An1683x Flyback Design

download An1683x Flyback Design

of 25

Transcript of An1683x Flyback Design

  • 8/18/2019 An1683x Flyback Design

    1/25

    Power Conversion

    Version 1.2 , March 2000

    Application Note

      AN-SMPS-1683X-1

    CoolSET™

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

      Author: Harald Zöllinger

    Published by Infineon Technologies AG

    http://www.infineon.com

      N e v e r s t o p t h i n k i n g

  • 8/18/2019 An1683x Flyback Design

    2/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    1 of 24 AN-SMPS-1683X-1V1.2

    Contents:

    Circuit description ....................................................................................................... 2

    Operating Principles.................................................................................................... 2

    Circuit diagram:........................................................................................................ 4

    Design procedure for fixed frequency Flyback Converter with TDA16831...-34

    operating in discontinuous current mode. ................................................................... 5

    Define input parameters:.......................................................................................... 5

    Input Diode Bridge: .................................................................................................. 5

    Determine Input capacitor:....................................................................................... 5

    Transformer Design: ................................................................................................ 7

    Winding design: ....................................................................................................... 8

    Output Rectifier:..................................................................................................... 10

    Output Capacitor:................................................................................................... 10

    Output Filter: .......................................................................................................... 11

    VCC-Supply: .......................................................................................................... 11

    Calculation of snubber network:............................................................................. 12

    Calculation of losses: ............................................................................................. 13

    Voltage regulation loop: ......................................................................................... 14

    Regulation loop:..................................................................................................... 15

    Transfer characteristics of regulation loop elements:............................................. 15

    Transformer Construction ...................................................................................... 20

    Layout Recommendation:...................................................................................... 21

  • 8/18/2019 An1683x Flyback Design

    3/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    2 of 24 AN-SMPS-1683X-1V1.2

    Circuit description

    The TDA 1683X is a current mode pulse width modulator with an integrated CoolMOS Transistor. Itmeets the need for minimum external control circuitry for a flyback application.Current mode control means that the current through the MOS transistor and flyback transformer iscompared with a feedback signal derived from the output voltage of the flyback application. The resultof that comparision determines the on time of the MOS transistor.To minimize external circuitry the current sense circuitry is integrated within the CoolSET controller.The oscillator resistor and capacitor which determine the switching frequency are also integrated,reducing the external connections. Special efforts have been made to compensate temperaturedependancy and to minimize tolerances of the passive components.

    Operating PrinciplesThe TDA1683X is designed for a current mode flyback configuration in discontinous current mode.The control circuit has a fixed frequency, and the duty cycle of integrated Cool-Mos switch iscontrolled to maintain a constant output voltage.The diagram below (Fig. 1) shows the input voltage and the primary and secondary transformercurrent.When the Cool-Mos transistor is turned on, the start of all windings on the transformer will go positive.The rectifier diode on the secondary side will be reverse-biased and will not conduct. Therefore nocurrent will flow in the secondary while the Mosfet is turned on. During this phase energy is beingstored in the primary winding inductance and the transformer may be treated as a simple seriesinductor. The diagram shows that there will be a linear increase of primary current (Ipri) while theprimary Cool-MOS switch is on.When the Cool-MOS transistor is turned off, the voltage will reverse on all windings (flyback action)until clamped by the secondary side widing through the secondary rectifier diode. Now the secondaryrectifier diode will conduct, and the magnetizing energy in the core will now transfer to the outputduring the reset interval.This current will decrease from it’s peak value to zero, as shown in the diagram (Isec). In this period thecomplete stored energy in the primary inductance will be transferred to the secondary (neglectinglosses), before the next store cycle starts. The secondary voltage is “reflected” back through thetransformer turns ratio to the primary winding and added to the input voltage (VIN+VR). Additionaltransient voltage may appear on the primary winding due to energy stored in uncoupled “leakage”inductance in the primary winding which isn’t clamped by the secondary side winding.If the flyback current does not reach zero before the next “on” -cycle the converter is operating incontinous current mode. When this system reverts to the continous operation, the transfer function ischanged to a two pole system with low output impedance and additional design rules becomeimportant.

  • 8/18/2019 An1683x Flyback Design

    4/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    3 of 24 AN-SMPS-1683X-1V1.2

    Voltage and Current waveforms in discontinous mode operation:

    VIN = VINMIN   VIN > VINMIN

    Fig. 1

    VINMIN + VR

    VINMIN

    0 T

    IPEAK IPRI

    VIN + VR

    VIN

    0

    IPEAK IPRI

    ISEC

    IPEAKISEC

    IPEAK

    Light load full load

     tOFF tON  TOFF  T tON

  • 8/18/2019 An1683x Flyback Design

    5/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    4 of 24 AN-SMPS-1683X-1V1.2

    Circuit diagram:

    Fig. 2

  • 8/18/2019 An1683x Flyback Design

    6/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    5 of 24 AN-SMPS-1683X-1V1.2

    Design procedure for fixed frequency Flyback Converter withTDA16831...-34 operating in discontinuous current mode.

