Analysis of Vortex Tube Applications in Hydrogen Liquefaction

40
Analysis of Vortex Tube Applications in Hydrogen Liquefaction Marshall Crenshaw Washington State University Pullman, WA November 14, 2017

Transcript of Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Page 1: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Marshall Crenshaw

Washington State UniversityPullman, WANovember 14, 2017

Page 2: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• >80% of global energy comes from fossil fuels.1

• Since 1976, global temperatures warmer than long-term average.2

• 11 of the top 12 hottest years are from 2003-2016.3

Why is Renewable Energy Necessary?

1 International Energy Agency Technical Report. Key World Energy Statistics. 2016 2 https://climate.nasa.gov/scientific-consensus/3 https://www.ncdc.noaa.gov/sotc/global/201613

Page 3: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• 9th most abundant element in earth’s crust

• Photo-biological bacteria produce hydrogen

H2 Production

http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/images/HydrogenProductionPaths.gif

Page 4: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Lowest volumetric density

• Containers are pressurized or cryogenic to increase density

Difficulties of H2

https://energy.gov/eere/fuelcells/hydrogen-storage

Page 5: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Double density when liquefying over pressurizing

Liquid vs Pressurized H2

0

10

20

30

40

50

60

70

80

0 25 50 75 100 125 150 175 200

Den

sity

(kg/

m³)

Pressure of Compressed Hydrogen (MPa)

Pressurized Hydrogen

Liquid Hydrogen

Pressurized Tank @ 70 MPa

Pressurized Tank @ 35 MPa

Page 6: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Inexpensive cooling device

• 1 high pressure stream 2 low pressure streams

• Transfers cold stream energy hot outer stream

• No moving parts

Diagram of Vortex Tube (VT)

Page 7: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Low-cost cycle for hydrogen liquefaction

• Low-efficiency method for liquefaction

• Increase cycle efficiency by adding component

Pre-cooled Linde-Hampson Cycle

Page 8: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Additional compressor and heat exchanger

• Cycle efficiency: Adding compressor > Adding throttle

• 3rd HX reduces O-P ratio of hydrogen

• What is O-P ratio?

Pre-cooled L-H cycle with VT

Page 9: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Equilibrium O-P ratio depends on temperature of hydrogen

• Normal hydrogen 3:1 O-P ratio

• Liquid hydrogen all parahydrogen

• Catalyst added to HXs to maintain equilibrium O-P ratio

• Why is equilibrium hydrogen important?

Orthohydrogen & Parahydrogen

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2011/1-nuclearmagne.jpg

Page 10: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• 50% of normal hydrogen boils away in 200 hours

Importance of Ortho-Para Equilibrium

Gursu, S. et al. An Optimization Study of Liquid Hydrogen Boil-Off Losses,Int. J. Hydrogen Energy., v. 17, p. 227, 1992.

Page 11: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Statistical Thermodynamic Properties of H2

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2011/1-nuclearmagne.jpg

Page 12: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Stat Thermo

https://hydrogen.wsu.edu/2015/06/22/why-equilibrium-hydrogen-doesnt-exist/

Page 13: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

REFPROP

0

2.5

5

7.5

0 100 200 300

Idea

l-gas

ent

halp

y [M

J/kg

]

Temperature [K]

Ortho [REFPROP]

Para [REFPROP]

Page 14: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

REFPROP with Corrected Orthohydrogen vs. Stat Thermo

0

0.25

0.5

0.75

0

2.5

5

7.5

0 100 200 300

Con

vers

ion

enth

alpy

[MJ/

kg]

Idea

l-gas

ent

halp

y [M

J/kg

]

Temperature [K]

Corrected Ortho

Para [REFPROP]

Stat Thermo

MATLAB

https://hydrogen.wsu.edu/2015/06/22/why-equilibrium-hydrogen-doesnt-exist/

r2 = 0.999996

Page 15: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Equilibrium Ofrac

0

0.25

0.5

0.75

1

0 50 100 150 200 250 300

Equi

libriu

m O

rthoh

ydro

gen

Frac

tion

Temperature (K)

Page 16: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Piece-Wise Equilibrium H2 Function

Coefficients of equilibrium MATLAB function

a1 1.935x10-4 b1 -2.044 c1 1.111x10-7

a2 -5.832x10-3 b2 -2.724x10-2 c2 -2.243x10-6

a3 3.448x10-2 b3 0.75 c3 -1.886x10-5

c4 6.514x10-4

c5 -3.499x10-3

Ofrac =

a1T2 + a2T + a3 T ≤ 24.82Kb1eb2T + b3 T ≤ 51.51K

�i=1

4

ciTi + c5 T > 51.51K

Page 17: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Approximate Equilibrium O-P Function

