Analysis(of(Organic(Iodine(in( Drinking(Water(

44
Analysis of Organic Iodine in Drinking Water The use of TOI and a proposed TOX LCMS Parameter David Reckhow, Kaoru Ikuma and Rassil Sayess University of MassachuseGs, Amherst, MA 1

Transcript of Analysis(of(Organic(Iodine(in( Drinking(Water(

Page 1: Analysis(of(Organic(Iodine(in( Drinking(Water(

Analysis  of  Organic  Iodine  in  Drinking  Water  

The  use  of  TOI  and  a  proposed  TOXLCMS  Parameter  

David  Reckhow,  Kaoru  Ikuma  and  Rassil  Sayess  University  of  MassachuseGs,  Amherst,  MA  

1  

Page 2: Analysis(of(Organic(Iodine(in( Drinking(Water(

Outline  

2  

•  FormaKon  in  Drinking  Water  •  Public  Health  Concerns  •  TOX  

–  Current  Method  –  RelaKonship  to  the  DBP  issue  

•  Indirect  Data  on  TOI  –  Lab  Tests  from  high-­‐I  waters  –  Field  Data  on  I-­‐THMs  &  others  

•  Some  Direct  Data  on  TOI  –  Method  using  ICP/MS  –  Results  to  date  

•  AlternaKve  TOI  Approaches  –  LC/MS/MS  –  LC/QTOF  

•  Conclusions  &  where  do  we  go  from  here?  

It’s  one  of  my  favorite  recipes.    I  call  it  Total  Organic  Iodine  

Page 3: Analysis(of(Organic(Iodine(in( Drinking(Water(

FormaKon  of  Cl2-­‐driven  DBPs  

3  

Natural  Organic  Mater  

Anthropogenic  Chemicals  

(PPCPs,  Ag  &  industrial  products)  

Cl2  NaOCl  

NH3  

Br-­‐,  I-­‐  

OBr-­‐,  I3-­‐  

~90%  

CO2  +  Oxidized  Organic  Compounds  •  Acids  •  Aldehydes  •  Ketones  •  Nitrosamines  

NH2Cl  The  non-­‐halogenated  DBPs  

The  Halogenated  DBPs  •  THMs  •  HAAs  and  other  haloacids  •  HaloaromaKcs  •  N-­‐halo  compounds  •  Halo-­‐nitriles,  aldehydes,  nitros,  etc  

~10%  

Page 4: Analysis(of(Organic(Iodine(in( Drinking(Water(

4  

John  Rook  &  DBPs  

•  Found  DBPs  and  brought  them  to  the  world’s  aGenKon  –  Brought  headspace  analysis  from  the  beer  industry  to  drinking  water  

–  Found  trihalomethanes  (THMs)  in  finished  water  

•  Carcinogens  !?!    –  Published  in  Dutch  journal  H2O,  

Aug  19,  1972  issue  –  Deduced  that  they  were  formed  as  

byproducts  of  chlorinaKon  –  Proposed  chemical  pathways  

Rook,  1974,  Water  Treat.  &  Exam.,  23:234  

1921-­‐2010  

Page 5: Analysis(of(Organic(Iodine(in( Drinking(Water(

The  first,    and  currently  regulated  DBPs  

5  

•  The  HAAs  Cl

ClCl C COOH

Br

ClCl C COOH

Br

ClBr C COOH

Br

BrBr C COOH

Trichloroacetic Bromodichloroacetic Chlorodibromoacetic TribromoaceticAcid Acid Acid Acid

(TCAA) Cl

ClH C COOH

Br

ClC COOH

Br

BrH C COOH

Dichloroacetic Bromochloroacetic DibromoaceticAcid Acid Acid

(DCAA)

H

HAA5  only  5  

Cl

ClCl C H

Br

ClCl C H

Br

ClBr C H

Br

BrBr C H

Chloroform Bromodichloromethane Chlorodibromomethane Bromoform

The  THMs  

Page 6: Analysis(of(Organic(Iodine(in( Drinking(Water(

DBP  Epidemiology  

•  Bladder  Cancer  –  DBPs  linked  to  ~10,000  US  cases  every  year  

•  Other  Cancers  –  Rectal,  colon  

•  ReproducKve  &  developmental  effects  –  Miscarriages  &  Low  birth  weight  –  Birth  Defects  