    Procedure Example

    Define input parameters:

    Minimal AC input voltage : VacminMaximal AC input voltage : VacmaxLine frequency facMax. Output power: POmaxMin. Output power: POminOutput voltage: VOUTOutput ripple voltage: VOrippleReflection voltage: VREstimated efficiency: ηDC ripple voltage: Vripple

    Auxiliary Voltage Vaux.Optocoupler Gain: GCUsed CoolSET

    85V270V50Hz40W  1W12V0,05V

    100V0,820V12V1TDA16834 for 40W @ 25°C

    There are no special requirements imposed on theinput rectifier and storage capacitor in the flybackconverter. The components will be selected to meet

    the power rating and hold-up requirements.Maximum input power:

     η 

    OUT 

     MAX 

    PP   =   (Eq 1)

    Input Diode Bridge:

    ϕ cosmin ⋅=

    ac

     MAX PRMS 

    P I    (Eq 2)

    2max ⋅=   acdcinpk    V V    (Eq 3)

    Determine Input capacitor:

    Minimum peak input voltage at ”no load” condition

      2minmin   ⋅=   ac pk dc   V V    (Eq 4)

    W W 

    P MAX    508,0

    40==

     AV 

    W  I PRMS    98,0

    6,085

    50=

    ⋅=

    V V V dcinpk    3822270   =⋅=

    V V V   pk dc   120285min   =⋅=

  • 8/18/2019 An1683x Flyback Design

    7/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    6 of 24 AN-SMPS-1683X-1V1.2

    ripple pk dcdc   V V V    −=   minmin   (Eq 5)

    Calculating discharging time at each half line cycle:

     

         

     

     

     

     

    +⋅=90

    arcsin

    15  min

    min

     pk dc

    dc

     D

    msT    (Eq 6)

    Required energy at discharging time:

       D MAX  IN    T PW    ⋅=   (Eq 7)

    Calculating input capacitor value:

    2min

    2min

    2

    dc pk dc

     IN  IN 

    V V 

    W C 

    ⋅=   (Eq 8)

    Alternative a rule of thumb on choosing CIN

    Input voltage CIN115V 2µF/W230V 1µF/W85V ...270V 2 ...3µF/W....................

     IN 

     IN 

     pk dcdcC 

    W V V 

      ⋅−=

      22minmin   (Eq 9)

    Select a capacitor out of Siemens/Epcos Databookof Aluminium Electrolytic Capacitors.

    The following types are preferred:

    For 85°C Applications:Series B43303-........ 2000h lifetime  B43501-........ 10000h lifetime

    For 105°C Applications:Series B43504-........ 3000h lifetime  B43505-........ 5000h lifetime

    we choose a ripple voltage of 20V

    V V V V dc   10020120min   =−=

    msV 

    msT  D   1,890

    120

    100arcsin

    15   =    

     

     

     

     

    +•=

    WsmsW W  IN    41,01,850   =⋅=

    F V V 

    WsC  IN    µ 186

    1000014400

    41,0222

      =−

    ⋅=

    F F W    µ  µ    150350   =⋅

    We choose 180µF 400V

    V F 

    WsV V dc   2,99

    180

    41,0214400   2min   =

    ⋅−=

     µ 

  • 8/18/2019 An1683x Flyback Design

    8/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    7 of 24 AN-SMPS-1683X-1V1.2

    Transformer Design:

    Calculation of peak current on primary inductance:

    maxmin

    2

     DV 

    P I 

    dc

     MAX  LPK  ⋅

    ⋅=   (Eq 10)

    3

    max D I  I   LPK  LRMS    ⋅=   (Eq 11)

    Calculating of primary inductance within limit of

    maximum Duty-Cycle :

     f  I 

    V  D L

     LPK 

    dcP ⋅

    ⋅=   minmax   (Eq 12)

    Select core type and inductance factor (AL) fromSiemens/Epcos ferrite Databook or CD-ROMPassive Components.

    Fix maximum flux density:Bmax ≈ 0,2T ...0,3T for ferrite cores depending on corematerial.

    We choose 0,2T for material N27

    The primary turns can be calculated as:

     L

    PP

     A

     L N    =   (Eq 13)

    Number of secondary turns can be calculated as:

    ( )

     R

    FDIODE OUT P

    V V  N  Ns

    +⋅=   (Eq 14)

    Note the internally limited Duty Cycle!!

    Dmax = 0,5 (see datasheet TDA16834)

     AV 

    W  I  LPK    14,2

    47,099

    502=

    ⋅⋅

    =

     A A I  LRMS    85,03

    5,014,2   =⋅=

     H kHz A

    V  LP   µ 217

    10014,2

    9947,0=

    ⋅⋅

    =

    Selected core: E 32/16/9Material = N27AL = 244 nH

     s = 0,5 mmAe = 83 mm

    2

    AN = 108,5 mm2

    lN = 64,4 mm

    weight ≈ 30gPV  = 190mW/g (200mT, 100kHz, 100°C)

    85,29244

    217==

    nH 

     H  N P

     µ   turns

    we choose Np = 30 turns

    ( )81,3

    100

    7,01230=

    +⋅=

    V V  Ns

    we choose Ns = 4 turns

  • 8/18/2019 An1683x Flyback Design

    9/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    8 of 24 AN-SMPS-1683X-1V1.2

    Number of auxiliary turns can be calculated as:

    ( )

     R

    FDIODE auxP

    aux V 

    V V  N 

     N 

    +⋅

    =   (Eq 15)

    Postcalculation of primary inductance, primary peakcurrent, max. flux density and gap:

    lPP   A N  L   ⋅=  2   (Eq 16)

     f  Lp

     DV  I 

      dc Lpk 

    ⋅=   maxmin   (Eq 17)

    eP

     LPK P

     A N 

     I  L B

    ⋅⋅

    =max   (Eq 18)

    P

    eP

     L

     A N s

    ⋅⋅⋅⋅=

    −   27104   π 

      (Eq 19)

    Winding design:

    (see also page 20Transformer Construction)

    The primary winding of 30 turns has to be split into15+15 turns in order to get best coupling betweenprimary and secondary winding.