0

0.25

0.5

0.75

1

0 50 100 150 200 250 300Equi

libriu

m O

rthoh

ydro

gen

Frac

tion

Temperature (K)

Stat ThermoMATLAB

r2 = 0.99986

Page 18: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Liquefaction Components & Cycle Assumptions

Page 19: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Bath pressure is atmospheric (101.3 kPa) and temperature is 77 K

• LN2 Bath is catalyzed: Ofrac = ~0.5

• Heat extracted:

�̇�𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �̇�𝑚𝐻𝐻2 ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖𝑖𝑖 − ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑜𝑜𝑜𝑜𝐵𝐵 + Δℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐

• Added work to hydrogen liquefaction:

�̇�𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =�̇�𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �

𝐿𝐿𝐿𝐿2𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝐿𝐿𝐿𝐿2𝐹𝐹𝐹𝐹𝐹𝐹

�̇�𝑚𝐿𝐿𝐻𝐻2 � Δ𝐻𝐻𝑐𝑐𝐵𝐵𝑣𝑣,𝑁𝑁2

LN2 Bath

𝐿𝐿𝐿𝐿2 𝐵𝐵𝐵𝐵𝐵𝐵ℎ

Page 20: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Energy balance equation:

�𝑖𝑖=1

𝑖𝑖

∆ℎ𝑖𝑖 + ∆ℎ𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐,𝑖𝑖 = 0

• Minimum temperature approach solves for outlet temperatures

• Hot stream T limit: 𝑇𝑇𝐻𝐻𝑜𝑜𝐵𝐵,𝑜𝑜𝑜𝑜𝐵𝐵,𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝐵𝐵 = Δ𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐵𝐵,𝑖𝑖𝑖𝑖

• Cold streams T limit: 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜𝐵𝐵,𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝐵𝐵 = 𝑇𝑇𝐻𝐻𝑜𝑜𝐵𝐵,𝑖𝑖𝑖𝑖 − Δ𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖

Counter-flow Heat Exchanger

𝐻𝐻𝐻𝐻3

Cold

Nitrogen𝐻𝐻𝐻𝐻2

Hot𝐻𝐻𝐻𝐻4

Page 21: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Staging compressors decreases their work

• 4 stages is optimal for compressors

Staged Compression with Intercooling

Page 22: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Pressure Ratio per stage: 𝑃𝑃𝑃𝑃𝐶𝐶𝐵𝐵𝐵𝐵𝑠𝑠𝑖𝑖 =𝑛𝑛

�𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑖𝑖𝑛𝑛

• Enthalpy of compressor: ℎ2 = 𝐵𝑠𝑠−𝐵1𝜂𝜂𝐶𝐶

+ ℎ1

• Work of compressor: 𝐿𝐿𝑐𝑐 = ∑𝑖𝑖=1𝑖𝑖 �̇�𝑚𝐶𝐶 ℎ2,𝑖𝑖 − ℎ1,𝑖𝑖

• Heat extracted: �̇�𝑄𝐶𝐶 = 𝐿𝐿𝑐𝑐 + ∑𝑖𝑖=1𝑖𝑖 ℎ𝑖𝑖 − ℎ𝑖𝑖−1

• Enthalpy of expander: ℎ2 = 𝜂𝜂𝐸𝐸 ℎ1 − ℎ𝐶𝐶 + ℎ1

Compressor/Expander Component

𝐶𝐶

𝐿𝐿𝐶𝐶

�̇�𝑄𝐶𝐶

𝐿𝐿𝐸𝐸

𝐸𝐸

Page 23: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Throttle is ideally isenthalpic: ℎ𝑖𝑖𝑖𝑖 = ℎ𝑜𝑜𝑜𝑜𝐵𝐵• Quality of LH2: solved with enthalpy & pressure

• Heat of O-P conversion in tank:�̇�𝑄𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐 = �̇�𝑚𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝑖𝑖𝑖𝑖∆ℎ𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐

• Return stream flow:�̇�𝑚𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝑜𝑜𝑜𝑜𝐵𝐵 = �̇�𝑚𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝑖𝑖𝑖𝑖 � X𝐻𝐻2 +

�̇�𝑄𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐 + �̇�𝑄𝑇𝑇𝐵𝐵𝑖𝑖𝑇𝑇,𝐵𝑖𝑖𝐵𝐵𝐵𝐵 𝑖𝑖𝑖𝑖𝐵𝐵𝑇𝑇

ℎ𝐿𝐿𝐻𝐻,𝐻𝐻2

Throttle & Tank

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐻𝐻2 𝑇𝑇𝐵𝐵𝑇𝑇𝑇𝑇

𝐽𝐽𝑇𝑇

Page 24: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Specific exergy: 𝐻𝐻1 = ℎ0 − ℎ1 − 𝑇𝑇0 𝑠𝑠0 − 𝑠𝑠1

