Analysis Using Laplace Function 3

download Analysis Using Laplace Function 3

of 33

Transcript of Analysis Using Laplace Function 3

  • 8/12/2019 Analysis Using Laplace Function 3

    1/33

    1

    Circuit Analysis using

    Laplace Transform

  • 8/12/2019 Analysis Using Laplace Function 3

    2/33

    2

    Circuit Analysis using LT

    All the linear networks can be represented by

    linear constant coefficient differential

    equations, and the use of LT provides aneasy method to obtain the solution.

    The terminal characteristics of each element

    can be described in s-domain by

    transforming its time domain equations.

  • 8/12/2019 Analysis Using Laplace Function 3

    3/33

    3

    (i) s-domain resistor model

    The time domain terminal characteristic is

    v(t) = i(t)R

    s-domain equation will be

    V(s) = I(s)R s-transformed resistor model

    t-domain s-domain

    v/s

  • 8/12/2019 Analysis Using Laplace Function 3

    4/33

    4

    (ii) s-domain inductor model 1

    The v-irelationship of inductor is given by

    The s-domain equation: V(s) = sLI(s)-Li(0) s-transformed inductor model (voltage)

    t-domain

    s-domain

    dt

    tdiLtv

    )()(

    Using Theorem 4

    Initial condition

    v/s

  • 8/12/2019 Analysis Using Laplace Function 3

    5/33

    5

    (ii) s-domain inductor model 2

    Rearrange the s-domain equation:

    s-transformed inductor model (current)

    t-domain s-domain

    Initial condition

    ( ) (0)( )

    V s iI s

    sL s

    v/s

  • 8/12/2019 Analysis Using Laplace Function 3

    6/33

    6

    (iii) s-domain capacitor model 1

    The v-irelationship of capacitor is given by

    The s-domain equation:

    I(s) = sCV(s)-Cv(0) s-transformed capacitor model (current)

    t-domain s-domain

    dt

    tdvCti

    )()(

    Using Theorem 4

    Initial condition

    v/s

  • 8/12/2019 Analysis Using Laplace Function 3

    7/33

    7

    (iii) s-domain capacitor model 2

    Rearrange the s-domain equation:

    s-transformed capacitor model (voltage)

    t-domain s-domain

    ( ) (0)( )

    I s vV s

    sC s

    Initial condition

    v/s

  • 8/12/2019 Analysis Using Laplace Function 3

    8/33

    8

    Summary of RCL circuit

  • 8/12/2019 Analysis Using Laplace Function 3

    9/33

    9

    Example 4.6.1: Draw the

    s-domain transformed circuit for a

    series RLC circuit.

    For resistor

    For inductor

    For capacitor

  • 8/12/2019 Analysis Using Laplace Function 3

    10/33

    10

    Transformed equation for voltage, V(s)

    for series RLC

    V(s)=I(s)R+sLI(s)-Li(0)+ I(s)/sC+v(0)/s

    There may be situation when the initial conditionsare

    zero, this, we called it simply as ZERO INITIALCONDITIONS.

    Thus,

    V(s)=I(s)R+sLI(s)+ I(s)/sC

  • 8/12/2019 Analysis Using Laplace Function 3

    11/33

    11

    Applications of LT in Circuit

    Problems

    RC-circuit

    Obtain the expression of current i(t)for the RC-circuit,

    considering the capacitor as initially uncharged and

    source voltage V dc.

  • 8/12/2019 Analysis Using Laplace Function 3

    12/33

    12

    s-domain transformed circuit

    s

    ktkuL )

    1( )

    VI s Rs sC

    ( )

    1

    VI s

    R sRC

    1

    1( ) [ ( )]t

    RCVi t I s eR

    L

    Dc voltage

    Initially uncharged, vC(0-)=0

    as

    dteeeL statat

    1

    0

  • 8/12/2019 Analysis Using Laplace Function 3

    13/33

    13

    RL-circuit

    Find the expression of current i(t)for t>0, if inductor

    current at t=0-is IO. Voltage is dc.