    The effective bobbin width and winding cross sectioncan be calculated:

     M  BW  BW e   ⋅−=   2   (Eq 20)

     BW 

     BW  A A

      e N  Ne

    ⋅=   (Eq 21)

    Calculate copper section for primary and secondarywinding:

    The winding cross section AN has to be splitted intothe number of windings.Primary winding 0,5Secondary winding 0,45Auxiliary winding 0,05

    ( )81,3100

    7,01230

    =+⋅

    = V V V 

     N aux

    we choose Naux = 4 turns

     H nH  LP   µ 220244302 =⋅=

     AkHz H 

    V  I  Lpk    12,2

    100220

    47,099=

    ⋅⋅

    = µ 

    mT mm

     A H  B   187

    8330

    12,2220

    2max  =

    ⋅=

      µ 

    mmmH 

    mms   43,0

    22,0

    8330104   227=

    ⋅⋅⋅⋅=

    −π 

    From bobbin datasheet E32/16/9: BW = 20,1mm

    Margin determined: M = 4mm

    mmmmmm BW e   1,12421,20   =⋅−=

  • 8/18/2019 An1683x Flyback Design

    10/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    9 of 24 AN-SMPS-1683X-1V1.2

    Copper space factor f Cu  :0,2 ....0,4

     BW  N 

     BW  f  A A

    P

    eCu N P ⋅

    ⋅⋅⋅=

      5,0  (Eq 22)

    ( )( )( )d  AWG   log28277,197,9   ⋅−⋅=   (Eq 23)

     BW  N 

     BW  f  A A

    s

    eCu N s ⋅

    ⋅⋅⋅=

      45,0  (Eq 24)

     BW  N 

     BW  f  A A

    aux

    eCu N aux ⋅

    ⋅⋅⋅=

      05,0  (Eq 25)

    With the effective bobbin width we check the numberof turns per layer:

    P

    Pd 

     BWe N    =   (Eq 26)

    We calculate the available area for each winding:

    Used for calculation: f Cu  =0,3

    22

    31,01,2030

    1,123,05,1085,0mm

    mm AP   =⋅

    ⋅⋅⋅=

     ⇒  diameter dp ≈ 0,64mm ⇒  22 AWG

    22

    20,21,204

    1,123,05,10845,0mm

    mm As   =

    ⋅⋅⋅=

    ⇒  diameter ds 2 x 0,8mm ⇒  2 x 20 AWG

    22

    24,01,204

    1,123,05,10805,0mm

    mm Aaux   =⋅

    ⋅⋅⋅=

     ⇒  diameter da ≈ 0,64mm ⇒ 22 AWG

    Primary:

    1764,0

    1,12==

    mm

    mm N P turns per layer

      ⇒  2 layer needed

    Secondary:

    48,02

    1,12=

    ⋅=

    mm

    mm N S   turns per layer

    Aux.:

    Can be neglected !

  • 8/18/2019 An1683x Flyback Design

    11/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    10 of 24 AN-SMPS-1683X-1V1.2

    Output Rectifier:

    The output rectifier diodes in flyback converters aresubject to a large peak and rms current stress. Thevalues depend on the load, leakage inductance,operating mode and output capacitor ESR.

    Calculation of the maximum reverse voltage:

       

      

     ⋅+=

    P

    S dcinpk OUT  RDIODE 

     N 

     N V V V    (Eq 27)

    Calculation of the maximum current:

    P LPK SPK 

     N 

     N  I  I    =   (Eq 28)

    max31  D I  I  SPK SRMS    ⋅⋅=   (Eq 29)

    V V V V  RDIODE    9,6230

    438212   = 

      

       ⋅+=

     A A I SPK    9,154

    30

    81,2   ==

     A A I SRMS    7,647,0319,15   =⋅⋅=

    Output Capacitor:

    Output capacitors are highly stressed in flybackconverters. Normally the capacitor will be selected for3 major parameters: capacitance value, low ESRand ripple current rating.

    Max. voltage overshoot: ∆VOUT

    Number of clock periods: ncp

     f V 

     I C 

    OUT 

    OUTMAX 

    OUT  ⋅∆

    ⋅=

      cpn  (Eq 30)

    Select a capacitor out of SIEMENS/Epcos Databookof Aluminium Electrolytic Capacitors.

    The following types are preferred:

    For 85°C Applications:Series B41826-........ 4000h lifetime

    For 105°C Applications:Series B41856-........ 2000h lifetime

    To calculate the output capacitor, it is necessary to fixthe maximum voltage overshoot in case of switchingoff @ maximum load condition.After switching off the load, the regulation loopneeds about 5...10 periods of internal clock to reduce

    the duty cycle.

    V V OUT    5,0=∆

    ncp = 5

    F kHzV 

     AC OUT    µ 333

    1005,0

    533,3=

    ⋅⋅

    =

    We select 470µF 25V:

    B41826-A5477-M

    ESR ≈ Zmax = 0,06Ω @ 100kHzIacR = 2,2A

     ISRMS = 6,7A ⇒ 3 capacitor in parallel needed!

  • 8/18/2019 An1683x Flyback Design

    12/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    11 of 24 AN-SMPS-1683X-1V1.2

    Output Filter:

    The output filter consists of one capacitor and oneinductor in a L-C filter topology.

