Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept....

39
Analytical Mechanics: Link Mechanisms Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Link Mechanisms 1 / 39

Transcript of Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept....

Page 1: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Analytical Mechanics: Link Mechanisms

Shinichi Hirai

Dept. Robotics, Ritsumeikan Univ.

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 1 / 39

Page 2: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Agenda

1 Open Link MechanismKinematics of Open Link MechanismDynamics of 2DOF open link mechanism

2 Closed Link MechanismKinematics of Closed Link MechanismDynamics of 2DOF closed link mechanism

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 2 / 39

Page 3: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinematics of 2DOF open link mechanism

θ1

θ2l1

l2

link 1

link 2

joint 1

joint 2

lc2

lc1

x

y

two link open link mechanismli length of link ilci distance btw. joint i and

the center of mass of link imi mass of link iJi inertia of moment of link i

around its center of massθ1 rotation angle of joint 1θ2 rotation angle of joint 2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 3 / 39

Page 4: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinematics of 2DOF open link mechanism

position of the center of mass of link 1:

xc1△=

[xc1yc1

]= lc1

[C1

S1

]position of the center of mass of link 2:

xc2△=

[xc2yc2

]= l1

[C1

S1

]+ lc2

[C1+2

S1+2

]orientation angle of link 1:

θ1

orientation angle of link 2:θ1 + θ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 4 / 39

Page 5: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinetic energyvelocity of the center of mass of link 1:

xc1 = lc1θ1

[−S1

C1

]angular velocity of link 1:

θ1

kinetic energy of link 1:

T1 =1

2m1xT

c1xc1 +1

2J1θ

21

=1

2(m1l

2c1 + J1)θ

21

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 5 / 39

Page 6: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinetic energyvelocity of the center of mass of link 2:

xc2 = l1θ1

[−S1

C1

]+ lc2(θ1 + θ2)

[−S1+2

C1+2

]angular velocity of link 2:

θ1 + θ2

kinetic energy of link 2:

T2 =1

2m2xT

c2xc2 +1

2J2(θ1 + θ2)

2

=1

2m2{l21 θ21 + l2c2(θ1 + θ2)

2 + 2l1lc2C2θ1(θ1 + θ2)}+1

2J2(θ1 + θ2)

2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 6 / 39

Page 7: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinetic energytotal kinetic energy

T = T1 + T2 =1

2

[θ1 θ2

] [ H11 H12

H21 H22

] [θ1θ2

]where

H11 = J1 +m1l2c1 + J2 +m2(l

21 + l2c2 + 2l1lc2C2)

H22 = J2 +m2l2c2

H12 = H21 = J2 +m2(l2c2 + l1lc2C2)

inertia matrix

H△=

[H11 H12

H21 H22

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 7 / 39

Page 8: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Partial derivativesH11 and H12 = H21 depend on θ2:

∂H11

∂θ2= −2h12,

∂H12

∂θ2=

∂H21

∂θ2= −h12 (h12

△= m2l1lc2S2)

H11 = −2h12θ2, H12 = H21 = −h12θ2∂T

∂θ1= H11θ1 + H12θ2,

∂T

∂θ2= H21θ1 + H22θ2

− d

dt

∂T

∂θ1= −H11θ1 − H11θ1 − H12θ2 − H12θ2

= 2h12θ1θ2 + h12θ22 − H11θ1 − H12θ2

− d

dt

∂T

∂θ2= −H21θ1 − H21θ1 − H22θ2 − H22θ2

= h12θ1θ2 − H21θ1 − H22θ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 8 / 39

Page 9: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Partial derivativesH11, H22, and H12 = H21 are independent of θ1

∂T

∂θ1=

1

2

[θ1 θ2

] [ 0 00 0

] [θ1θ2

]= 0

H11 and H12 = H21 depend on θ2

∂T

∂θ2=

1

2

[θ1 θ2

] [ −2h12 −h12−h12 0

] [θ1θ2

]= −h12θ

21 − h12θ1θ2

contribution of kinetic energy:

