Andrew Huizenga Lindsay Arnold Diane Esquivel Jeff Christians

16
Andrew Huizenga Lindsay Arnold Diane Esquivel Jeff Christians

description

Andrew Huizenga Lindsay Arnold Diane Esquivel Jeff Christians. Overview – Need. ?. http://scienceblogs.com/. http://farm1.static.flickr.com/35/74109013_0359f3f160.jpg. Overview – Objectives. Develop a commercially viable Microbial Fuel Cell (MFC) Sustainable Portable - PowerPoint PPT Presentation

Transcript of Andrew Huizenga Lindsay Arnold Diane Esquivel Jeff Christians

Page 1: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Andrew Huizenga

Lindsay Arnold

Diane Esquivel

Jeff Christians

Page 2: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Overview – Need

http://scienceblogs.com/ ?

http://farm1.static.flickr.com/35/74109013_0359f3f160.jpg

Overview Design Prototype Future Work Conclusions

Page 3: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Overview – Objectives Develop a commercially viable Microbial Fuel Cell (MFC)

SustainablePortableSimple operationInexpensive

http://farm1.static.flickr.com/35/74109013_0359f3f160.jpg

Overview Design Prototype Future Work Conclusions

Page 4: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Overview – How it Works

Overview Design Prototype Future Work Conclusions

Page 5: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Design – Norms Intuitive

Easy operationLow maintenance

StewardshipCost effectiveEco-friendly

Cultural AppropriatenessAttainable ingredients

Overview Design Prototype Future Work Conclusions

Page 6: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Design – Alternatives Electrode

Stainless steelGraphitePlatinum loaded graphite

MembraneProton Exchange Membrane (PEM)Salt bridge

Feeding ProcessContinuousBatch Semi-Batch

Overview Design Prototype Future Work Conclusions

Page 7: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Design – Experiments Media simplification

(substitution/elimination) Bacterial growth kinetics

Extreme environment resistance

Electrode surface area to chamber volume

Overview Design Prototype Future Work Conclusions

Page 8: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Design – Results Final media

Baking soda, vinegar, table salt, phosphate, ammonium chloride in water

Similar results temperatures 65-86 °F

Withstands extreme variation in media

Surface area : volume ≈ 1in2 : 1in3

Overview Design Prototype Future Work Conclusions

0 5 10 15 200

100200300400500600700800

Prototype Output

Days of Operation

Volta

ge (m

V)

New Media AddedDay 7 and Day 22

Page 9: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Prototype – Block Diagram

Overview Design Prototype Future Work Conclusions

Page 10: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Prototype – Model Design

Overview Design Prototype Future Work Conclusions

Page 11: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Prototype – final cell

Overview Design Prototype Future Work Conclusions

Page 12: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Prototype – Results Maximum Voltage

0.666 Volts at 979 kΩ Maximum Power

0.5 μW200,000,000 MFCs to power

a standard 100W bulb1,400,000 MFCs to power an iPod

Touch MFC in operation since April 15th

Overview Design Prototype Future Work Conclusions

Page 13: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Future Work – Marketing Sell all materials as an MFC kit Final unit cost ≈ $10.00

Overview Design Prototype Future Work Conclusions

Page 14: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Future Work – Upgrades Add platinum loaded

graphite electrodes1,000 – 10,000 times output

Combine different bacterial species10 – 100 times output

Best case:20 MFCs to power 100W bulb<1 MFC to power iPod Touch

Overview Design Prototype Future Work Conclusions

Page 15: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Conclusions Successful prototype

Sustainable Portable Simple operation Inexpensive

Technology has potential22 μW / m2 of electrodeSimilar cells have produced ≈ 10-20 mW / m2

Overview Design Prototype Future Work Conclusions

Page 16: Andrew Huizenga Lindsay  Arnold Diane Esquivel Jeff Christians

Questions?