•  e.g.,  Clej  palate,  neural  tube  defects  

•  Other  –  Kidney  &  spleen  disorders  –  Immune  system  problems,  neurotoxic  effects  

Basis  for  current  EPA  regulaNon  

80  µg/L  THMs  60  µg/L  HAAs  

6  

Page 7: Analysis(of(Organic(Iodine(in( Drinking(Water(

Single Cell Gel Electrophoresis Genotoxicity PotencyLog Molar Concentration (4 h Exposure)

10-6 10-5 10-4 10-3 10-2

IAA

BAA

CAA

DIA

ATB

AA

DBA

A3,3-

Dib

rom

o-4-

oxop

enta

noic

Aci

d

2-Br

omob

uten

edio

ic A

cid

2-Io

do-3

-bro

mop

rope

noic

Aci

d2,

3-D

ibro

mop

rope

noic

Aci

d

DBN

M

BDC

NM

TBN

M

TCN

M

BNM

BCN

MD

BCN

M

DC

NM

CN

M

Brom

oace

tam

ide

Dib

rom

oace

tam

ide

Trib

rom

opyr

role

MX

Brom

ate

EMS

+Con

trol

Haloacetic Acids

Halo Acids

Haloacetamides

Halonitromethanes

Other DBPs

DBP Chemical Class

Not Genotoxic: DCAA, TCAA, BDCAA, Dichloroacetamide, 3,3-Dibromopropenoic Acid, 3-Iodo-3-bromopropenoic Acid, 2,3,3,Tribromopropenoic Acid July 2006

Chl

oroa

ceta

mid

e

Trih

loro

acet

amid

e

Iodo

acet

amid

e

Haloacetonitriles Brom

oace

toni

trile

Dib

rom

oace

toni

trile

Brom

ochl

oroa

ceto

nitri

le

Chl

oroa

ceto

nitri

le

3,3-

Brom

ochl

oro-

4-ox

open

tano

ic A

cid

Iodo

acet

onitr

ile

Tric

hlor

oace

toni

trile

Dic

hlor

oace

toni

trile

BIAA

CD

BAA

BCAA

•  Mono-­‐X  >  Di-­‐X  >  Tri-­‐X  •  I  >  Br  >  Cl    

7  

Genotoxicity   The  regulated  ones  

From  Plewa  &  Colleagues  

Page 8: Analysis(of(Organic(Iodine(in( Drinking(Water(

Other  Compounds    The  DBP  Iceberg  

Halogenated  Compounds  

Non-­‐halogenated  Compounds  

ICR  Compounds  

50  MWDSC  DBPs  

~700  Known  DBPs  

THMs,  THAAs  

DHAAs  

Stuart  Krasner  MWDSC  

Susan  Richardson  USC  

8  

Page 9: Analysis(of(Organic(Iodine(in( Drinking(Water(

•  We  need  to  know  what  these  compounds  are  first  

9  “I  think  you  should  be  more  explicit  here    in  step  two”  

Control  of  Non-­‐Regulated  DBPs  

Page 10: Analysis(of(Organic(Iodine(in( Drinking(Water(

2D Graph 1

Unknown TOX (µg/L)

0 100 200 300 400

TTH

M (µ

g/L)

0

20

40

60

80

100

120

140

Unk-TOX vs TTHMc

Regulated  DBPs  as  surrogates  or  indicators  

•  Not  a  perfect  correlaKon  

•  So  what  can  we  do?  –  Maybe  we  need  

a  more  diverse  group  of  surrogates  

–  Look  at  occurrence  characterisKcs  

10  

From:  ICR  Database  

Page 11: Analysis(of(Organic(Iodine(in( Drinking(Water(

TOX:  Known  &  Unknown  

Trihalomethanes20%

Sum of 5 Haloacetic Acids10%

Bromochloroacetic Acid3%

Unknown Organic Halogen64%

Chloral Hydrate1%

Haloacetonitriles2%

HaloketonesChloropicrin

Data from the Mills Plant (CA) August 1997 (courtesy of Stuart Krasner)

Regulated  DBPs  

But,  the  Bad  Stuff  is  probably  

somewhere  here?  

