Analysis and Design of Linear Control System Part2-...Bode diagram Fig. 12.6: PI controller ( ) 1 (...

24
Analysis and Design of Linear Control System Part2- Instructor: Assoc. Prof. Takeshi Hatanaka (S5-204B) Spring, 2015

Transcript of Analysis and Design of Linear Control System Part2-...Bode diagram Fig. 12.6: PI controller ( ) 1 (...

  • Analysis and Design of Linear

    Control System –Part2-

    Instructor: Assoc. Prof. Takeshi Hatanaka (S5-204B)

    Spring, 2015

  • 12.1 Modeling Uncertainty

    9.3 Stability Margins

    2nd Lecture

    Modeling Uncertainty, Stability Margin

    Robust Stability

    Keyword :

    12 Robust Performance

    (12.3 Performance in the Presence of Uncertainty)

    Complementary Sensitivity Function

    Small Gain Theorem

    Keyword :

    12.2 Stability in the Presence of Uncertainty

    (11.5 Fundamental Limitation)

    (9.2 The Nyquist Criterion)

    12.2 Stability in the Presence of Uncertainty

    (pp. 347--352)

    (pp. 278--282)

    (pp. 352--358)

    (pp. 358--361)

    (pp. 331--340)

    (pp. 270--278)

  • 12.1 Modeling Uncertainty

    • Parametric uncertainty

    parameters describing the system are unknown

    Mass of a car changes with the number of passengers

    Fig. 3.3Disturbance response

    (3rd) (4th) (5th)

    mass

    gear ratio

    20001600 m

    14 ,12 ,10 speed 4010 ev

    3

  • Modeling Uncertainty

    • Parametric uncertainty

    parameters describing the system are unknown

    • Unmodeled dynamics

    neglected mechanisms such that the simple

    model does not include.

    • detailed model of the engine dynamics

    • slight delays that can occur in electronically

    controlled engines

    The design based on a simple nominal

    model will give satisfactory control. Ex. 12.1

  • 4

    122 2

    2.05.0~

    i iii ss

    s

    sP

    Unmodeled Dynamics

    Vibration mode

    Frequency response

    Nominal System

    (Rigid body mode)

    vibration modeUnmodeled dynamics

    http://mobile.jaxa.jp/gallery_list/

    index.php?category=iss

    P~

    P

    P

    sP

    5.0

    P

    02.0,10

    2,5.0,2.0

    4

    321

    i

  • Unmodeled Dynamics

    Additive perturbations Multiplicative perturbations

    : nominal model

    : unmodeled

    dynamics

    : actual model

    PP~

    P

    PP )1(~

    P

    P/:

    PP~

    ,

    Frequency response

    P~

    P

  • [Ex. 12.2] Similar in Open Loop but Large Differences in Closed Loop

    (a) Step response (open loop) (b) Step response (closed loop)

    open loop

    Fig. 12.3(a)

    (12.1)

    [When Are Two Systems Similar ?]

    1)(1

    s

    ksP

    22 )1)(1()(

    sTs

    ksP 025.0T

    100kur y

    )(sC )(sPe

    1

    r y)(sP 1)( sC

    closed loop

  • [Ex. 12.3] Different in Open Loop but Similar in Closed Loop

    (a) Step response (open loop) (b) Step response (closed loop)

    open loop

    Fig. 12.3(b)

    (12.2)

    [When Are Two Systems Similar ?]

    closed loop

    1)(1

    s

    ksP 100k

    )1()(2

    s

    ksP

    r y)(sP

    ur y)(sC )(sP

    e

    1

    1)( sC

  • Nyquist Criterion (§9.2)

    Re

    1

    O

    Im

    )( jL

    Fig. 11.1

    ur y)(sC )(sP

    e

    1

    d n

    PCL

    Loop Transfer Function

    Nyquist’s Stability Theorem

    Theorem 9.1 and 9.2

  • )( jL

    Stability Margin (§9.3)

    Re

    1

    OP

    G

    Im

    m

    Fig. 9.9 (a)

    mg/1

    0 dB

    180

    gc

    pcPhase

    Gain

    mg1 02 0 lo g

    m

    Fig. 9.9 (b)

    )(/1 pcm iLg

    Gain Margin

    (9.5) 52mg

    Phase Margin

    )(a r g g cm iL (9.6) 6 03 0m

    Stability Margin ms

    8.05.0 mssm Ms /1

    ( : maximum sensitivity)ms sM /1

    ( 6-14 dB)

    Fig. 11.6(b)

  • Robust Stability Using Nyquist’s Criterion

    Additive Uncertainty

    : stable perturbations

    Perturbed Nyquist curve

    doesn’t reach -1 (i.e. perturbed

    closed loop is stable) when

    Fig. 12.5(b)

    Nyquist plot (additive uncertainty)

    PP

    PCL

    CPCCP )(

    LC 1C

    Im

    ReO

    Loop Transfer Function

    CL

    P

    C

  • Fig. 12.5(b)

    C

    Robust Stability Using Nyquist’s Criterion

    Perturbed Nyquist curve doesn’t reach -1

    when

    LC 1C

    PC

    1

    CS

    1

    PCS

    1

    1

    TPC

    PC

    P

    11

    PC

    PCT

    1

    P/:

    Im

    ReO

    Additive Uncertainty

    Multiplicative Uncertainty

    P

    C

    P

    C

  • Robust Stability Using Nyquist’s Criterion

    small big is allowed

    big small is allowed

    )( jT

    )( jT

    )( j

    )( j

    Sufficient condition for robust stability

    (12.6)0

    )(

    1)(

    jTj

    Uncertainty

    P

    C

  • HW

    un

    P

    T

    PC

    CGun

    1 P

    dPT

    G

    dG

    un

    un (12.13)

    Performance in the Presence of Uncertainty (§12.3)

    Fig. 11.1

    ur y)(sC )(sP

    e

    1

    d n

    Measurement noise typically has high frequencies

    dP

    noise

  • Bode’s Integral Formula (§11.5)

    Complementary sensitivity function:

    where the summation is over all right

    half-plane zeros.