  • 8/12/2019 Analysis Using Laplace Function 3

    14/33

    14

    s-domain transformed circuit

    2 ( ) oII s

    s R L

    1 2( ) ( ) ( )( )

    o oV s L I I V LI s I s I sR sL s s R L s R L

    i(0-)=I0

    1( )( )

    V LI s

    s s R L

    Use partial fraction expansion

  • 8/12/2019 Analysis Using Laplace Function 3

    15/33

    15

    1 0

    0

    ( )s

    s

    V LA sI s V R

    s R L

    1( ) A B

    I s

    s s R L

    1( ) ( ) s R Ls R L

    V LB s R L I s V R

    s

    1

    1 1( )

    VI s

    R s s R L

  • 8/12/2019 Analysis Using Laplace Function 3

    16/33

    16

    1

    1 2( ) [ ( ) ( )] 1

    R Rt t

    L Lo

    RtL

    o

    Vi t I s I s e I e

    R

    V V I eR R

    L

    1 2

    1 1( ) ( ) ( ) o

    IVI s I s I s

    R s s R L s R L

  • 8/12/2019 Analysis Using Laplace Function 3

    17/33

    17

    Example1:

    Determine the output voltage of the

    network shown at t=0+

  • 8/12/2019 Analysis Using Laplace Function 3

    18/33

    18

    Assume that right before the switch is flipped (that is att=0-), the circuit has achieved its steady state conditions.

    So, the capacitor would be open and voltage acrosscapacitor would be vC(0-)=1V.

    And, the inductor would be shorted and current acrossinductor would beiL(0-)=1A.

    *We may denote t=0-as t

  • 8/12/2019 Analysis Using Laplace Function 3

    19/33

    19

    When the switch is flipped at t=0, the topswitch closes and middle switch opens.

    We can model the voltage source as 4u(t).

    The circuit is as shown at the top.

    We need to determine the output voltageafter the switch is flipped, that is at t=0+.

    *We may denote t=0+as t>0as well

    Li(0)=1 x 1

  • 8/12/2019 Analysis Using Laplace Function 3

    20/33

    20

    The s-transformed circuit is as shown.

    We will use mesh equations to solve.

    Li(0)=1 x 1V(0)/s

  • 8/12/2019 Analysis Using Laplace Function 3

    21/33

  • 8/12/2019 Analysis Using Laplace Function 3

    22/33

    22

    From Transform Pair 15

  • 8/12/2019 Analysis Using Laplace Function 3

    23/33

    23

    Example 2:

    Find the current i(t).

    Assume zero initial conditions.

  • 8/12/2019 Analysis Using Laplace Function 3

    24/33

    24

    s-transformed circuit. To find I(s),use current divider rule:

  • 8/12/2019 Analysis Using Laplace Function 3

    25/33

    25

  • 8/12/2019 Analysis Using Laplace Function 3

    26/33

    26

    Example 3:

    Draw the s-domain circuit for the LC tuned circuitabove. Include the initial conditions. Then, find the

    voltage v(t)using ILT assuming zero initial conditions

    and C=0.5Fand L=1H.

  • 8/12/2019 Analysis Using Laplace Function 3

    27/33

    27

    current

    s-domain transformed circuit

    with initial conditions

  • 8/12/2019 Analysis Using Laplace Function 3

    28/33

    28

    With zero initial conditions (shown above)

    Substitute C=0.5Fand L=1H

  • 8/12/2019 Analysis Using Laplace Function 3

    29/33

    29

    Pole-Zero Plot

    )(

    )()(

    sB

    sAsF

    1

    1 1 0 1 2

    1

    1 1 0 1 2

    ... ( )( ) ( )

    ... ( )( ) ( )

    m m

    m n m

    n n

    n n n

    a s a s a s a s z s z s z

    b s b s b s b s p s p s p

  • 8/12/2019 Analysis Using Laplace Function 3

    30/33

    30

    Poles and zeros can be plotted in complex s-plane,

    we called the plot pole-zero plot/diagram

    Zeros:The roots of polynomialA(s), i.e. s =-z1,-z2,,

    -zmofF(s)such that at these values of s, F(s)=0Poles:The roots of polynomial B(s), i.e. s= -p1, -p2,,-pnof F(s)such that at these values of s, F(s)=.

  • 8/12/2019 Analysis Using Laplace Function 3

    31/33

    31

    Example 4.8.1

    Plot the poles and zeros of function F(s)

    )5(

    )2()(

    ss

    ssF

    Zero at s=-2

    Poles at s=0 and -5

    Complex s-plane, s=+j

  • 8/12/2019 Analysis Using Laplace Function 3

    32/33

    32

    Example: Poles and zeros

    221

    11

    jsjss

    jsjsssF

    Let

    Location of poles such that F(s) becomes infinity

    sp1= 1 sp2= j2 sp3= j2

    Location of zeros such that F(s) becomes 0

    sz1= 0 sz2= 1 j sz3= 1 + j

  • 8/12/2019 Analysis Using Laplace Function 3

    33/33

    33

    s plane plot j

    sp1 = 1 sp2 = j2 sp3 = j2

    sz1 = 0 sz2 = 1 j sz3 = 1 + j