Unknown  TOX  

TTHMs  

11  

Page 12: Analysis(of(Organic(Iodine(in( Drinking(Water(

METHODS  &  ISSUES  TOX  as  Measured  Today  

12  

Page 13: Analysis(of(Organic(Iodine(in( Drinking(Water(

13  

Total  Organic  Halogen  

•  Standard  Methods;  USEPA  Method  #1650  •  AcKvated  Carbon  AdsorpKon  &  Pyrolysis  &  Microcoulometric  DetecKon  of  halide  

•  Extended  Method  for  TOCl,  TOBr,  TOI  •  Trap  gases  &  ion  chromatography  

–  (e.g.,  Hua  &  Reckhow,  2008)  

Pyrolysis  Oven  Microcoulometric  

Cell  

GAC  AdsorpKon  

Page 14: Analysis(of(Organic(Iodine(in( Drinking(Water(

TOX  in  Drinking  Water  

•  Originally  proposed  by  researchers  at  the  University  of  Karlsruhe  in  the  1970s  – Led  to  development  of  commercial  instrument:  Dohrmann,  Euroglass,  Mitsubishi  (current)  

•  Proposed  regulatory  acKon  for  TOX  – As  a  surrogate  for  unknown  DBPs  – Eventually  deemed  too  problemaKc  by  EPA  and  others  to  pursue  

•  Although  EU  has  a  TOX  guideline  

14  

Page 15: Analysis(of(Organic(Iodine(in( Drinking(Water(

Why  is  TOX  not  regulated?  •  Mostly  problems  with  method  

–  Costly  instrumentaKon  that  is  only  used  for  TOX  – Difficult  to  operate  and  not  easily  automated  – High  and  variable  GAC  blanks  limit  precision  and  sensiKvity  

–  Recovery  is  not  good  for  all  compounds  –  Chemical  informaKon  can  be  expanded  to  specific  halogens,  but  this  may  require  special  accommodaKons  for  TOBr  and  TOI  (e.g.,  ICP/MS)  

–  The  most  important  informaKon  is  not  accessible  •  number  and  type  of  halogens  per  molecule  

15  

Page 16: Analysis(of(Organic(Iodine(in( Drinking(Water(

DATA  FROM  WATERS  HIGHLY  FORTIFIED  WITH  IODIDE  

What  do  we  know  about  TOI  

16  

Page 17: Analysis(of(Organic(Iodine(in( Drinking(Water(

IO3-

Cl2 O3/Cl2 NH2Cl O3/NH2Cl ClO2

I-TH

M (µ

g/L)

0

10

20

30

40CHCl2ICHClI2CHBrClICHBr2ICHBrI2CHI3

IO3- (µ

g/L)

0

100

200

300

400

Cambridge MA Water, DOC: 4.2 mg/L, I: 200 µg/L Hua  &  Reckhow,  2007  

Iodo-­‐THMs  O3

O3

Chlorine & Ozone produce iodate; Chloramine doesn’t

17  

Page 18: Analysis(of(Organic(Iodine(in( Drinking(Water(

Iodinated TOX (TOI)

Con

cent

ratio

n (µ

g C

l/L)

0

100

200

300

400

500TOClTOI

O3 Cl2 O3/Cl2 NH2Cl O3/NH2Cl ClO2

Cambridge MA Water, DOC=4.2 mg/L, I-=200 µg/L (added)

TOI : NH2Cl > ClO2 > Cl2 > O3

Hua  &  Reckhow,  2007  18  

Page 19: Analysis(of(Organic(Iodine(in( Drinking(Water(

DATA  FROM  A  FEW  STUDIES  MEASURING  I-­‐THMS  

What  do  we  know  about  TOI  

19  

Page 20: Analysis(of(Organic(Iodine(in( Drinking(Water(

20  

Iodo-­‐DBP  Occurrence  

•  Iodo-­‐THM  Occurrence  – ConcentraKons  

•  From  12  systems  in  NA  •  Up  to  25  µg/L  for  direct  chloraminaKon  

– RelaKve  Prevalence  •  2%  of  THM4  at  50%ile;  7%  at  75%ile?  •  Iodo-­‐THMs  ≈  0.1*  Bromo-­‐THMs  

•  Iodo-­‐HAA  Occurrence  –  LiGle  or  no  triHAAs  containing  iodine??  