∂T

∂θ1− d

dt

∂T

∂θ1= 2h12θ1θ2 + h12θ

22 − H11θ1 − H12θ2

∂T

∂θ2− d

dt

∂T

∂θ2= −h12θ

21 − H21θ1 − H22θ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 9 / 39

Page 10: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Gravitational potential energypotential energy of link 1:

U1 = m1g yc1 = m1g lc1S1

potential energy of link 2:

U2 = m2g yc2 = m2g (l1S1 + lc2S1+2)

potential energy:U = U1 + U2

partial derivatives w.r.t. joint angles:

∂U

∂θ1= G1 + G12,

∂U

∂θ2= G12

whereG1 = (m1lc1 +m2l1) gC1, G12 = m2lc2 gC1+2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 10 / 39

Page 11: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Work done by actuator torqueswork done by τ1 applied to rotational joint 1:

τ1θ1

work done by τ2 applied to rotational joint 2:

τ2θ2

work done by the two actuator torques:

W = τ1θ1 + τ2θ2

partial derivatives w.r.t. joint angles:

∂W

∂θ1= τ1,

∂W

∂θ2= τ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 11 / 39

Page 12: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Lagrange equations of motionLagrangian:

L = T − U +W

Lagrange equations of motion

∂L∂θ1

− d

dt

∂L∂θ1

= 0

∂L∂θ2

− d

dt

∂L∂θ2

= 0

let ω1△= θ1 and ω2

△= θ2:

− H11ω1 − H12ω2 + h12ω22 + 2h12ω1ω2 − G1 − G12 + τ1 = 0

− H22ω2 − H12ω1 − h12ω21 − G12 + τ2 = 0

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 12 / 39

Page 13: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Lagrange equations of motioncanonical form of ordinary differential equations:[

θ1θ2

]=

[ω1

ω2

][H11 H12

H21 H22

] [ω1

ω2

]=

[h12ω

22 + 2h12ω1ω2 − G1 − G12 + τ1

−h12ω21 − G12 + τ2

]state variables: joint angles θ1, θ2 and angular velocities ω1, ω2

the inertia matrix is regular −→ 2nd eq. is solvable−→ we can compute ω1 and ω2

θ1, θ2, ω1, ω2 are functions of θ1, θ2, ω1, ω2

we can sketch θ1, θ2, ω1, ω2 using an ODE solver.

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 13 / 39

Page 14: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control

τ1 = KP1(θd1 − θ1)− KD1θ1

τ2 = KP2(θd2 − θ2)− KD2θ2

⇓[θ1θ2

]=

[ω1

ω2

][H11 H12

H21 H22

] [ω1

ω2

]=

[· · ·+ KP1(θ

d1 − θ1)− KD1ω1

· · ·+ KP2(θd2 − θ2)− KD2ω2

]

current values of θ1, θ2, ω1, ω2

⇓their time derivatives θ1, θ2, ω1, ω2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 14 / 39

Page 15: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF open link mechanismSample Programs

PD control of 2DOF open link mechanism

equation of motion of 2DOF open link mechanism under PDcontrol

definition of 2DOF open link mechanism

tip point coordinates with gradient vectors and Hessian matrices

calculating inertia matrix and generated torques

drawing 2DOF open link mechanism

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 15 / 39

Page 16: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF open link mechanism

Result

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 16 / 39

Page 17: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF open link mechanismResult

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 17 / 39

Page 18: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PI control

τ1 = KP1(θd1 − θ1) + KI1

∫ t

0

{(θd1 − θ1(τ)} dτ

τ2 = KP2(θd2 − θ2) + KI2

∫ t

0

{(θd2 − θ2(τ)} dτ

Introduce additional variables:

ξ1△=

∫ t

0

{(θd1 − θ1(τ)} dτ

ξ2△=

∫ t

0

{(θd2 − θ2(τ)} dτ

ξ1 = θd1 − θ1, τ1 = KP1(θd1 − θ1) + KI1ξ1

ξ2 = θd2 − θ2, τ2 = KP2(θd2 − θ2) + KI2ξ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 18 / 39

