Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and...

23
Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker, Ph.D., S.E. Director, MCEER University at Buffalo Annie Kammerer, Ph.D., P.E US Nuclear Regulatory Commission Michael ConstanGnou, Ph.D. University at Buffalo Michael Salmon, P.E. Los Alamos NaGonal Laboratory SILER InternaGonal Workshop, Rome June 18 and 19, 2013

Transcript of Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and...

Page 1: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Analysis  and  design  of  seismically  isolated  nuclear  structures  in  the  

United  States  

Andrew  Whi8aker,  Ph.D.,  S.E.  Director,  MCEER  

University  at  Buffalo  Annie  Kammerer,  Ph.D.,  P.E  

US  Nuclear  Regulatory  Commission  Michael  ConstanGnou,  Ph.D.  

University  at  Buffalo  Michael  Salmon,  P.E.  

Los  Alamos  NaGonal  Laboratory  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 2: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Acknowledgments  

•  US  Nuclear  Regulatory  Commission  •  Dr.  Robert  Budnitz,  LBNL  •  Professor  Yin-­‐Nan  Huang,  NaGonal  Taiwan  University  •  Manish  Kumar2  •  ASCE  Standard  4  Commi8ee  •  LBNL/USNRC  oversight  commi8ee  –  Nilesh  Chokshi  –  Antonio  Godoy  –  James  Johnson  –  Robert  Kennedy  –  Don  Moore  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 3: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Outline  

•  Isolators  for  US  pracGce  •  Performance  expectaGons  •  Earthquake  ground  moGons  for  design  •  Analysis  of  nuclear  structures  •  Design  consideraGons  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 4: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Isolators  

•  Addressed  for  US  pracGce  –  Low  damping  natural  rubber  –  Lead-­‐rubber  –  Spherical  sliding  (FP)  bearing  

•  Others  acknowledged  in  the  NUREG/ASCE  4-­‐**  –  Elastomeric  

•  High-­‐damping  rubber  •  SyntheGc  rubber  (neoprene)  

–  Sliding  •  EradiQuake  

–  3D  isolaGon  system  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 5: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Isolators  for  the  nuclear  industry  

•  High-­‐damping  rubber  –  Compound  +  cure  –  Grant  et  al.  (2004)  

•  Phenomenological  model  •  BidirecGonal  horizontal  response  •  Calibrated  to  measured  responses  

–  ElasGc  force  by  5th  order  polynomial  –  Nonlinear  damping  funcGon  –  Scragging  and  Mullins  effects  

•  No  rate  dependence  –  Path  forward  for  a  HDR  isolator  

•  One  compound,  complete  cure  –  Documented  process  by  isolator  geometry  –  Thermo-­‐chemical-­‐mechanical  analysis  

•  USNRC  6-­‐step  process  •  Develop  V&V  models  without  calibraGon  

Journal of Earthquake Engineering,Vol. 8, Special Issue 1 (2004) 161–185c© Imperial College Press

BIDIRECTIONAL MODELLING OFHIGH-DAMPING RUBBER BEARINGS

DAMIAN N. GRANT

European School for Advanced Studies in Reduction of Seismic Risk (ROSE School),Universita degli Studi di Pavia, 27100 Pavia, Italy

GREGORY L. FENVES

Department of Civil and Environmental Engineering,University of California, Berkeley, CA 94720, USA

ANDREW S. WHITTAKER

Department of Civil, Structural and Environmental Engineering,State University of New York at Buffalo, NY 14260, USA

High-damping rubber (HDR) bearings are used in seismic isolation applications forbuildings and bridges, although no models are currently available for the accurate de-scription of the shear force–deformation response under bidirectional loading. A strainrate-independent, phenomenological model is presented which effectively represents thestiffness, damping, and degradation response of HDR bearings. The model decomposesthe resisting force vector as the sum of an elastic component in the direction of the dis-placement vector and a hysteretic force component parallel to the velocity vector. Theelastic component is obtained from a generalised Mooney–Rivlin strain energy function,and the hysteretic component is described by an approach similar to bounding sur-face plasticity. Degradation is decomposed into long term (“scragging”) and short term(“Mullins’ effect”) components. Calibration is carried out over a series of bidirectionaltest data, and the model is shown to provide a good match of slow strain-rate experimen-tal data using a unique set of material parameters for all tests. A testing protocol andcalibration of the model for use in design of structures with HDR bearings are discussed.