    Zero frequency of output capacitor and associatedESR:

    OUT  ESR

     ZCOUT C  R

     f ⋅⋅⋅

    =π 2

    1  (Eq 31)

    Calculating the needed inductance for substitute thezero of the output capacitor:

     ZCOUT 

     ESROUT 

     f 

     R L

    ⋅⋅=

    π 2  (Eq 32)

    VCC-Supply:

    Start-up Resistor:

    ICCLmax = max. Quiescent Current

    Il = VCC-Capacitor Load-Current

    CVCC = Value of VCC-Capacitor

    lCCL

    dcstart 

     I  I 

    V  R

    +=

    max

    min   (Eq 33)

    Start-up Time:

    l

    CCH VCC start 

     I 

    V C t 

    ⋅=   (Eq 34)

    Internal Zener Diode:Depending on the transformer construction and loadcondition the auxiliary supply voltage varies within an

    operating range. If VCC exceeds VZ (16V), theinternal zener diode conducts. In this case we haveto observe the internal power dissipation limits oruse an external zener diode on VCC pin.

    kHzF 

     f  ZCOUT    6,547006,02

    1=

    ⋅Ω⋅⋅=

     µ π 

     H kHz

     LOUT    µ π 

    56,036,52

    06,0=

    ⋅⋅⋅Ω

    =

    ICCLmax = 80µA

    Il = 40µA

    CVCC = 22µF

    Ω=+

    =   k  A

    V  Rstart    827

    4080

    99

     µ 

    R6 = R7 =1/2 Rstart = 413,5kΩ

      Choose: 410kΩ

    s A

    V F t start    6,6

    40

    1222=

    ⋅=

     µ 

     µ 

    Before the IC can be plugged into the applicationboard, the VCC capacitor has always to bedischarged!

  • 8/18/2019 An1683x Flyback Design

    13/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    12 of 24 AN-SMPS-1683X-1V1.2

    Calculation of snubber network:

     Rdc BRDSS snub   V V V V    −−=   max   (Eq 35)

    For calculating the snubber network it is neccesary toknow the leakage inductance. Most common way isto have the value of the leakage inductance inpercent of the primary inductance. If it is known thatthe transformer construction is very consistent,measuring the primary leakage inductance byshorting the secondary windings will give an exactnumber, assuming the availability of a good LCRanalyser.

    % x Lp L LK    ⋅=

    ( )   snubsnub R LK  LPK 

    snubV V V 

     L I C 

    ⋅+⋅

    =2

      (Eq 36)

    ( )

     f  I  L

    V V V  R

     LPK  LK 

     Rsnub

    snub R

    ⋅⋅⋅

    −+=

    2

    22

    5,0  (Eq 37)

    V V V V V snub   118100382600   =−−=

    In our example we choose 5% of primary inductancefor leakage inductance.

     H  H  L LK    µ  µ    11%5220   =⋅=

    ( )  nF 

    V V V 

     H  AC snub   9,1

    118118100

    1112,2   2=

    ⋅+⋅

    =  µ 

     ≈ 2,2nF

    ( )Ω=

    ⋅⋅⋅

    −+=   k 

    kHz A H 

    V V V  Rsnub   1,15

    10012,2115,0

    1001001182

    22

     µ  ≈15k

  • 8/18/2019 An1683x Flyback Design

    14/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    13 of 24 AN-SMPS-1683X-1V1.2

    Calculation of losses:

    Input diode bridge:

    2⋅⋅=   F PRMS  DIN    V  I P   (Eq 38)

    Calculation of copper resistance:

    P

    P N PCu

     A

     p N l R   100

    ⋅⋅=   (Eq 39)

    Calculating of copper loss:

    Cu MAX  LPK Cu   R D I P   ⋅⋅⋅= 312   (Eq 40)

    Output rectifier diode:

    FDIODE SPK  DDIODE    V  D

     I P   ⋅−

    ⋅=3

    1 max   (Eq 41)

    MOSFET :TDA16834

    COSS ≈ 40pFRDSON = 1,6Ω (@ 150°C)

    Switching losses:

     f V C P dcOSS SON    ⋅⋅⋅=  2

    min21   (Eq 42)

    ( )   r  LPK  RdcSOFF    t  f  I V V P   ⋅⋅⋅+⋅=   min61   (Eq 43)

    Conduction losses:

    max2

    31  D I  RP  LPK  DSON  D   ⋅⋅⋅=   (Eq 44)

    W V  AP DIN    96,12122,1   =⋅⋅=

    Copper resistivity p 100  at 100°C = 0,0172Ωmm2 /m

    Ω=Ω⋅⋅

    =   mmm

    mmmmm RPCu   3,116

    33,0

     / 2,17300644,02

    2

    Ω=Ω⋅⋅

    =   mmm

    mmmmm RSCu   9,4

    04,1

     / 2,1740644,02

    2

    mW m APPCu   2,823,1163147,049,4

      2 =Ω⋅⋅⋅=

    mW m APSCu   1949,43147,08,252

      2 =Ω⋅⋅⋅=

    ∑   =+=   mW mW mW PCu   2801942,82

    W V P DDIODE    36,57,0

    3

    47,019,15   =⋅

    −⋅=

    mW kHzV  pF PSON    25100994021   2 =⋅⋅⋅=

    ( )   mW nskHz AV V PSOFF    2103010012,21009961 =⋅⋅⋅+⋅=

    W  AP D   13,147,05,46,131   2 =⋅⋅Ω⋅=

  • 8/18/2019 An1683x Flyback Design

    15/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    14 of 24 AN-SMPS-1683X-1V1.2

    Voltage regulation loop:

    Reference: TL431VREF =2,5V

    IKAmin=1mA

    Optocoupler: SFH617-3Gc = 1 ...2 ≡ CTR 100% ...200%VFD = 1,2VIFmax =10mA (maximum current limit)

    Primary side:

    Feedback voltage:Values from TDA16831...34 datasheet

    Vrefint = 5.5V typ.