Page 19: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PI control

⇓[θ1θ2

]=

[ω1

ω2

][H11 H12

H21 H22

] [ω1

ω2

]=

[· · ·+ KP1(θ

d1 − θ1) + KI1ξ1

· · ·+ KP2(θd2 − θ2) + KI2ξ2

]ξ1 = θd1 − θ1

ξ2 = θd2 − θ2

current values of θ1, θ2, ω1, ω2, ξ1, ξ2⇓

their time derivatives θ1, θ2, ω1, ω2, ξ1, ξ2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 19 / 39

Page 20: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Report

Report #2 due date : Nov. 16 (Mon.)

Simulate the motion of a 2DOF open link mechanism under PIDcontrol. PID control is applied to active joints 1 and 2. Useappropriate values of geometrical and physical parameters of themanipulator.

θ1

θ2l1

l2

link 1

link 2

joint 1

joint 2

lc2

lc1

x

y

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 20 / 39

Page 21: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinematics of 2DOF closed link mechanism

x

y

O

link 1

link 2

link 3

link 4

θ1

θ3

θ2θ4

tip point

l1

l2

l3

l4

(x1,y1) (x3,y3)

joint 1

joint 2

joint 3

joint 4

joint 5

joint 1, 3: activejoint 2, 4, 5: passive

θ1, θ2, θ3, θ4:rotation angles

τ1, τ3:actuator torques

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39

Page 22: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Kinematics of 2DOF closed link mechanismdecomposition of closed link mechanism into open link mechanisms:

left arm link 1 and 2right arm link 3 and 4

end point of the left arm:[x1,2y1,2

]=

[x1y1

]+ l1

[C1

S1

]+ l2

[C1+2

S1+2

]end point of the right arm:[

x3,4y3,4

]=

[x3y3

]+ l3

[C3

C3

]+ l4

[C3+4

S3+4

]two constraints:

X△= x1,2 − x3,4 = l1C1 + l2C1+2 − l3C3 − l4C3+4 + x1 − x3 = 0

Y△= y1,2 − y3,4 = l1S1 + l2S1+2 − l3S3 − l4S3+4 + y1 − y3 = 0

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 22 / 39

Page 23: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

LagrangianLagrangian of the closed link mechanism:

L = L1,2 + L3,4 + λxX + λyY

L1,2, L3,4 Lagrangians of the left and right armsλx , λy Lagrange multipliers

Lagrange equations of motion:

∂L∂θ1,2

− d

dt

∂L∂ω1,2

= 0

∂L∂θ3,4

− d

dt

∂L∂ω3,4

= 0

where

θ1,2 =

[θ1θ2

], ω1,2 =

[ω1

ω2

], θ3,4 =

[θ3θ4

], ω3,4 =

[ω3

ω4

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 23 / 39

Page 24: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Contributions of L1,2contributions of Lagrangian L1,2 to the Lagrange eqs:

− H1,2 ω1,2 + τ1,2

0

where

H1,2 =

[*** J2 +m2(l

2c2 + l1lc2C2)

J2 +m2(l2c2 + l1lc2C2) J2 +m2l

2c2

]τ1,2 =

[+h12ω

22 + 2h12ω1ω2 − G1 − G12 + τ1

−h12ω21 − G12

]*** = J1 +m1l

2c1 + J2 +m2(l

21 + l2c2 + 2l1lc2C2),

h12 = m2l1lc2S2,

G1 = (m1lc1 +m2l1) gC1, G12 = m2lc2 gC1+2

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 24 / 39

Page 25: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Contributions of L3,4contributions of Lagrangian L3,4 to the Lagrange eqs:

0

− H3,4 ω3,4 + τ3,4

where

H3,4 =

[*** J4 +m4(l

2c4 + l3lc4C4)