Keywords: High-damping rubber bearings; seismic isolation; mathematical model.

1. Introduction

Seismic isolation is widely used in buildings and bridges to protect them from theeffects of strong ground motion. Flexible isolation bearings are placed between theprimary mass of a structure and the support motion, effectively using inertia andincreased flexibility to limit structural deformation in critical components. In thismanner, buildings are isolated from their foundations, and the superstructures ofbridges are isolated from the piers.

High-damping rubber (HDR) bearings are a type of seismic isolator used inbridge and building construction and retrofit. As with other elastomeric isolation de-vices, HDR bearings are composed of layers of an elastomeric compound, reinforced

161

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 6: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

USNRC  and  DOE  commonaliGes  

•  First  Onset  of  Significant  InelasGc  DeformaGon  –  Applied  at  the  component  level  –  Developed  for  convenGonal  nuclear  structures  –  Adopted  in  principle  for  isolaGon  NUREG  

•  Risk-­‐oriented  framework  of  ASCE  43  –  FOSID  at  MAFE  =  E-­‐5  

–  How  applied  to  nonlinear  isolaGon  systems?  –  DBE  =  DF  *  UHS  at  E-­‐4  =  GMRS  –  1%  NEP  for  100%  DBE  shaking  –  10%  NEP  for  150%  DBE  (EDB  GMRS)  shaking  

–  Plant  level  HCLPF  for  USNRC-­‐regulated  NPPs  –  1%  NEP  for  167%  GMRS  shaking  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 7: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 8: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,
Page 9: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Table 2.1 Performance expectations for seismically isolated safety-related nuclear structures (ASCE forthcoming)

Isolation system Superstructure Other SSCs

Hazard Use Isolation system displacement Performance Acceptance

criteria Performance Performance Umbilical lines Hard Stop or

Moat

DBE Response

spectrum per Chapter 2

Production testing of isolators. Design loads for isolated superstructure. In-structure response spectra (ISRS).

Mean and 80th percentile isolation system displacements.

No damage to the isolation system for DBE shaking.

Production testing of each isolator for the 80th percentile isolation system displacement and corresponding axial force. Isolators damaged by testing cannot be used for construction.

Conform to consensus materials standards for 80th percentile demands. Greater than 99% probability that component capacities will not be exceeded. Greater than 99% probability that the superstructure will not contact the moat.1

Conform to ASME standards for 80th percentile demands; adjust ISRS per Section 6.2.3. Greater than 99% probability that component capacities will not be exceeded.

- -

BDBE 150% of DBE

Prototype testing of isolators. Selecting moat width (or Clearance to Stop).

90th percentile isolation system displacement.2

Greater than 90% probability of the isolation system surviving BDBE shaking without loss of gravity-load capacity.

Prototype testing of a sufficient3 number of isolators for the CS displacement and the corresponding axial force. Isolator damage is acceptable but load-carrying capacity is maintained.

Greater than 90% probability that the superstructure will not contact the moat. Achieved by setting the moat width equal to or greater than the 90th percentile displacement. Greater than 90% probability that component capacities will not be exceeded.

Greater than 90% probability that component capacities will not be exceeded.

Greater than 90% confidence that all safety-related umbilical lines and their connections, shall remain functional for the CS displacement by testing, analysis or a combination of both.

Clearance to Stop (CS) or moat width equal to or greater than the 90th percentile displacement. Damage to the moat is acceptable in the event of contact.

1. Can be achieved by satisfying the requirement for BDBE shaking.

2. 90th percentile BDBE displacements may be calculated by multiplying the mean DBE displacement by a factor of 3.