    VFBmax = 4,8V

    RFB = 3,7k typ.

    FB

    ref 

    FB R

     I   int

    max  =   (Eq 45)

    FB

    FBref 

    FB R

    V V  I 

      maxint

    min

    −=   (Eq 46)

    Secondary side:

      

     

     

     

     −=   121

     REF 

    OUT 

    V  R R   (Eq 47)

    the value of R2 can be fixed at 4,7k

    ( )

    max3

    )(

     REF FDOUT 

     I 

    V V V  R

    +−≥   (Eq 48)

    min

    min3

    4KA

    FBFD

     I 

    Gc

     I  RV 

     R

       

      

     ⋅+

    ≤   (Eq 49)

    Fig. 3

    Fig. 4

    mAk 

    V  I FB   5,17,3

    5,5max   =Ω=

    mAk 

    V V  I FB   19,0

    7,3

    8,45,5min   =Ω

    −=

    V k  R   86,171

    5,2

    127,41   =  

     

     

     

     −⋅=

    ( )k 

    mA

    V V V  R   83,0

    10

    )5,22,1(123   =

    +−≥   ≈ 910R

    k mA

    mA RV 

     R   4,11

    1

    2,09102,1

    4   =   

      ⋅+

    ≤   ≈ 1,2k

    FB3,7k

    5,5V

    VFB

    R3 R1R4

    R5

    R2

    C2

    C1

    TL431

    Vout

  • 8/18/2019 An1683x Flyback Design

    16/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    15 of 24 AN-SMPS-1683X-1V1.2

    Regulation loop:

    Fig. 5

    Transfer characteristics of regulation loop elements:

     3

    73

     R

    k GK 

      C FB

    ⋅=   Feedback

      GC= Optocoupler gain

     Vout 

    Vref 

     R R

     RK VD   =+

    =21

    2  Voltage Divider

     ( )

         

     

     

     

     

       

      

     ⋅  

     

      

     +⋅+

    ⋅⋅+⋅

    ⋅⋅⋅

    ⋅=

    5

    5

    21

    1

    2

    1)(

    C  R R

     p

    C  R p R

     R

     f  L

     Z  pF 

     ESR L

     ESR L

     L

    P

    PWM 

    PWR

    η   Power stage

      ZPWM = Transimpedance ∆VFB / ∆ID

     9

    29

    9

    1

    1)(

    C  L pC  R p

    C  R p pF 

     ESR

     ESR LC 

    ⋅⋅+⋅⋅+

    ⋅⋅+=   Output filter

     ( )

    )251(121

    21

    2151)(

    C  R pC  R R

     R R p

    C C  R p pFr 

    ⋅⋅+⋅⋅+⋅

    +⋅⋅+=   Regulator

     _ 

    +

    KFBKVD

    FPWR(p) FLC(p)

    Fr(p)

    Vout

    Vref

    VIN

  • 8/18/2019 An1683x Flyback Design

    17/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    16 of 24 AN-SMPS-1683X-1V1.2

    Zero’s and Poles of the transfer characteristics:

    Poles of powerstage @ min. and max. load:

      Ω===   6,340

    12   2

    max

    2

    P

    V  R

    O

    OUT  LH    Ω===   144

    1

    12   2

    min

    2

    P

    V  R

    O

    OUT  LL

     5

    1

    C  R foh

     LH  ⋅⋅=π 

       HzF 

     foh   7,6214106,3

    1=

    ⋅Ω⋅=

     µ π 

     5

    1

    C  R fol

     LL ⋅⋅=π 

       HzF 

     fol   57,11410144

    1=

    ⋅Ω⋅=

     µ π 

    The gain of the optocoupler stage KFB and the voltage divider KVD we use as a constant.

    3

    73

     R

    k GK 

      C FB

    ⋅=   KFB = 6,6 ⇒  GFB = 16,4db

    Vout 

    Vref 

     R R

     RK VD   =+

    =21

    2  KVD = 0,208 ⇒  GVD = -13,6db

    With adjustment of the transfer characteristics of the regulator we want to have equal gain within the

    operating range and to compensate the pole fo of the powerstage FPWR(ω).

    Because of the compensation of the output capacitors zero (see page 10 Eq31, Eq32) we neglect this zeroand the LC-Filter pole.So the transfer characteristics of the power stage is reduced to a single pole response.

    In order to calculate the gain of the open loop we have to select the crossover frequency.

    We calculate the gain of the Power-Stage with max. output power at the selected crossover frequencyfg = 3kHz:

    ZPWM of TDA16834 =1,3 V/A

    ( )

    −⋅+

    ⋅+−⋅⋅=

    −−21 16,011

    1T 

    ON 

    ON 

    PWM ON PWM 

    ON ON 

    eeT T t t 

     Z t  Z    (formula according data sheet page 12)

  • 8/18/2019 An1683x Flyback Design

    18/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    17 of 24 AN-SMPS-1683X-1V1.2

    with this formula we calculate ZPWM @ max. duty cycle:

    ( ) A

    V eensnss

    s A

    V t  Z    ns

    s

    ns

    s

    ON PWM    8,116,08508507,47,4

    13,1   200

    7,4

    850

    7,4

    =

    −⋅+

    ⋅+−⋅⋅=

    −−   µ  µ 

     µ  µ 

    Gain @ crossover frequency:

          

     

     

     

     

      

     

     

     