    (11.20)

    (11.19)

    Re

    Im

    Zero

    slow fast

    izd

    jT 1)(log

    0 2

    kpdjS

    0 )(log

    0||log T1|| T

    T

    1|| T

    0||log T

    RHP zeros fast (big): better

    slow (small): worse

    Sensitivity function: (1st lecture)

    Re

    Im

    ××Pole

    slow fast

  • Complementary Sensitivity Function

    )()(1

    )()()(

    sCsP

    sCsPsT

    1

    11

    1

    PC

    PC

    PCTS

    : Complementary Sensitivity

    Bandwidth Frequency bT

    ])dB[3( 2

    1)( jT

    ])dB[2( 25.1TM

    )( jT

    ]dB[3bT

    : Maximum Peak

    Magnitude of

    )(max

    jTMT

    ])dB[ 2( 25.1TM

    )( jTTM

  • Robust Stability

    (sufficient condition)

    Fig. 12.6Bode diagram

    : PI controller

    )(

    1)(

    jTj

    0142.0

    38.1)(

    ssP

    ssC

    18.072.0)(

    [Ex. 12.5] Cruise Control

    40

    20

    0

    -20

    -40 210 110 010 110 210

    should be smaller than

    most sensitive

    T

    13.1TM

    T/1

    T/135.0mt

    21.1bT

  • around the gain crossover frequencies

    small is required

    Fig. 12.6 ’Bode diagram

    A simple model that describes

    the process dynamics well

    around the crossover frequency

    is often sufficient for design

    Robust Stability (sufficient condition)

    1

    T

    )( j

    T

    T/1

    [Ex. 12.5] Cruise Control

  • Robust Stability Using Small Gain Theorem

    sufficient condition for robust stability

    (12.6)

    another interpretation by using small gain theorem

    Theorem 9.4 Small Gain Theorem (§9.5)

    Consider the closed loop system shown in Fig. 9.15,

    where and are stable systems and the signal

    spaces are properly defined. Let the gains of the

    systems and be and . Then the closed

    loop system is input/output stable if .

    Fig. 9.15

    1H 2H

    1H 2H 1 2

    121

    2H

    1H

    0 )(

    1)(

    jT

    j

  • Robust Stability Using Small Gain Theorem

    sufficient condition for robust stability

    Small Gain Theorem

    Closed loop system is input/output stable

    Fig. 12.7

    P

    C

    1

    T

    1 T

    T

    PC

    PCT

    1

  • for small

    for large

    : with integral action

    Load Sensitivity Function* (§11.3)

    (11.8, 11.9)C

    TPS

    PC

    PGyd

    1

    )(sCs

    ki

    Fig. 11.1

    ur y)(sC )(sP

    e

    1

    d n

    C

    1

    1

    1

    sP

    P

    iyd k

    sCC

    TG 1 )1( T 

    PPSGyd )1( S 

    10-2 10-1 100 101 102

  • for small

    for large

    Noise Sensitivity Function* (§11.3)

    (11.10)

    PID + 2nd-order

    noise filter

    Roll off

    P

    TCS

    PC

    CGun

    1

    Fig. 11.1

    ur y)(sC )(sP

    e

    1

    d n

    C

    P

    1

    PPTGun

    1 )1( T 

    CCSGun )1( S 

    3)1(1

    s

    P

    12/1

    22

    sTsTsk

    s

    kkC

    ff

    di

    p

    10-1 100 101 102

  • 12.1 Modeling Uncertainty

    9.3 Stability Margins

    2nd Lecture

    Modeling Uncertainty, Stability Margin

    Robust Stability

    Keyword :

    12 Robust Performance

    (12.3 Performance in the Presence of Uncertainty)

    Complementary Sensitivity Function

    Small Gain Theorem

    Keyword :

    12.2 Stability in the Presence of Uncertainty

    (11.5 Fundamental Limitation)

    (9.2 The Nyquist Criterion)

    12.2 Stability in the Presence of Uncertainty

    (pp. 347--352)

    (pp. 278--282)

    (pp. 352--358)

    (pp. 358--361)

    (pp. 331--340)

    (pp. 270--278)

  • Reading Assignment: 3rd Lecture

    11.4 Feedback Design via Loop Shaping

    Loop Shaping

    Bode’s Relations

    Keyword :

    11 Frequency Domain Design

    (9.4 Bode’s Relations and Minimum Phase Systems)

    11.5 Fundamental Limitations

    Right Half-Plane Poles and Zeros

    Gain Crossover Frequency Inequality

    Keyword :

    (pp. 326--331)

    (pp. 283--285)

    (pp. 331--340)