• Exergy destruction: ∆𝐻𝐻𝐷𝐷𝑖𝑖𝐶𝐶𝐵𝐵= � �̇�𝑚𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖 −� �̇�𝑚𝑜𝑜𝑜𝑜𝐵𝐵𝐻𝐻𝑜𝑜𝑜𝑜𝐵𝐵 −𝑊𝑊

• Limits are set to the exergy destruction of throttle (lower) and expander (higher)

Effectiveness of a VT

Page 25: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Exergy destruction of devices:∆𝐻𝐻𝑉𝑉𝑇𝑇= �̇�𝑚𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖𝐻𝐻𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 − �̇�𝑚𝑉𝑉𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝐻𝐻𝑉𝑉𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 − �̇�𝑚𝑉𝑉𝑇𝑇,𝐵𝑜𝑜𝐵𝐵𝐻𝐻𝑉𝑉𝑇𝑇,𝐵𝑜𝑜𝐵𝐵

∆𝐻𝐻𝐽𝐽𝑇𝑇= �̇�𝑚𝑉𝑉𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 𝐻𝐻𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐽𝐽𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 + �̇�𝑚𝑉𝑉𝑇𝑇,𝐵𝑜𝑜𝐵𝐵 𝐻𝐻𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐽𝐽𝑇𝑇,𝐵𝑜𝑜𝐵𝐵

∆𝐻𝐻𝐸𝐸𝐸𝐸𝑣𝑣

= �̇�𝑚𝑉𝑉𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 𝐻𝐻𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐸𝐸𝐸𝐸𝑣𝑣,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 − 𝑊𝑊𝐸𝐸𝐸𝐸𝑣𝑣,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 + �̇�𝑚𝑉𝑉𝑇𝑇,𝐵𝑜𝑜𝐵𝐵 𝐻𝐻𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐸𝐸𝐸𝐸𝑣𝑣,𝐵𝑜𝑜𝐵𝐵 − 𝑊𝑊𝐸𝐸𝐸𝐸𝑣𝑣,𝐵𝑜𝑜𝐵𝐵

• Exergy destruction using effectiveness• ∆𝐻𝐻𝑉𝑉𝑇𝑇= ∆𝐻𝐻𝐸𝐸𝐸𝐸𝑣𝑣 + 1 − 𝜀𝜀𝑉𝑉𝑇𝑇 ∆𝐻𝐻𝐽𝐽𝑇𝑇 − ∆𝐻𝐻𝐸𝐸𝐸𝐸𝑣𝑣

Effectiveness of a VT cont.

Page 26: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Cold fraction: 𝑉𝑉𝑇𝑇𝑐𝑐𝑐𝑐 = �̇�𝑙𝑉𝑉𝑉𝑉,𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐�̇�𝑙𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛

• Pressure Ratio: 𝑉𝑉𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑖𝑖𝑛𝑛𝑃𝑃𝑉𝑉𝑉𝑉,𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐

• Hot outlet Pressure: 𝑃𝑃𝑉𝑉𝑇𝑇,𝐵𝑜𝑜𝐵𝐵 = ⁄1 3 𝑃𝑃𝑉𝑉𝑇𝑇,𝑖𝑖𝑖𝑖 + ⁄2 3 𝑃𝑃𝑉𝑉𝑇𝑇,𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖

• Outlet temperatures are solved with effectiveness

Variables of the VT

Page 27: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Cycle Parameters

Page 28: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Previous Cycle Parameters

Page 29: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Cycle Analysis & Results

Page 30: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Liquid hydrogen yield: 𝜑𝜑 = �̇�𝑙𝑓𝑓

�̇�𝑙

• Ratio of nitrogen to compressed hydrogen flow: 𝜓𝜓 =�̇�𝑙𝑁𝑁2�̇�𝑙

• Liquid yield maximum: 𝜑𝜑𝑙𝑙𝐵𝐵𝐸𝐸 = 𝐵9−𝐵4𝐵9−𝐵7

• Relating 𝜓𝜓 to 𝜑𝜑𝑙𝑙𝐵𝐵𝐸𝐸: 𝜓𝜓 = 𝐵1−𝐵2𝐵11−𝐵10

+ 𝜑𝜑𝑙𝑙𝐵𝐵𝐸𝐸𝐵7−𝐵1𝐵11−𝐵10

State-Point Analysis of Ideal Cycle

Peschka W. Liquid hydrogen: fuel of the future. Springer Science & Business Media; 2012 Dec 6.