J4 +m4(l2c4 + l3lc4C4) J4 +m4l

2c4

]τ3,4 =

[+h34ω

24 + 2h34ω3ω4 − G3 − G34 + τ3

−h34ω23 − G34

]*** = J3 +m3l

2c3 + J4 +m4(l

23 + l2c4 + 2l3lc4C4),

h34 = m4l3lc4S4,

G3 = (m3lc3 +m4l3) gC3, G34 = m4lc4 gC3+4

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 25 / 39

Page 26: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Contributions of λxXcontributions of λxX to the Lagrange eqs:

λxgx ;1,2

−λxgx ;3,4

where

gx ;1,2 =∂x1,2∂θ1,2

=

[−l1S1 − l2S1+2

−l2S1+2

]gx ;3,4 =

∂x3,4∂θ3,4

=

[−l3S3 − l4S3+4

−l4S3+4

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 26 / 39

Page 27: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Contributions of λyYcontributions of λyY to the Lagrange eqs:

λygy ;1,2

−λygy ;3,4

where

gy ;1,2 =∂y1,2∂θ1,2

=

[l1C1 + l2C1+2

l2C1+2

]gy ;3,4 =

∂y3,4∂θ3,4

=

[l3C3 + l4C3+4

l4C3+4

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 27 / 39

Page 28: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Lagrange equations of motion

−H1,2 ω1,2 + τ1,2 + λxgx ;1,2 + λygy ;1,2 = 0

−H3,4 ω3,4 + τ3,4 − λxgx ;3,4 − λygy ;3,4 = 0

⇓[H1,2 O2×2 −JT

1,2

O2×2 H3,4 JT3,4

] ω1,2

ω3,4

λ

=

[τ1,2τ3,4

]where

JT1,2 =

[gx ;1,2 gy ;1,2

]JT3,4 =

[gx ;3,4 gy ;3,4

]λ =

[λx

λy

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 28 / 39

Page 29: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Equation stabilizing constraint XRecall that X = x1,2 − x3,4

X =

(∂x1,2∂θ1,2

)T

θ1,2 −(∂x3,4∂θ3,4

)T

θ3,4 = gTx ;1,2 ω1,2 − gT

x ;3,4 ω3,4

X = gTx ;1,2 ω1,2 + gT

x ;1,2 ω1,2 − gTx ;3,4 ω3,4 − gT

x ;3,4 ω3,4

Since

gx ;1,2 =∂gx ;1,2

∂θT1,2

θ1,2 =∂gx ;1,2

∂θT1,2

ω1,2

we have gTx ;1,2 ω1,2 = ωT

1,2 Qx ;1,2 ω1,2, where

Qx ;1,2 =∂gT

x ;1,2

∂θ1,2=

[∂2x1,2/∂θ

21 ∂2x1,2/∂θ1∂θ2

∂2x1,2/∂θ2∂θ1 ∂2x1,2/∂θ22

]Hessian matrix

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 29 / 39

Page 30: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Equation stabilizing constraint X

X + 2αX + α2X = 0

−gTx ;1,2 ω1,2 + gT

x ;3,4 ω3,4 = ωT1,2 Qx ;1,2 ω1,2 − ωT

3,4 Qx ;3,4 ω3,4

+ 2α(gTx ;1,2 ω1,2 − gT

x ;3,4 ω3,4) + α2X

where

gx ;1,2 =

[−l1S1 − l2S1+2

−l2S1+2

], Qx ;1,2 =

[−l1C1 − l2C1+2 −l2C1+2

−l2C1+2 −l2C1+2

]gx ;3,4 =

[−l3S3 − l4S3+4

−l4S3+4

], Qx ;3,4 =

[−l3C3 − l4C3+4 −l4C3+4

−l4C3+4 −l4C3+4

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 30 / 39

Page 31: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Equation stabilizing constraint Y