From:  Weinberg,  Krasner,  et  al.,  2002  

PercenNle   Conc  (µg/L)  

50%   0.4  

75%   2  

90%   4  

Page 21: Analysis(of(Organic(Iodine(in( Drinking(Water(

21  

Cl  vs  Br:  Species  Model  

THM Br/(Cl+Br)

0.0 0.2 0.4 0.6 0.8 1.0

THM

Mol

e Fr

actio

n (T

HM

4 on

ly)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Probabilistic model

CHCl3

CHBrCl2 CHBr2Cl

CHBr3

•  Simple  compeKKve  kineKc  model:  applicable  to  all  DBPs?  –  From:  MacNeill,  1993;  Cowan  &  Singer,  1996  

Page 22: Analysis(of(Organic(Iodine(in( Drinking(Water(

22  THM Br/(Cl+Br)

0.0 0.2 0.4 0.6 0.8 1.0

THM

Mol

e Fr

actio

n (T

HM

4 on

ly)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CHCl3CHBrCl2CHBr2ClCHBr3CHCl3 Lab testsCHBrCl2 Lab testsCHBr2Cl Lab testsCHBr3 Lab tests

Full-scale data (small symbols) from Weinberg et al., 2002 (All 12 plants)

Lab data (large symbols) from Hua & Reckhow, 2004Lines are geometric model

Bromo-­‐chloro  speciaKon  for  THMs  Strong  oxidants  such  as  ozone  or  chlorine  dioxide  upset  this  relaKonship  

Page 23: Analysis(of(Organic(Iodine(in( Drinking(Water(

23  

EsKmaKng  I-­‐THM  Occurrence  •  I  originates  from  sea  water  

–  More  volaKle  than  Cl  or  Br,  so  conKnental  waters  are  relaKvely  enriched  in  I  

–  SKll,  I  should  be  roughly  correlated  with  Br  

•  I-­‐THMs  are  related  to  iodide  concentraKon  –  Just  as  Br-­‐THMs  are  related  to  

bromide  level  •  Therefore  I-­‐THM  fracKon  

should  be  posiKvely  correlated  with  Br-­‐THM  fracKon  

THM Br/(Cl+Br)

0.0 0.1 0.2 0.3 0.4 0.5

THM

I/(C

l+I)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

All but plant #12

b[1]=0.095

DS Data from Weinberg et al., 2002

Page 24: Analysis(of(Organic(Iodine(in( Drinking(Water(

24  

Iodo  speciaKon  is  similar  •  Only  low  THM  I  data  

available  from  field  sites  •  SuggesKons  of  departure  

from  probabilisKc  model  at  high  THM  I  –  Higher  iodoform  than  

expected  –  Possible  decomposiKon  of  

larger  TOI  structures  

THM I/(Cl+I)

0.0 0.2 0.4 0.6 0.8 1.0

THM

Mol

e Fr

actio

n (C

l&I o

nly)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CHCl3CHICl2CHI2ClCHI3CHCl3 Lab testsCHICl2 Lab testsCHI2Cl Lab testsCHI3 Lab tests

Full-scale data (small symbols) from Weinberg et al., 2002 (All 12 plants)

Lab data (large symbols) from Hua & Reckhow, 2004Lines are geometric model

Page 25: Analysis(of(Organic(Iodine(in( Drinking(Water(

DATA  FROM  MODEL  COMPOUND  STUDIES  

What  do  we  know  about  TOI  

25  

Page 26: Analysis(of(Organic(Iodine(in( Drinking(Water(

26  

Many  Iodo-­‐acids  decompose  

•  DecarboxylaKon  rates  of  THAAs  in  water  –  From  Zhang  and  Minear,  2002;  expanded  by  UMass  