Page 31: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• O-P conversion happens at LN2 Bath and LH2 tank

• �̇�𝑚𝑏𝑏𝑜𝑜𝑖𝑖𝑖𝑖 = �̇�𝑄𝑉𝑉𝑇𝑇𝑛𝑛𝑇𝑇𝐵𝑔𝑔−𝐵𝑓𝑓

• �̇�𝑚∗ = �̇�𝑚 + �̇�𝑙𝑏𝑏𝑜𝑜𝑖𝑖𝑐𝑐𝜑𝜑𝑚𝑚𝑇𝑇𝑚𝑚

• 𝜑𝜑∗ = �̇�𝑙𝑓𝑓

�̇�𝑙∗= 𝜑𝜑𝑚𝑚𝑇𝑇𝑚𝑚

1+ ��̇�𝑄𝑉𝑉𝑇𝑇𝑛𝑛𝑇𝑇 �̇�𝑙𝑓𝑓 𝐵8−𝐵7

• 𝜓𝜓∗ =�̇�𝑙𝑁𝑁2�̇�𝑙∗

O-P conversion at LH2 Tank

Page 32: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Maximum yield of LN2 Bath: 𝜑𝜑𝑁𝑁2,𝑙𝑙𝐵𝐵𝐸𝐸 =�̇�𝑙𝑁𝑁2,𝑓𝑓

�̇�𝑙𝑁𝑁2= 𝐵𝑁𝑁,1−𝐵𝑁𝑁,2

𝐵𝑁𝑁,1−𝐵𝑁𝑁,5

• Work of LN2 Bath: 𝛼𝛼 = 1𝜑𝜑

�̇�𝑊�̇�𝑙 𝑐𝑐𝑜𝑜𝑙𝑙𝑣𝑣

• Work of compressor: �̇�𝑊�̇�𝑙 𝑐𝑐𝑜𝑜𝑙𝑙𝑣𝑣

= 𝑇𝑇𝑖𝑖𝑖𝑖 � 𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑜𝑜𝑜𝑜𝐵𝐵 − ℎ𝑖𝑖𝑖𝑖 − ℎ𝑜𝑜𝑜𝑜𝐵𝐵

• 𝛼𝛼𝑁𝑁2 = 1𝜑𝜑𝑁𝑁2,𝑚𝑚𝑇𝑇𝑚𝑚

𝑇𝑇𝑁𝑁,1 � 𝑠𝑠𝑁𝑁,1 − 𝑠𝑠𝑁𝑁,2 − ℎ𝑁𝑁,1 − ℎ𝑁𝑁,2

Work of LN2 Bath

Peschka W. Liquid hydrogen: fuel of the future. Springer Science & Business Media; 2012 Dec 6.

Page 33: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• State-Point work of liquefaction for pre-cooled L-H cycle:

𝛼𝛼𝐻𝐻2 =1𝜑𝜑∗

𝑇𝑇1 � 𝑠𝑠1 − 𝑠𝑠2 − ℎ1 − ℎ2 + 𝛼𝛼𝑁𝑁2 𝜓𝜓∗ +�̇�𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵

ℎ12 − ℎ11

• Peak pressure of LN2 Bath: 100 bar (10 MPa)

• Temperature of LN2 Bath: 63.2 K or 77 K

• State-Point work of liquefaction results:- 𝛼𝛼𝐶𝐶,63.2 𝐾𝐾 = 13.65 kWh∙kg-1

- 𝛼𝛼𝐶𝐶,77 𝐾𝐾 = 19.95 kWh∙kg-1

• Peschka value: 𝛼𝛼𝑃𝑃 = 16.27 kWh∙kg-1

State-Point Results

Page 34: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Work of liquefaction for component-based model:

- 𝛼𝛼𝑐𝑐,63.2 𝐾𝐾 = 14.82 kWh∙kg-1

- 𝛼𝛼𝑐𝑐,77 𝐾𝐾 = 20.83 kWh∙kg-1

• Percentage error between results:

- 63.2 K: 8.57%

- 77 K: 4.41%

• Error caused by heat exchanger and LN2 components

State-Point vs. Component Results

Page 35: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Vortex Tube Simulation

Page 36: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Reduced Work for L-H w/VT Cycle

Page 37: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Cycle Analysis & Results

Page 38: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

Simulation of L-H w/VT Cycle

Page 39: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Simulate higher complexity cycles e.g. pre-cooled Claude

• Vary the LN2 Bath temperature to 63.2 K

• Higher inlet pressure tests for vortex tube

• Continued tests of vortex tube catalyzation

• Test vortex tube as a final liquefaction component

Recommendations

Page 40: Analysis of Vortex Tube Applications in Hydrogen Liquefaction

• Simplified Statistical thermodynamic models created

• Variable components created for the pre-cooled L-H cycle

• Component model verified with state-point model

• Effectiveness introduced as a new VT variable

• Required effectiveness provided for combinations of 𝑉𝑉𝑇𝑇𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑇𝑇𝑃𝑃𝑃𝑃 values

Summary