel Cycle < 1

Fallout < 1 Other Miscellaneous sources < 1

Total 360

*NCRP report No. 93.32

4-3

Page 46: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

Estimates for carcinogenic risk, the risk of contracting cancer from these exposures, is included

in Table 4.1 and Table 4.2 for the average exposure scenario. Based on the BIER V report,33 a dose

of one mrem/y equates to an increased risk of 7 x 10-7. This conversion ratio is used in these tables.

The risks are estimated to be in addition to the normal incident rate of cancer in the general

population. For example, a carcinogenic risk of 10-7 would mean one additional cancer to

10,000,000 people exposed under the prescribed conditions. The EPA environmental protection

standards are generally based on an acceptable risk between 10-4 and 10-6. This would imply that a

risk of greater than 10-4 would be unacceptable and a risk of less than 10-6 would be acceptable.

Examination of Table 4.1 indicates that even under the very conservative assumptions of sole source

use of the water at Plot M annual average concentrations, the risk is less than the EPA

recommendation. For the Table 4.2 hypothetical dose to an occasional visitor of 0.00001 mrem, the

risk would be about 10-11. The risk from exposure to radionuclides at Plot M can be compared to the

risk associated with various events. A few examples are collected in Table 4.4. The risk from the

naturally-occurring sources of radioactivity listed in Table 4.3 is estimated to be about one

additional cancer in a population of 8,000. Therefore, the monitoring program results have

established that radioactivity at Plot M is very low and does not endanger the health or safety of

those living in the area or visiting the site.

4-4

Page 47: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

TABLE 4.4

Risk of Death From Various Events

Cause Risk

Lightning Strike 5 x 10-8

Tornado 1 x 10-7

Flood 1 x 10-7

Hurricane 2.5 x 10-7

Drowning 8 x 10-6

Air Travel 3 x 10-6

Firearms 2 x 10-6

4-5

Page 48: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

4-6

Page 49: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

5.0 REFERENCES

1. Golchert, N. W. and Sedlet, J., Formerly Utilized MED/AEC Sites Remedial Action Program -

Radiological Survey of Site A, Palos Park Forest Preserve, Chicago, Illinois, U. S. Department

of Energy Report DOE/EV-0005/7 (April 1978).

2. Golchert, N. W., Sedlet, J., and Hayes, K. A., Environmental Surveillance of the Palos Park

Forest Preserve, Argonne National Laboratory Report ANL-83-6 (January 1983).

3. Golchert, N. W. and Sedlet, J., Site Surveillance and Maintenance Program for Palos Park -

Report for 1982, Argonne National Laboratory (available from the authors) (April 1984).

4. Golchert, N. W. and Sedlet, J., Site Surveillance and Maintenance Program for Palos Park -

Report for 1983, Argonne National Laboratory (available from the authors) (June 1984).

5. Golchert, N. W. and Sedlet, J., Site Surveillance and Maintenance Program for Palos Park -

Report for 1984, Argonne National Laboratory (available from the authors) (April 1985).

6. Golchert, N. W. and Sedlet, J., Site Surveillance and Maintenance Program for Palos Park -

Report for 1985, Argonne National Laboratory Report ANL-86-25 (April 1986).

7. Golchert, N. W., Site Surveillance and Maintenance Program for Palos Park - Report for 1986,

Argonne National Laboratory Report ANL-87-8 (April 1987).

8. Golchert, N. W., Site Surveillance and Maintenance Program for Palos Park - Report for 1987,

Argonne National Laboratory Report ANL-88-12 (April 1988).

5-1

Page 50: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

9. Golchert, N. W., Site Surveillance and Maintenance Program for Palos Park - Report for 1988,

Argonne National Laboratory Report ANL-89/7 (April 1989).

10. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1989, Argonne National

Laboratory Report ANL-90/7 (April 1990).

11. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1990, Argonne National

Laboratory Report ANL-91/2 (May 1991).

12. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1991, Argonne National

Laboratory Report ANL-92/13 (May 1992).

13. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1992, Argonne National

Laboratory Report ANL-93/4 (May 1993).

14. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1993, Argonne National

Laboratory Report ANL-94/9 (May 1994).

15. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1994, Argonne National

Laboratory Report ANL-95/7 (May 1995).

16. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1995, Argonne National

Laboratory Report ANL-96/2 (June 1996).

17. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1996, Argonne National

Laboratory Report ANL-97/5 (May 1997).

18. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1997, Argonne National

Laboratory Report ANL-98/1 (May 1998).

5-2

Page 51: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

19. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1998, Argonne National

Laboratory Report ANL-99/2 (May 1999).

20. Golchert, N. W., Surveillance of Site A and Plot M - Report for 1999, Argonne National

Laboratory Report ANL-00/3 (May 2000).

21. Golchert, N. W., Surveillance of Site A and Plot M - Report for 2000, Argonne National

Laboratory Report ANL-01/1 (May 2001).

22. Golchert, N. W., Surveillance of Site A and Plot M - Report for 2001, Argonne National

Laboratory Report ANL-02/1 (May 2002).

23. Golchert, N. W., Surveillance of Site A and Plot M - Report for 2002, Argonne National

Laboratory Report ANL-03/1 (May 2003).

24. Golchert, N. W., “Surveillance of Site A and Plot M – Report for 2003,” Argonne National

Laboratory Report ANL-04/1 (May 2004).

25. Golchert, N. W., “Surveillance of Site A and Plot M – Report for 2004,” Argonne National

Laboratory Report ANL-05/01 (April 2005).

26. U. S. Department of Energy, "Radiation Protection of the Public and the Environment," DOE

Order 5400.5, February 8, 1990.

27. U. S. Environmental Protection Agency, "National Primary Drinking Water Regulations," 40

CFR Part 141.

28. U. S. Department of Energy, "Environmental Regulatory Guide for Radiological Effluent

Monitoring and Environmental Surveillance," DOE/EH-0173T, January 1991.

5-3

Page 52: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

29. International Commission on Radiological Protection, "Reference Man: Anatomical,

Physiological, and Metabolic Characteristics," ICRP Publication 23, Pergamon Press, New

York, NY (1975).

30. U. S. Department of Energy, "Internal Dose Conversion Factors for Calculation of Dose to the

Public," DOE/EH-0071, July 1988.

31. Nicholas, J. R. and Healy, R. W., "Hydrogen-3 Migration From a Low-Level Radioactive-

Waste Disposal Site Near Chicago, Illinois," U. S. Geological Survey Water-Supply Paper

2333, 1988.

32. National Council on Radiation Protection and Measurements, Ionizing Radiation Exposure of

the Population of the United States, NCRP Report No. 93, September 1, 1987.

33. Committee on Biological Effects of Ionizing Radiation, Health Effects on Populations of

Exposure to Low Levels of Ionizing Radiation - BEIR V Report, National Academy Press,

Washington, 1990.

34. Golchert, N. W. and Kolzow, R. G., Argonne National Laboratory Site Environmental Report

for Calendar Year 2004, Argonne National Laboratory Report, ANL-05/02 (September

2005).

35. U. S. Environmental Protection Agency, 1986, RCRA Ground Water Monitoring Technical

Enforcement Guidance Document, OSWER-9950.1, Office of Solid Waste and Emergency

Response, Washington, DC.

5-4

Page 53: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

6.0 APPENDICES

6.1 Quality Assurance Program

All nuclear instrumentation is calibrated with standardized sources obtained from or traceable

to the U. S. National Institute of Standards and Technology (NIST). The equipment is checked prior

to the sample measurements with secondary counting standards to insure proper operation. Samples

were periodically analyzed in duplicate or with the addition of known amounts of a radionuclide to

check precision and accuracy. Intercomparison samples distributed by the DOE Mixed-Analyte

Performance Evaluation Program (MAPEP), a semi-annual distribution of three different sample

matrices containing various combinations of radionuclides are analyzed. The results of our

participation in this program for 2004 are published in ANL-05/02.34

Many factors enter into an overall quality assurance program other than the analytical quality

control discussed above. Representative sampling is of prime importance. Appropriate sampling

protocols are followed for each type of sampling being conducted. Water samples are pre-treated in

a manner designed to maintain the integrity of the analytical constituent. For example, samples for

trace radionuclide analyses are acidified immediately after collection to prevent hydrolytic loss of

metal ions and filtered to reduce leaching from suspended solids.

