An Overview of Biologics Manufacturing Processes and Things to Consider from Development to...

24
Welcome Tracking Single-Use & Scale-Up Best Practices [Webinar Series] Webinar #2: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Transcript of An Overview of Biologics Manufacturing Processes and Things to Consider from Development to...

Page 1: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Welcome

Tracking Single-Use & Scale-Up Best Practices [Webinar Series]

Webinar #2: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Page 2: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Kevin Lauziere

Page 3: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

About Your Presenter – Kevin Lauziere

• Degree in Biochemistry from Boston College, and has worked for a number of companies in the Boston area including Genzyme, BASF Bioresearch Center, Abbott Bioresearch Center and Bristol-Myers Squibb.

• Worked in the process development area early in career designing methods for purifying proteins to be scaled up to the manufacturing level.

• Currently a consultant with over 27 years in the industry currently working with The Quantic Group, Ltd.

• Over the years he has contributed to the design, start-up and validation of two commercial manufacturing facilities working with both internal and external engineering resources.

Page 4: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Outline

• Overview of a typical biologics manufacturing process that uses mammalians cells for protein expression

• Discuss the importance of process development and the influence this has on commercial scale equipment design and operations

• Discuss how automation can be used for running some process operations and the pros and cons of using it

Page 5: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Overview of a typical biologics manufacturing process

Ion Exchange

Chromatography

Hydrophobic

Interaction

Chromatography

Viral

FiltrationUF/DF

Fine Purification

Formulation

Bulk Fill

Affinity

Chromatography

Product Capture

low pH Viral

inactivation

Spinner or

Shake

Flask

Cell

bank

vialSeed Bioreactors

Production

Bioreactor

Depth

Filtration

Cell Culture

Clarified

HarvestCentrifugation

Clarification

Page 6: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Overview of a typical biologics manufacturing process

• Vial Thaw and Seed Train

• Seed Bioreactor

• Production Bioreactor

• Harvest/Clarification

• Chromatography

• Tangential Flow Filtration

• Virus Filtration/Inactivation

• Formulation and Bulk Fill

• Sampling and Testing of Process Intermediates

Page 7: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Vial Thaw and Seed Train

• Typically a single vial of cryogenically preserved cells is thawed to start the seed train for a mammalian cell culture process. Vial thaw can be accomplished:

• At room temperature

• In a water bath

• In a heating block

• In an incubator

– Resuspension process

• Typically use an enriched medium to dilute any cryopreservatives

• Transfer thawed cells into different volumes to target a specific range for initial cell density

• Viability ranges vary with each process

Page 8: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Vial Thaw and Seed Train

• The number of stages in a seed train vary with every process

– It may utilize T-flasks, shake flasks, spinners and or wave bags

– Volume of the culture varies and this puts demands on the design and footprint of the manufacturing area

• Considerations include:

– Number of containers at each stage

– Are there multiple trains running in parallel

– Equipment needed (biosafety cabinets, incubators)

– Utilities

– Classification of the rooms

– Open or closed processing

Page 9: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Seed Bioreactor

• Seed Bioreactor

– Used for cell expansion –goal to obtain sufficient number of cells at a target cell density to seed the production bioreactor

Page 10: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Seed Bioreactor

• Seed Bioreactor

– Size and number

– Method of inoculation

– Area classification

– Parallel trains – add process robustness and provide backup in the event of a lost seed bioreactor

– Requirements for additions

– Process control strategy

• pH

• Dissolved Oxygen

• Agitation

• Temperature

– Automation and process monitoring

Page 11: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Production Bioreactor

• Size

• Area classification

– Closed processing

• Parallel trains

• Requirements for additions

• Process control strategy

– pH

– Dissolved Oxygen

– Agitation

– Temperature

Page 12: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Production Bioreactor

• Harvest criteria

– Viability

– Titer

– Duration

• Automation and process monitoring

– Glucose

– Lactate

– pCO2

Page 13: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Harvest/Clarification

• Initial crude clarification – separates cells and cellular debris from harvest broth

• Method

– Centrifugation

– Depth Filtration

– Microfiltration

– Combination of these (i.e. centrifugation and depth filtration)

• Area classification

• Redundant equipment

• Automation

Page 14: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Chromatography

• Number of steps

– Resin chemistry

– Order of steps

• Loading conditions

• Volume of eluates

– Volume measurement

• Scale of columns

– Single or multiple cycles per lot

• Based on amount of product and column capacity

– Resin cost is also considered

– Buffer volumes (1x buffers or concentrates)

• Dilution strategy

– Flowrate ratio

– Conductivity setpoint

Page 15: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Chromatography

• Eluate vessel size and capability

– Process sampling

– Mixing

– Temperature control

– Process intermediate manipulations

– Filtration (In-line or post processing)

• Area classification

• Processing temperature

– Column operation temperature versus hold temperature for process intermediates

• Redundant equipment

• Automation

Page 16: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Tangential Flow Filtration

• System size

– Volume

• Starting volume

• Final volume

– Processing time

• Amount of membrane surface area

• Pump sizing

– Operating conditions

• Transmembrane pressure

• Crossflow rate

– Amount of product

• Final concentration

• System hold up

Page 17: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Tangential Flow Filtration

• Diafiltration

– Number of volumes exchanged (5X, 8X, 10X)

– Concentration at which diafiltration is performed

– Solubility (Isoelectric point)

• Area classification

• Processing temperature

• Automation

Page 18: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Virus Filtration/Inactivation

• Filtration

– Membrane surface area

– Pore size

– Filter material compatibility

– Physical room change during the process

– Volume

– Processing time

• Product concentration

Page 19: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Virus Filtration/Inactivation• Inactivation by pH adjustment

– Product degradation

– Duration of hold

– Volume

– Strength of acid and base used for adjustment

– Rate of addition

• Inactivation by detergent

– Volume

– Duration of hold

– Removal of detergent

• Area classification

• Processing temperature

• Automation

Page 20: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Formulation and Bulk Fill

• Environment

– Open or closed processing

– Temperature

• Containers

– Material of construction

– Leachables

– Container closure

– Labeling

– Volume

– Source and Condition

Page 21: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Formulation and Bulk Fill

• Open fill

– Performed in a biosafety cabinet (Grade A, Class 100)

– Grade B, Class 1000 room

• Rooms like this are expensive to build

• Closed fill

– Performed in a Grade C, Class 10,000 area where all connections are closed

• Sampling strategy

– Number of samples

– Container type

Page 22: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Formulation and Bulk Fill

• Bulk fill room

– Single product use

– Multi-product use

• Scheduling

• Room Turnover Process

• Shared Equipment

• Shared Personnel

• Temperature

– Product stability

– Type of label

– Operational considerations

• Affect on staff and their ability to perform tasks

Page 23: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

Thank You

Questions?

Page 24: An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial Scale

#1 Tracking Single-Use : An Introduction to Single-Use Manufacturing Systems Including a Survey of Technology, New Developments and Economic and Operational IssuesTuesday, January 19, 2016 / 1pm-2pm (ET)Presenter: Geoff Hodge

Next Up: High Level Recombinant Protein Production in Insect Cell CultureTuesday, January 26, 2016 / 1-2pm (ET)Presenter: Dr. Kamal Rashid

#2 An Overview of Biologics Manufacturing Processes and Things to Consider from Development to Commercial ScaleMonday, January 25, 2016 / 1-2pm (ET)Presenter: Kevin Lauziere