Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for...

18
UniK/NTNU Analytical Modeling Framework for Short- Channel DG and GAA MOSFETs H. Børli, S. Kolberg, T. A. Fjeldly University Graduate Center (UNIK) Norwegian University of Science and Technology, Kjeller, Norway

Transcript of Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for...

Page 1: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs

H. Børli, S. Kolberg, T. A. FjeldlyUniversity Graduate Center (UNIK)

Norwegian University of Science and Technology, Kjeller, Norway

Page 2: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

OverviewObjectives:• Establish framework for precise modeling of short-channel nanoscale

MOSFETs

• Establish compact model expressions with a minimal parameter setdetermined from the framework

Procedure:• Capacitive inter-electrode effects

- In subthreshold, find analytical 2D solution for DG potential distributionand drain current

- Use DG solution to obtain GAA solution with high precision

• Near threshold- Apply Poisson’s equations, boundary conditions, and modeling

expressions for calculating the potential distribution- Determine self-consistently the total potential distribution and the drain

current by including electrostatic effects from electrons

• Strong inversion- Use long-channel approximation

Page 3: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

DG modeling details –subthreshold

• Include gate oxide in extended device body: t’ox = toxϵox/ϵSi

• Map DG MOSFET body into upper half planeof transformed (u,iv)-plane using conformal mapping (Schwartz-Christoffel transform).

• Subthreshold: Solve Laplace’s equation in(u,iv)-plane (low-doped body)

2D potential distribution for capacitivecoupling. Map back to (x,y)-plane

Schwartz-Christoffel transformation( )

)(,

2 kKivukFLiyxz +

=+=

( )( ) )1,()(,'1'1

'),(0 222

kFkKwkw

dwwkFw

=−−

= ∫

( ) ( )( )

( )

( )

( ) ⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ +

++

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

−⎟⎠⎞

⎜⎝⎛ −

+

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

+⎟⎠⎞

⎜⎝⎛ −

−+

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ −

−−

=+−

=

−−

−−

−−

−−

∞−∫

vu

kvkuVV

vu

kvkuV

vu

vuVV

kvku

kvkuVV

duvuu

uvvu

DSbi

bi

FBGS

FBGS

1tan1tan

1tan1tan

1tan1tan

1tan1tan

1''

',

11

11

111

112

22

π

πϕ

πϕ

Page 4: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

GAA modeling details –subthreshold

• Observe structural similarities with 2D DG MOSFET potential

• Major difference: Field penetration into bodyfrom S and D electrodes, determined by characteristic lengths:

• Map φDG from device with length

into GAA MOSFET body cross-section withlength LGAA

,4

12 oxsi

oxsi

siox

ox

siDG tt

tt

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

εε

εελ ⎟⎟

⎞⎜⎜⎝

⎛++=

si

ox

ox

sisiGAA r

tr 1ln

241

εε

λ

GAAGAA

DGDG LL

λλ

=

LDG

φDG

LGAA

φGAA

DG

GAA

Page 5: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Subthreshold potential distributions

VGS = VDS = 0 V VGS = VDS = 0 V

Devices considered: n-channel DG and GAA MOSFETs

Specifics: L = 25 nm, tsi = 12 nm, tox = 1.6 nm, εox = 7, body doping Nd =1015 cm-3, midgap gate metal φmsg = 4.53 eV, ’metallic’ source/drain contacts φmsc = 4.17 eV (as for n+ Si)

DG GAA

Page 6: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Subthreshold – verification

O : simulations: model

Subthreshold source-to-drain

pot. ProfilesVGS = 0 V

O : simulations: model

Subthreshold gate-to-gate pot. Profiles

VGS=VDS=0 V

DG GAA

Source SourceDrain Drain

Page 7: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Scaling – center potential of GAA

Scaling of center potential with gate length in subthreshold

VGS = VDS = 0 V

O : simulations: model

Page 8: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Near threshold – self-consistencyProcedure

Initiation- Estimate center potential φc from long-channel limit. - Approximate φGG (y) along G-G symmetry axis using long-

channel limit. - Establish modeling expression φSD (x) along S-D symmetryaxis using boundary conditions near S and D drain and from center point

- From φGG (y) and φSD (x), establish approximate G-G distributions at different cut-lines.