3. The number of prototype isolators to be tested shall be sufficient to provide the required 90+% confidence.

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 10: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  

•  Basic  representaGon  is  a  spectrum  – PSHA  – Geometric  mean  UHRS  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 11: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  

•  Basic  representaGon  is  a  spectrum,  but  which  one?  – Uniform  hazard  spectrum  (Cornell,  1968)  –  CondiGonal  mean  spectrum  (Cornell  and  Baker,  2006)  –  CondiGonal  spectra  (Baker  et  al.,  2011)  

Page 12: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  

•  Ground  moGons  consistent  with  a  spectrum  – Spectrum  compaGble  – Maximum/minimum  

Page 13: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  •  Ground  moGons  consistent  with  a  spectrum  – Column  1:  30  spectrum  compaGble    – Column  2:  Max/min;  preserve  geometric  mean  

Page 14: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  

•  CorrelaGon  of  ground  moGon  components  – USGS  Technical  Report  by  Huang  et  al.  • WUS  Far  field  • WUS  Near  field    

•  CEUS  – MoGons  for  analysis  should  be  appropriate  •  Recover  characterisGcs  of  recorded  ground  moGons  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 15: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  

•  CorrelaGon  of  ground  moGon  components  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 16: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Earthquake  input  for  RH  analysis  Statistics of the correlation coefficients for 147 WUS near fault motions

Type of correlation coefficient Mean Standard

deviation Median Ninetieth percentile

Cumulative probability for

Maximum value 0.24 0.15 0.21 0.44 0.74

FN-FP 0.14 0.12 0.12 0.31 0.89

Statistics of the correlation coefficients for 165 WUS far-field motions

Type of correlation coefficient Mean Standard

deviation Median Ninetieth percentile

Cumulative probability for

Maximum value 0.21 0.13 0.18 0.38 0.79

FN-FP 0.14 0.11 0.11 0.29 0.91

Siler  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 17: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Analysis  methods  

•  Site  independent  – CerGfied  plant  design  – Surface  mounted  LLWR  or  SMR  – Need  to  quanGfy  input  at  the  foundaGon,  SIDRS  •  Three  translaGonal  components  •  Three  rotaGonal  components?  

–  Dependent  on  facility  geometry  and  soil  properGes  

•  Site  independent  – Three  components  of  input  to  soil  domain  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 18: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Site  dependent  analysis  

•  Three  methods  of  analysis  •  Fully  coupled,  nonlinear  Gme  domain  •  Fully  coupled,  frequency  domain  •  MulGstep  

•  Fully  coupled,  nonlinear  Gme-­‐domain  –  Soil  (LB,  BE,  UB),  isolators,  SSCs  –  ABAQUS,  LS-­‐DYNA,  NRC  ESSI  –  Used  for  all  types  of  isolators  –  3D  soil  domain,  domain  reducGon  method  

•  Full  coupled,  frequency  domain  per  ASCE  4  –  LB,  BE,  UB  soil  properGes  –  SASSI  or  similar  –  LDR  bearings  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 19: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Site  dependent  analysis  

•  MulG-­‐step  –  Frequency  domain  analysis  to  compute  SIDRS;  equivalent  linear  isolators  

– Ground  moGons  matched  to  SIDRS  – Nonlinear  analysis  of  isolated  superstructure  – Nonlinear  models  of  isolators  

–  How  many  sets  of  ground  moGons  as  input?  – Mean  response:  5  sets  of  moGons  (15  analyses)  –  PercenGles  (90,  99):  10  sets  of  moGons  OR  use  factors  derived  by  Huang  et  al.  (2009)    

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 20: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

Design  consideraGons  

•  Basemat  and  foundaGon  –  Loss  of  isolator  –  Capacity  design  of  pedestal  and  connecGons  

•  External  events  –  Flooding  – Aircrao  impact,  IED  detonaGon  

•  Fire  suppression  system  •  OperaGng  temperature  •  Isolator  QA/QC  •  Prototype  and  producGon  tesGng  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 21: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

MCEER  research  underway  

•  Earthquake  engineering  – Modeling  seismic  isolators  under  extreme  loadings  –  Small  modular  reactors  

•  Issues  related  to  embedment    – Design  procedures  for  hard  stop  –  Time-­‐domain  SSI  and  SSSI  analysis  of  NPPs  –  RC  and  SC  walls,  including  fragility  funcGons  

•  Blast  and  impact  engineering  - Aircrao  impact  on  isolated  nuclear  structures  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013  

Page 22: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,
Page 23: Analysis and design of seismically isolated nuclear ... and design of seismic... · Analysis and design of seismically isolated nuclear structures in the United States Andrew Whi8aker,

[email protected]  

www.csee.buffalo.edu  www.mceer.buffalo.edu  

SILER  InternaGonal  Workshop,  Rome  June  18  and  19,  2013