HAA 20C 55C 20C 55C degradation  product  (THM)TCAA 99000 130 100.0% 88.0% chloroformBDCAA 21600 36 99.9% 63.0% bromodichloromethaneDBCAA 4400 8 99.6% 12.5% chlorodibromomethaneTBAA 620 3 97.4% 0.4% bromoformDCIAA 2414 3.2 99.3% 0.5% dichloroiodomethaneBCIAA 479 0.63 96.6% 0.0% bromochloroiodomethaneDBIAA 95 0.12 84.0% 0.0% dibromoiodomethaneCDIAA 62 0.08 76.5% 0.0% chlorodiiodomethaneBDIAA 12 0.02 26.0% 0.0% bromodiiodomethaneTIAA 2 0.00 0.0% 0.0% triiodomethane

Half-­‐life  (hr) %  Remaining  @  24  hr

DistribuKon  System   Water  Heater  

Page 27: Analysis(of(Organic(Iodine(in( Drinking(Water(

USE  OF  ICP/MS  FOR  QUANTIFICATION  OF  I  IN  TOX  

How  can  we  actually  measure  ambient  TOI?  

27  

Page 28: Analysis(of(Organic(Iodine(in( Drinking(Water(

•  DetecKon  of  Br  and  I  

28  

Improved  MDL  with  ICP/MS  

Page 29: Analysis(of(Organic(Iodine(in( Drinking(Water(

Standard  Curves  with  ICP/MS  

•  Especially  good  for  Iodine  

29  

y = 6840.7x R² = 0.9958

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

0 20 40 60 80 100 120 140 I127

Inte

nsity

usi

ng IC

P/M

S

Concentration (ugI/L)

I127 Standard Curve

y = 511.71x + 805.61 R² = 0.99504

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 Br 8

1 In

tens

ity u

sing

ICP/

MS

Prepared concentration (ugBr/L)

Page 30: Analysis(of(Organic(Iodine(in( Drinking(Water(

Method  DetecKon  Limit  

•  ICP/MS  detecKon  of  halides  (µg/L)  

30  

Set  

Iodide   Bromide  Measured  concentraKon  (ugI/L)   MDL   LOQ  

Measured  concentraKon  (ugBr/L)   MDL   LOQ  

High  Replicate  

1.74  

0.49   1.57  

0.97  

0.58   1.85  

2.10   0.81  2.16   1.04  1.80   1.28  1.91   1.24  1.82   1.32  1.87   1.08  

Low  Replicates  

1.28  

0.19   0.61  

0.89  

0.98   3.13  

1.35   0.73  1.40   0.22  1.23   0.03  1.35   0.58  1.32   0.42  1.25   0.77  

Page 31: Analysis(of(Organic(Iodine(in( Drinking(Water(

TesKng  TOI  recovery  with  ICPMS  •  Recovery  in  TOI  is  ojen  good  but  not  always  

31  

   Analyte  

Prepared  concentraNon  (ugI/L)  

ConcentraNon  in  original  soluNon  (ugI/L)  

Iodine  Recovery  (%)  

Total  Iodine  Recovery  (%)    

Iodo-­‐aceNc  Acid  

Raw  

126.90  

116.12   91.5%      1st  collected  effluent   21.19   16.7%  

91%  2nd  collected  effluent  (nitrate  soluKon)   10.51   8.3%  

TOX   83.56   65.8%  

Iodoform  

Raw  

114.21  

130.44   114.2%      1st  collected  effluent   34.78   30.5%  

78%    2nd  collected  effluent  (nitrate  soluKon)   22.07   19.3%  

TOX   31.66   27.7%  

Iodo-­‐toluene  

Raw  

152.28  

           1st  collected  effluent   46.19   30.3%  

72%  2nd  collected  effluent  (nitrate  soluKon)   10.44  

6.9%  

TOX   53.00   34.8%  

Tri-­‐iodoaceNc  Acid  

Raw  

152.28  

           1st  collected  effluent   14.24   9.4%  

47%  2nd  collected  effluent  (nitrate  soluKon)   1.53  

1.0%  

TOX   55.96   36.7%    

Page 32: Analysis(of(Organic(Iodine(in( Drinking(Water(

Where  does  the  missing  X  go?  

•  Not  adsorbed?  •  Washed  out?  

