ANGLADE - IFP Energies nouvellesprojet.ifpen.fr/.../pdf/2013-11/anglade_2013...685.pdf ·...

26
Célimène Anglade Parameter identification: An application of inverse analysis to cement-based suspensions UPS-LMDC-INSA France 1 Aurélie Papon, Michel Mouret Viscoplastic Fluids: From Theory to Application

Transcript of ANGLADE - IFP Energies nouvellesprojet.ifpen.fr/.../pdf/2013-11/anglade_2013...685.pdf ·...

  • Célimène Anglade

    Parameter identification:An application of inverse analysis to

    cement-based suspensions

    UPS-LMDC-INSAFrance

    1

    Aurélie Papon, Michel Mouret

    Viscoplastic Fluids: From Theory to Application

  • Why are we interested in identification? To link rheological parameters to cementitious

    material design To optimize the design regarding handling and

    placing context

    2

  • How to observe the behavior of cementitious materials?

    Rheometer has to avoid artefacts segregation, migration, sedimentation

    Complex velocity field Axial component Circular flow

    Specific impeller Helical ribbon or Anchor

    LMDC equipped with RheoCAD

    3

    [Franshahi and al. 05]

    Fine particle concentration[CRPP, Bordeaux]

  • How to process the experimental data? Rheometer returns torques vs rotational speeds Only qualitative information, velocity and stress fields unknown

    4Strong hypotheses for simple computation

    For quantitative studies:Computation of the rheoCAD flow with COMSOLCoupled with an identification by means of inverse analysis

  • Cementitious materials: Viscoplastic fluids

    Bingham law

    Shear-thinning

    Shear-thickening

    5

    [Yahia and al., 01], [Papo, 88]

    Order of magnitude for cement pastes:

    [Cyr, Ph.D, 99]

  • Numerical modeling

    Continuous and homogeneous medium, no slipping Steady-state, incompressible, laminar and adiabiatic Two-dimensional flow

    1. Hypotheses

    6

    2. Model Geometry [mm]:

    Simplified model to validate the identification process

  • A flow behavior index variation impact on the curvature

    3. Sensitivity study:

    7

    Numerical modeling

  • A flow consistency index variation impact on the slope

    8

    3. Sensitivity study:

    Numerical modeling

  • A yield stress variation translation

    9

    3. Sensitivity study:

    Numerical modeling

  • Parameter identification1. Principle

    10 No experimental torque here, validation on computational data

  • Parameter identification1. Principle

    11 Simulation with COMSOL, assumption of parameter set

  • Parameter identification1. Principle

    12 Choice of an objective function for gap estimation

  • Parameter identification1. Principle

    13 Choice and test of optimization algorithm

  • Parameter identification2. Objective function

    14

  • Parameter identification

    Simplex method:

    A (m+1) vertex polyhedron « strolling » on objective function surface with m the number of parameters.

    Vertices are directed towards objective function minimum.

    Only one solution: local or global minimum?

    3. Deterministic optimization algorithm

    15

    Parameter 1

    Parameter 2

    [Nelder and Mead, 65]Example for 2 parameter identification:

  • Parameter identification3. Stochastic optimization algorithm

    16

    Genetic algorithm:

    First population (parameter set collection) created randomly, objective function evaluation for each individual (parameter set).

    Formation of new population by crossover and mutation (perturbation) of individuals.

    Selection of individual created for building of new population

    Much longer as simplex but several solutions.

    Parameter 1

    Parameter 2

    [Holland, 75; Poles, 03]

  • Parameter identification4. Results

    17

    Results very dependent on the initialization.

    (35-25-1) compatible with the device error (0.005 N.m).

    Satisfactory triplet? (depending on experimental scatter)

  • Parameter identification4. Results

    18

    Right triplet comes out from the 4th generation.GA procedure is 8 times longer than the simplex one.

  • 19

    Objective function is regular,simplex may be adequate.

    Parameter identification4. Results Objective function

    (N.m)

  • Conclusions Validation of an identification procedure for numerical

    cases

    2 kinds of optimization algorithms:

    Compromise?

    Shape of the objective function is decisive.

    20

    Simplex GAComputational time + -

    Quality of the results (fiability, sensitivity, availability) - +

  • Prospects

    21

  • Célimène Anglade

    Parameter identification:An application of inverse analysis to

    cement-based suspensions

    UPS-LMDC-INSAFrance

    22

    Aurélie Papon, Michel Mouret

    Viscoplastic Fluids: From Theory to Application

  • Cementitious materials behaviour

    In 88, Papo: Herschel-Bulkley minimize the most errors In 01, Yahia et al.: The best for all shear rate De Kee

    For small shear rate Herschel-Bulkley

    Behaviour law in literature

    23

  • Cementitious materials model Model

    24

  • Parameter identification

    Genetic algorithm:4. Results

    25

    For (25-15-0.5):

  • Parameter identification

    Simplex algorithm on (25-15-0.5):4. Results

    26

    Results are very dependant at the initialization. Good triplet appears only one time.