AN INTRODUCTION TO p-ADIC L-FUNCTIONS · PDF file AN INTRODUCTION TO p-ADIC L-FUNCTIONS 5...

Click here to load reader

  • date post

    26-May-2020
  • Category

    Documents

  • view

    2
  • download

    0

Embed Size (px)

Transcript of AN INTRODUCTION TO p-ADIC L-FUNCTIONS · PDF file AN INTRODUCTION TO p-ADIC L-FUNCTIONS 5...

  • AN INTRODUCTION TO p-ADIC L-FUNCTIONS

    by

    Joaquín Rodrigues Jacinto & Chris Williams

    Contents

    General overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.1. Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. The Riemann zeta function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. p-adic L-functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4. Structure of the course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Part I: The Kubota–Leopoldt p-adic L-function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. Measures and Iwasawa algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.1. The Iwasawa algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. p-adic analysis and Mahler transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3. An example: Dirac measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4. A measure-theoretic toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3. The Kubota-Leopoldt p-adic L-function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1. The measure µa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2. Restriction to Z⇥p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3. Pseudo-measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    4. Interpolation at Dirichlet characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1. Characters of p-power conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2. Non-trivial tame conductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3. Analytic functions on Zp via the Mellin transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4. The values at s = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    5. The p-adic family of Eisenstein series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    Part II: Iwasawa’s main conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6. The Coleman map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    6.1. Notation and Coleman’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2. Example: cyclotomic units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3. Proof of Coleman’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.4. The logarithmic derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.5. The Coleman map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.6. The Kummer sequence, Euler systems and p-adic L-functions. . . . . . . . . . . . . . . . . . . . 40

    7. The Main Conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.1. The ⇤-modules arising from Galois theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2. Measures on Galois groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.3. The main conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.4. Cyclotomic units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.5. On a theorem of Iwasawa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.6. An application of class field theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.7. Some consequences of Iwasawa theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    8. Iwasawa’s µ-invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.1. Iwasawa’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.2. Some consequences of Iwasawa’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

  • 2 JOAQUÍN RODRIGUES JACINTO & CHRIS WILLIAMS

    9. The complex class number formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10. Class field theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 11. Power series and Iwasawa algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    General overview

    In these lectures, we aim to give an introduction to p-adic L-functions and the foun- dations of Iwasawa theory. Iwasawa’s work found overarching structures that explained previous results of Kummer linking special values of L-functions with the arithmetic of cyclotomic fields. His methods have been applied with stunning success in other settings, and much of what we know today about long-standing conjectures such as the Birch and Swinnerton-Dyer conjecture has its roots in Iwasawa theory.

    We will focus mainly on the construction and study of Kubota and Leopoldt’s p-adic interpolation of the Riemann zeta function and on the ideas surrounding the Iwasawa Main conjecture, now a theorem due to Mazur and Wiles (see [MW84]). We will describe some classical results linking L-values and arithmetic data that led to the study of p-adic L-functions, and give several constructions of the p-adic zeta function. In particular, a construction due to Coleman using cyclotomic units will naturally lead to the statement of the Main conjecture, which we will prove when p is a Vandiver prime (which conjecturally, at least, covers every prime). We will finally see a theorem of Iwasawa describing the growth of the p-part of the class group of cyclotomic fields.

    Recommended reading: The material in Part I of these notes is largely contained in Lang’s Cyclotomic fields I and II (see [Lan90]) and Colmez’s lecture notes [Col]. Part II is based on the book Cyclotomic fields and zeta values by Coates and Sujatha (see [CS06]). Part III is based on Washington’s book An introduction to cyclotomic fields (see [Was97], especially §13). These lectures can be regarded as an introduction to the topics treated in the references mentioned above, which the reader is urged to consult for further details, and as a prelude to Rubin’s proof of the Main Conjecture using the theory of Euler systems, as described in [CS06] and [Lan90, Appendix].

    1. Introduction

    1.1. Motivation. —

    1.1.1. Classical L-functions. — The study of L-functions and their special values goes back centuries, and they are central objects of modern number theory. Examples include:

    – The famous Riemann zeta function, defined by

    ⇣(s) = X

    n�1 n�s =

    Y

    p

    (1� p�s)�1, s 2 C,

  • AN INTRODUCTION TO p-ADIC L-FUNCTIONS 3

    where the last product runs over all prime numbers p and the second equality follows is a conseqence of the unique factorisation theorem. The sum converges absolutely for the real part of s greater than 1, making ⇣ a holomorphic function in a right half-plane. The expression as a product is called a