 

   

sample    

For  disposal

First  column

Second  column

Combusted  first

Combusted  second

~67%  or  more  

organics

~33  %  or  less  organics

Trapping Combustion

32  

Page 33: Analysis(of(Organic(Iodine(in( Drinking(Water(

GAC  breakthrough  characterisKcs  

•  The  non-­‐exceedance  probability  diagram  of  the  1st:2nd  column  recovery  raKo  of  TOCl,  TOBr,  and  TOI.  

33  

Page 34: Analysis(of(Organic(Iodine(in( Drinking(Water(

TARGETING  HAAS  AND  ICMS  Field  Studies  using  actual  treated  drinking  waters  

34  

Page 35: Analysis(of(Organic(Iodine(in( Drinking(Water(

Target  List:  Searched  Following  Full  Spectral  QTof  AcquisiKon  

¡  For  each  compound,  a  structure  was  loaded  and  associated  with  the  target  list  

   ¡  Fragment  masses  were  obtained  from  a  literature  source  which  uKlized  MRMs;  exact  masses  were  calculated  from  these  known  fragments  and  entered  in  the  component  search  

Page 36: Analysis(of(Organic(Iodine(in( Drinking(Water(

ESI negative mode

MonoiodoaceKc  acid  

TriiodoaceKc  acid  

Iodide

Iodide

36  

Page 37: Analysis(of(Organic(Iodine(in( Drinking(Water(

ESI positive mode

Iopromide  

Iopamidol  

Iohexol  

37  

Page 38: Analysis(of(Organic(Iodine(in( Drinking(Water(

ESI negative mode (MSe)

Low  fragmentaKon  energy  channel  

High  fragmentaKon  energy  channel  

Iohexol  

Iopromide  

Iopamidol  

Iodide  fragment  

38  

Page 39: Analysis(of(Organic(Iodine(in( Drinking(Water(

Searching  for  Unknown  Iodinated  Compounds  

¡ Neutral  Loss  Search:  from  list  of  unassigned  masses,  the  neutral  loss  of  –I  was  performed  by  searching  for  the  difference  of  126.9045  between  the  low  energy  spectrum  and  high  energy  spectrum  

Page 40: Analysis(of(Organic(Iodine(in( Drinking(Water(

Searching  for  Unknown  Iodinated  Compounds  

¡ Common  Fragment  Search:  from  list  of  unassigned  masses,  the  common  fragment  of  –I  (m/z  126.9052)  was  performed  by  searching  for  said  fragment  in  high  energy  spectrum  

Page 41: Analysis(of(Organic(Iodine(in( Drinking(Water(

Proposed  IdenKficaKon  1    

¡ Elemental  ComposiKon  computaKon  is  based  on  isotope  distribuKon  paGern  in  observed  spectrum  and  selected  elements  for  search  

¡ Result  for  419.1251  =  C22H29I  ¡ Mass  Error  for  proposed  ID  =  2.2  ppm    

Low  Energy  Channel  

High  Energy  Channel   Raw  Water  

Finished  Water  #1  

Finished  Water  #2  

Page 42: Analysis(of(Organic(Iodine(in( Drinking(Water(

Proposed  IdenKficaKon  2    

¡ Result  for  811.8210  =  C19H5ClIN7O20    ¡ Mass  Error  for  proposed  ID  =  -­‐4.9  ppm    

 

Low  Energy  Channel  

High  Energy  Channel  Raw  Water  

Finished  Water  #1  

Finished  Water  #2  

Page 43: Analysis(of(Organic(Iodine(in( Drinking(Water(

Conclusions  

•  TOX  is  sKll  quite  relevant  to  assessing  adverse  health  effects  in  drinking  water,  however:  – Halogen  specific  detecKon  is  needed  – More  structural  informaKon  would  improve  its  usefulness  

•  Standard  methods  cannot  be  used  to  measure  TOI  –  SoluKon:  incorporate  ICP/MS  

•  ConvenKonal  TOX  loses  key  structural  informaKon  –  SoluKon:  use  LC/QTOF  with  modern  methods  of  data  analysis  as  an  alternaKve  

43  

Page 44: Analysis(of(Organic(Iodine(in( Drinking(Water(

Acknowledgments  

•  Waters  CorporaKon    – Especially:  Lauren  Mullin  

•  NaKonal  Science  FoundaKon  – Major  Research  InstrumentaKon  program  

•  Mitsubishi  -­‐  Cosa    

44