     +

    ⋅⋅⋅⋅

    ⋅=2

    1

    1

    2

    1)(

     fo

     fg

     f  L R

     Z  fgF 

      p L

    PWM 

    PWR

    η 

    065,0

    7,62

    30001

    1

    2

    8,01002206,3

    8,1

    1)3(

    2=

          

     

     

     

     

       

      

     +

    ⋅⋅⋅⋅

    ⋅=  kHzuH  R

    kHzF PWR

    ⇒  GPWR(3kHz) = -23,7db

    Transfer characteristics:

    Fig. 6

    1 10 100 1 103

    1 104

    1 105

    50

    0

    5050

    50

    G PWR( )ω

    Gr( )ω

    G FB

    G MOD

    0

    .1 1051   ω ( )i

    .2 π

    GPWR(ω)

    Gain[db]

    GVD

    Gr(ω)

    GFB

  • 8/18/2019 An1683x Flyback Design

    19/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    18 of 24 AN-SMPS-1683X-1V1.2

    At the crossover frequency we calculate for the open loop gain:

     Gol(ω) = Gs (ω) + Gr (ω) = 0.

    With the equations of the transfer characteristics we calculate the gain of the regulation loop @ fg.

    The gain of the regulation loop we calculate:

    Gs = GFB + GPWR + GVD = 16,4db – 23,7db – 13,6db

    Gs = -20,9db

    We calculate the separate components of the regulator:

    Gs (ω) + Gr (ω) = 0 ⇒  Gr = 0 – (-20,9db) = 20,9db

    ( )

    )251(121

    21

    )2151)(

    C  R pC  R R

     R R p

    C C  R p pFr 

    ⋅⋅+⋅⋅+⋅

    +⋅⋅+=

     ( )

    21

    215log20

     R R

     R R RGr 

    ⋅+⋅

    ⋅=   ⇒ 21

    21105   20

     R R

     R R R

    Gr 

    +⋅

    ⋅=

      k k  R   7,4172,3105   209,20

    =⋅=  ≈ 43k

     252

    1

    C  R fp

    ⋅⋅⋅=

    π   ⇒ 

     fg RC 

    ⋅⋅⋅⋅=

    252

    12

    π   fp = 2*fg

       pF kHzk 

    C    6176432

    12   =

    ⋅⋅⋅=

    π   ≈ 680pF

    In order to have enough phase margin @ low load condition we select the zero frequency of compensationnetwork at the middle between min. and max. load pole of power stage.

    oh

    ol

     f 

     f 

    ohom   f  f log5,0

    10⋅

    ⋅=    Hz Hz f om   92,9107,62  7,62

    57,1log5,0

    =⋅=⋅

     ( )2152

    1

    C C  R fz

    +⋅⋅⋅=

    π   ⇒  2

    52

    11   C 

     fom RC    −

    ⋅⋅⋅=

    π 

      nF  pF  Hzk 

    C    38468092,9432

    11   =−

    ⋅⋅⋅=

    π   ≈ 390nF

  • 8/18/2019 An1683x Flyback Design

    20/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    19 of 24 AN-SMPS-1683X-1V1.2

    Open Loop Gain

    Fig. 7

    Open Loop Phase

    Fig. 8

    1 10 100 1 103

    1 104

    1 105

    50

    0

    50

    70

    60

    Gr( )ω

    Gs( )ω

    G( )ω

    0

    .1 1051   ω ( )i

    .2 π

    1 10 100 1 103

    1 104

    1 105

    180

    142

    104

    66

    28

    1010

    180

    φr( )ω

    φs( )ω

    φ( )ω

    0

    .1 1051   ω ( )i

    .2 π

  • 8/18/2019 An1683x Flyback Design

    21/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    20 of 24 AN-SMPS-1683X-1V1.2

    Transformer Construction

    The winding topology has a considerable influence on the performance and relaibility of thetransformer.To reduce leakage inductance and proximity to acceptable limits, the use of a sandwich construction isrecommended.In order to meet international safety requirements a transformer for off-line power supply must haveadequate insulation between primary and secondary winding.This can be achived by using a margin wound construction or using triple insulated wire for thesecondary winding.The creepage distance for universal input voltage range is typically 8mm. This sets a minimum marginwidth as a half of the creepage distance to 4mm. Additional the neccesary insulation between primaryand secondary winding is provided using three layers of basic insulation tape.

    Example of winding topology for margin wound transformers:

    Fig. 9

    Example of winding topology with triple insulated wire for secondary winding:

    Fig. 10

    BW* : value from bobbin datasheet

    Primarysecond half

    BW*

    Primaryfirst half

    Auxiliary

    SecondaryTriple InsulatedWire

    Primarysecond half

    Auxiliary

    Secondary

    margin margin

    Triple insulation

    Creepagedistance

    BW*

    BWe

    Primaryfirst half

  • 8/18/2019 An1683x Flyback Design

    22/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    21 of 24 AN-SMPS-1683X-1V1.2

    Layout Recommendation:

    Fig. 11

    In order to avoid crosstalk between Power- and Signal-Path on the board we have to use careregarding the track layout when designing the PCB.

    The Power-Path (see Fig. 11) has to be as short as possible and separated from the VCC-Path andthe Feedback-Path. All GND-Paths have to be connected together at pin 8 (star ground) (1 and 14 atG-type) of TDA16831...34.