The monitoring wells are sampled using the protocols listed in the Resource Conservation and

Recovery Act (RCRA) Ground Water Monitoring Technical Enforcement Guidance Document.35

The volume of water in the casing is determined by measuring the water depth from the surface and

the depth to the bottom of the well. This latter measurement also determines whether siltation has

occurred that might restrict water movement in the screen area. For those wells in the glacial drift

that do not recharge rapidly, the well is emptied and the volume removed is compared to the

calculated volume. In most cases, these volumes are nearly identical. The well is then sampled by

bailing with a Teflon bailer. If samples for parameters such as priority pollutants are collected, field

parameters for these samples (pH, specific conductance, redox potential, and temperature) are

measured per well volume while purging. All samples are collected for radiological analyses only.

For samples in the porous saturated zone which recharge rapidly, three well volumes are purged

6-1

Page 54: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

using submersible pumps. If field parameters are measured, samples are collected as soon as these

readings stabilize. All samples are placed in precleaned bottles, labeled, and preserved. All field

measurement and sampling equipment is cleaned by field rinsing with Type II deionized water. The

samples are transferred to the analytical laboratory along with a computer floppy disk which

generates a one-page list of all samples. This list acts as the chain-of-custody transfer document.

6.2 Applicable Standards

The standard that is relevant to this study is the DOE Order 5400.5 which established a dose

limit of 100 mrem/y.26 The dose limit and dose calculation methodology are applicable to all media:

surface water, deep holes, boreholes, and drinking water. The EPA drinking water standard27 is not

applicable to the picnic wells since they do not meet the definition of a public water system.

However, the EPA standard of 20 nCi/L for hydrogen-3 may be useful for some comparison

purposes.

6.3 Analytical Methods

The analytical methods used to obtain the data in this report are the same as those used in

ANL-05/02.34

6-2

Page 55: ANL-06/01 ARGONNE NATIONAL LABORATORY 9700 South Cass ...

6.4 Distribution for ANL-06/01 Internal A. B. Cohen T. M. Davis A. T. Fracaro N. W. Golchert (10) M. A. Kamiya A. M. Karalius R. G. Kolzow W. D. Luck R. H. McCook D. A. Milinko R. E. Piorkowski J. L. Tucker C. L. Wilkinson R. A. Wynveen G. H. Zeman TIS File External ANL Library S. Countiss, DOE Carlsbad Area Office L. McGee, DOE Office of Legacy Management A. Kleinrath, DOE Grand Junction Office (10) S. L. Heston, DOE Argonne Site Office B. J. Quirke, DOE Chicago Operations Office R. Allen, Illinois Emergency Management Agency J. Barnett, U. S. Environmental Protection Agency, Region V Bedford Park Public Library T. Hyde, U. S. Environmental Protection Agency T. Kelleher, Chicago District, Corps of Engineers R. LaMort, Cook County Board of Commissioners Librarian, Illinois Emergency Management Agency Mayor of Willow Springs M. McMullan, U. S. Environmental Protection Agency, Environmental Review Branch C. Merenowicz, Forest Preserve District of Cook County J. R. Nicholas, U. S. Geological Survey G. Wright, Illinois Emergency Management Agency L. Regner, U. S. Environmental Protection Agency, Federal Facility Coordinator S. Shemanski, Cook County Department of Public Health C. Smith, Illinois Environmental Protection Agency D. Weber, Forest Preserve District of Cook County

6-3