- For finite VDS, estimate a quasi-Fermi potential at the devicecenter (for example, VFc = VDS/2)

Processing- Calculate current and update VFc

- Estimate φ’’SD (0) from φSD (x) and apply to Poisson’s equationto update φc.

- Update φGG (y) and φDS (x)- Repeat until satisfactory accuracy is obtained (typically 3 iterations)

φGG (y)

φSD (x) φc

Threshold voltage:Defined as VGS for which

φGG (y) = const = VFB

when VDS = 0 V. Find for our devices:

VT (DG) = 0.25 VVT (GAA) = 0.24 V

Page 9: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Strong inversion

Gate-to-gate symmetry line

For DG MOSFET, use long-channel potential φGG(y) from 1D Poisson’s equation (Taur 2001), adjusted to include effects of body doping:

Correspondingly for GAA MOSFET (Iniguez 2005).

Note: Inter-electrode capacive effects screened by adaption of the electron distribution.

( ) ( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟⎟

⎞⎜⎜⎝

⎛ −−= 2'

2exp

2cosln2 Siox

th

bc

ths

ithcGG tty

VVqnVy ϕϕε

ϕϕ

Page 10: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

φGG (y) along G-G symmetry axis

O : simulations: model

Central gate-to-gate pot. profiles vs. VGS for VDS = 0 V

DG

O : simulations: model

GAA

Page 11: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

φDS (x),VF (x) along D-S symmetry axis

DG

SourceDrain SourceDrain

GAA

Page 12: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Interface potential in strong inversion

DG GAA

x [nm]

SourceSource DrainDrain

Page 13: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modelingDrift-diffusion transport:

Use electron density derived self-consistently in:

nso(x): surface concentration of electrons in all cross-sections from source to drain using VF(x) = const. = VFS .

Ballistic transport (not considered here):• Current consists of free-flight electrons with sufficient energy to fly over barrier • Electrons ’filtered’ through available quantum states at barrier position• Current limited by ability of source and drain to supply high-energy carriers fast enough

Natori formalism (1994, 2002):

IBT = q(F+-F–) where

( ) ( ) ( )( )∫

−−=−=

L

so

VVthnF

snDD

xndx

eVqWdx

xdVxnqWIthDS

0

1μμ

( )∑ ∑ ⎟

⎜⎜

⎛ −−=

±±

valleys j B

ijFsi

B

TkqVEE

FmTk

F 2122

232hπ

Page 14: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modeling – DG MOSFET

x : simulations: model

Page 15: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modeling – GAA MOSFET

o Modeled DD current

– Numerical simulations

VDS = 0.1 V

VDS = 0.5 V

Page 16: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Compact modeling of drain current – example

Procedure:

• Use limiting forms of IDD in subthreshold (Isub) and strong invertion (Iinv)

• Calculate IDD near threshold (Int) from modeling framework

• Use Int versus VGS to determine the shape parameter m(VGS)

’Generic’ modeling expression

Int

Page 17: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Compact modeling of drain current– DG MOSFET

Use least-squares fit of a second degree polynomial (3 parameters)

Extraction of parameter m

Note: A better precision in m (more parameters) would give a better fit to the numerical modeling

Resulting IDD – VDS characteristics

x : Simulations: Model

: Extrated from famework: Parabolic fit

Page 18: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Summary

Precise modeling framework established for short-channel, nanoscale DG and GAA MOSFETs featuring:

• Full range of applied bias voltages• Self-consistency • Full potential and QFP distributions• Drift-diffusion drain current• No adjustable parameters

Compact model expressions established with a minimalparameter set extractable from the framework

Models verified by numerical simulations (ATLAS/Silvaco)