  • 8/18/2019 An1683x Flyback Design

    23/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    22 of 24 AN-SMPS-1683X-1V1.2

    References

    [1] Keith Billings, Switch Mode Power Supply Handbook

    [2] Ralph E. Tarter, Solid-State Power Conversion Handbook

    [3] R. D. Middlebrook and Slobodan Cuk, Advances in Switched-Mode PowerConversion

    [4] Herfurth Michael, Ansteuerschaltungen für getaktete Stromversorgungen mitErstellung eines linearisierten Signalflußplans zur Dimensionierung der Regelung

    [5] Herfurth Michael, Topologie, Übertragungsverhalten und Dimensionierung häufig  eingesetzter Regelverstärker

    [6] TDA16831 –4Off-line SMPS Controller with 600V CoolMOS on BoardDatasheet, Infineon Technologies

    Revision HistoryApplication Note AN-SMPS-1683X-1Actual Release: V1.2 Date:13.03.2000 Previous Release: V1.1Page ofactualRel.

    Page ofprev. Rel.

    Subjects changed since last release

    24 21 Formatting

  • 8/18/2019 An1683x Flyback Design

    24/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    23 of 24 AN-SMPS-1683X-1V1.2

    For questions on technology, delivery and prices please contact the InfineonTechnologies Offices in Germany or the Infineon Technologies Companies and

    Representatives worldwide: see the address list on the last page or our webpage at

    http://www.infineon.com

    CoolMOS™ and CoolSET™ are trademarks of Infineon Technologies AG.

    Edition 2000-03--03Published by Infineon Technologies AG,St.-Martin-Strasse 53,D-81541 München

     ©  Infineon Technologies AG 2000.All Rights Reserved.

    Attention please!

    The information herein is given to describe certain components and shall not be considered as warranted characteristics.Terms of delivery and rights to technical change reserved.

    We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and chartsstated herein.

    Infineon Technologies is an approved CECC manufacturer.

    Information

    For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office inGermany or our Infineon Technologies Representatives worldwide (see address list).

    Warnings

    Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your

    nearest Infineon Technologies Office.

    Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of InfineonTechnologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect thesafety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to supportand/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be

    endangered.

  • 8/18/2019 An1683x Flyback Design

    25/25

    TDA16831...-34 for OFF-Line Switch Mode Power Supplies

    24 f 24 AN SMPS 1683X 1

    Infineon Technologies AG sales offices worldwide –partly represented by Siemens AG

    A

    Siemens AG Österreich

    Erdberger Lände 26A-1031 WienT (+43)1-17 07-3 56 11Fax (+43)1-17 07-5 59 73AUS

    Siemens Ltd.885 Mountain HighwayBayswater,Victoria 3153T (+61)3-97 21 21 11Fax (+61)3-97 21 72 75B

    Siemens Electronic ComponentsBeneluxCharleroisesteenweg 116/ Chaussée de Charleroi 116B-1060 Brussel/BruxellesT (+32)2-5 36 69 05Fax (+32)2-5 36 28 57Email:[email protected]

    Siemens Ltda.

    SemiconductoresAvenida Mutinga,3800-Pirituba05110-901 São Paulo-SPT (+55)11-39 08 25 64Fax (+55)11-39 08 27 28CDN

    Infineon Technologies Corporation320 March Road,Suite 604Canada,Ontario K2K 2E2T (+1)6 13-5 91 63 86Fax (+1)6 13-5 91 63 89CH

    Siemens Schweiz AGBauelementeFreilagerstrasse 40CH-8047 ZürichT (+41)1-4 953065Fax (+41)1-4 955050D

    Infineon Technologies AG

    Völklinger Str.2D-40219 DüsseldorfT (+49)2 11-3 99 29 30Fax (+49)2 11-3 99 14 81Infineon Technologies AGWerner-von-Siemens-Platz 1D-30880 Laatzen (Hannover)T (+49)5 11-8 77 22 22Fax (+49)5 11-8 77 15 20Infineon Technologies AGVon-der-Tann-Straße 30D-90439 NürnbergT (+49)9 11-6 54 76 99Fax (+49)9 11-6 54 76 24Infineon Technologies AGWeissacher Straße 11D-70499 StuttgartT (+49)7 11-1 37 33 14Fax (+49)7 11-1 37 24 48D

    Infineon Technologies AGHalbleiter DistributionRichard-Strauss-Stra ße 76D-81679 MünchenT (+49)89-92 21 40 86Fax (+49)89-92 21 20 71DK

    Siemens A/SBorupvang 3DK-2750 BallerupT (+45)44 77-44 77Fax (+45)44 77-40 17E

    Siemens S.A.Dpto.ComponentesRonda de Europa,5E-28760 Tres Cantos-MadridT (+34)91-5 14 71 51Fax (+34)91-5 14 70 13

    F

    Infineon Technologies France,

    39/47,Bd.OrnanoF-93527 Saint-Denis CEDEX2T (+33)1-49 22 31 00Fax (+33)1-49 22 28 01FIN

    Siemens ComponentsScandinaviaP.O .Bo x 6 0FIN-02601 Espoo (Helsinki)T (+3 58)10-5 11 51 51Fax (+3 58)10-5 11 24 95Email:[email protected]

    Infineon TechnologiesSiemens HouseOldburyGB-Bracknell,BerkshireRG12 8FZT (+44)13 44-39 66 18Fax (+44)13 44-39 66 32H

    Simacomp Kft.Lajos u.103H-1036 BudapestT (+36)1-4 57 16 90Fax (+36)1-4 57 16 92HK

    Infineon TechnologiesHong Kong Ltd.Suite 302,Level 3,Festival Walk,80 Tat Chee Avenue,Yam Yat Tsuen,Kowloon TongHong KongT (+8 52)28 32 05 00Fax (+8 52)28 27 97 62I