Y + 2αY + α2Y = 0

−gTy ;1,2 ω1,2 + gT

y ;3,4 ω3,4 = ωT1,2 Qy ;1,2 ω1,2 − ωT

3,4 Qy ;3,4 ω3,4

+ 2α(gTy ;1,2 ω1,2 − gT

y ;3,4 ω3,4) + α2Y

where

gy ;1,2 =

[l1C1 + l2C1+2

l2C1+2

], Qy ;1,2 =

[−l1S1 − l2S1+2 −l2S1+2

−l2S1+2 −l2S1+2

]gy ;3,4 =

[l3C3 + l4C3+4

l4C3+4

], Qy ;3,4 =

[−l3S3 − l4S3+4 −l4S3+4

−l4S3+4 −l4S3+4

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 31 / 39

Page 32: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Equations stabilizing constraint X and Y

−gTx ;1,2 ω1,2 + gT

x ;3,4 ω3,4 = Cx(θ1,2,θ3,4,ω1,2,ω3,4)

−gTy ;1,2 ω1,2 + gT

y ;3,4 ω3,4 = Cy (θ1,2,θ3,4,ω1,2,ω3,4)

where

Cx = ωT1,2 Qx ;1,2 ω1,2 − ωT

3,4 Qx ;3,4 ω3,4 + 2α(gTx ;1,2 ω1,2 − gT

x ;3,4 ω3,4) + α2X

Cy = ωT1,2 Qy ;1,2 ω1,2 − ωT

3,4 Qy ;3,4 ω3,4 + 2α(gTy ;1,2 ω1,2 − gT

y ;3,4 ω3,4) + α2Y

⇓[−J1,2 J3,4 O2×2

] ω1,2

ω3,4

λ

= C

where C = [Cx , Cy ]T

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 32 / 39

Page 33: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Dynamic equations for closed link mechanism

H1,2 O2×2 −JT1,2

O2×2 H3,4 JT3,4

−J1,2 J3,4 O2×2

ω1,2

ω3,4

λ

=

τ1,2τ3,4C

the coefficient matrix is regular −→ we can compute ω1 through ω4

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 33 / 39

Page 34: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Physical Interpretation

J1,2 and J3,4 : Jacobian matrices of the left and right armsλ = [λx , λy ]

T : constraint forceequivalent torques around rotational joints 1 and 2:

JT1,2λ =

[λx(−l1S1 − l2S1+2) + λy (l1C1 + l2C1+2)

λx(−l2S1+2) + λy l2C1+2

]

reaction force −λequivalent torques around rotational joint 3 and 4:

JT3,4(−λ) =

[λx(l3S3 + l4S3+4) + λy (−l3C3 − l4C3+4)

λx l4S3+4 + λy (−l4C3+4)

]

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 34 / 39

Page 35: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF closed link mechanism

Sample Programs

PD control of 2DOF closed link mechanism

equation of motion of 2DOF closed link mechanism under PDcontrol

definition of 2DOF closed link mechanism

drawing 2DOF closed link mechanism

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 35 / 39

Page 36: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF closed link mechanism

Result

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 36 / 39

Page 37: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

PD control of 2DOF closed link mechanismResult

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 37 / 39

Page 38: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Report

Report #3 due date : Nov. 30 (Mon.)

Simulate the motion of a 2DOF closed link mechanism under PIDcontrol. PID control is applied to active joints 1 and 3. Useappropriate values of geometrical and physical parameters of themanipulator.

x

y

O

link 1

link 2

link 3

link 4

θ1

θ3

θ2θ4

tip point

l1

l2

l3

l4

(x1,y1) (x3,y3)

joint 1

joint 2

joint 3

joint 4

joint 5

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 38 / 39

Page 39: Analytical Mechanics: Link Mechanismshirai/edu/2020/analyticalmechanics/...Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 21 / 39 Kinematics

Summary

Open link mechanisminertia matrix depends on joint angles

Lagrange equations of motion of open link mechanism

Closed link mechanismtwo open link mechanisms with geometric constraints

synthesized from Lagrange equations of open link mechanisms

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.)Analytical Mechanics: Link Mechanisms 39 / 39