    Siemens S..A.Semiconductor Sales

    Via Piero e Alberto Pirelli,10I-20126 MilanoT (+39)02-66 76 -1Fax (+39)02-66 76 43 95IND

    Siemens Ltd.Components DivisionNo.84 Keonics Electronic CityHosur RoadBangalore 561 229T (+91)80-8 52 11 22Fax (+91)80-8 52 11 80Siemens Ltd.CMP Div,5th Floor4A Ring Road,IP EstateNew Delhi 110 002T (+91)11-3 31 99 12Fax (+91)11-3 31 96 04Siemens Ltd.CMP Div,4th Floor

    130,Pandurang Budhkar Marg,WorliMumbai 400 018T (+91)22-4 96 21 99Fax (+91)22-4 96 22 01IRL

    Siemens Ltd.Electronic Components Division8,Raglan RoadIRL-Dublin 4T (+3 53)1-2 16 23 42Fax (+3 53)1-2 16 23 49IL

    Nisko Ltd.2A,Habarzel St.P.O.Box 5815161580 Tel Aviv –IsrealT (+9 72)3 -7 65 73 00Fax (+9 72)3 -7 65 73 33

    J

    Siemens Components K.K.

    Talanawa Park Tower 12F &17F3-20-14,Higashi-Gotanda,Shinagawa-kuTokyoT (+81)3-54 49 64 11Fax (+81)3 -54 49 64 01MAL

    Infineon Technologies AGSdn BhdBayan Lepas Free Industrial Zone111900 PenangT (+60)4 -6 44 99 75Fax (+60)4 -6 41 48 72N

    Siemens ComponentsScandinaviaØstre Aker vei 24Postboks 10,VeitvetN-0518 OsloT (+47)22-63 30 00Fax (+47)22-68 49 13Email:[email protected]

    Siemens Electronic ComponentsBeneluxPostbus 16068NL-2500 BB Den HaagT (+31)70-3 33 20 65Fax (+31)70-3 33 28 15Email:[email protected]

    Siemens Auckland300 Great South RoadGreenlandAucklandT (+64)9-5 20 30 33Fax (+64)9-5 20 15 56P

    Siemens S.A.an Componentes Electronicos

    R.Irmaos Siemens,1AlfragideP-2720-093 AmadoraT (+351)1-4 17 85 90Fax (+351)1-4 17 80 83PK

    Siemens Pakistan EngineeringCo.Ltd.PO Box 1129,Islamabad 4400023 West Jinnah AveIslamabadT (+92)51-21 22 00Fax (+92)51-21 16 10PL

    Siemens SP.z.o.o.ul.Zupnicza 11PL-03-821 WarszawaT (+48)22-8 70 91 50Fax (+48)22-8 70 91 59ROK

    Siemens Ltd.Asia Tower,10th Floor726 Yeoksam-dong,Kang-nam KuCPO Box 3001Seoul 135-080T (+82)2-5 27 77 00Fax (+82)2-5 27 77 79RUS

    INTECH electronicsul.Smolnaya,24/1203RUS-125 445 MoskvaT (+7)0 95 -4 51 97 37Fax (+7)0 95 -4 51 86 08S

    Siemens Components ScandinaviaÖsterögatan 1,Box 46S-164 93 KistaT (+46)8-7 03 35 00Fax (+46)8-7 03 35 01Email:

    [email protected]

    RC

    Infineon Technologies

    Asia Pacific Pte.Ltd.Taiwan Branch10F,No.136 Nan King East RoadSection 23,TaipeiT (+8 86)2-27 73 66 06Fax (+8 86)2-27 71 20 76SGP

    Infineon Technologies AsiaPacific,Pte.Ltd.168 Kallang WaySingapore 349 253T (+65)8 40 06 10Fax (+65)7 42 62 39USA

    Infineon Technologies Corporation1730 North First StreetSan Jose,CA 95112T (+1)4 08-5 01 60 00Fax (+1)4 08-5 01 24 24Siemens Components,Inc.Optoelectronics Division19000 Homestead RoadCupertino,CA 95014T (+1)4 08-2 57 79 10Fax (+1)4 08-7 25 34 39Siemens Components,Inc.Special Products Division186 Wood Avenue SouthIselin,NJ 08830-2770T (+1)7 32-9 06 43 00Fax (+1)7 32-6 32 28 30VRC

    Infineon TechnologiesHong Kong Ltd.Beijing OfficeRoom 2106,Building AVantone New World PlazaNo.2 Fu Cheng Men Wai Da JieJie100037 Beijing

    T (+86)10 -68 57 90 -06,-07Fax (+86)10 -68 57 90 08Infineon TechnologiesHong Kong Ltd.Chengdu OfficeRoom14J1,Jinyang Mansion58 Tidu StreetChengdu,Sichuan Province 610 016T (+86)28-6 61 54 46 /79 51Fax (+86)28 -6 61 01 59Infineon TechnologiesHong Kong Ltd.Shanghai OfficeRoom1101,Lucky Target SquareNo.500 Chengdu Road NorthShanghai 200003T (+86)21-63 6126 18 /19Fax (+86)21-63 61 11 67Infineon Technologies

    Hong Kong Ltd.Shenzhen OfficeRoom 1502,Block ATian An International BuildingRenim South RoadShenzhen 518 005T (+86)7 55 -2 28 91 04Fax (+86)7 55-2 28 02 17ZA

    Siemens Ltd.Components DivisionP.O.B.3438Halfway House 1685T (+27)11-6 52 -27 02Fax (+27)11-6 52 20 42