An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction...

35
1 An introduction to Linear Programming Eric Bentzen Operations Management Copenhagen Business School August 2014 . .

Transcript of An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction...

Page 1: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

AnintroductiontoLinearProgramming

EricBentzen

OperationsManagement

CopenhagenBusinessSchool

August2014

.

.

Page 2: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

Content1. Introduction ................................................................................................................................................... 3 

2. The process of quantitative analysis ............................................................................................................. 3 

2.1   Formulation ........................................................................................................................................... 4 

2.2   Solution .................................................................................................................................................. 5 

2.3   Interpretation ........................................................................................................................................ 5 

3. Practical applications ..................................................................................................................................... 6 

4. Linear programming defined ......................................................................................................................... 9 

4.1   The managerial perspective ................................................................................................................ 10 

5. A simple production problem ...................................................................................................................... 11 

5.1   Problem description ............................................................................................................................ 11 

5.2   The model ............................................................................................................................................ 13 

5.3   Summary .............................................................................................................................................. 13 

6. A service problem ........................................................................................................................................ 14 

6.1   Problem description ............................................................................................................................ 14 

6.2   The model ............................................................................................................................................ 16 

6.3   Performing the analysis ....................................................................................................................... 16 

6.4   Utilization of resources ........................................................................................................................ 18 

6.5   The Managerial Perspective ................................................................................................................ 19 

7. Using the computer ..................................................................................................................................... 21 

7.1   The Managerial Perspective ................................................................................................................ 25 

8. The Dual Problem ........................................................................................................................................ 26 

8.1   The Model ............................................................................................................................................ 28 

8.2   The Managerial Perspective ................................................................................................................ 30 

9. A linear programming application: Investment .......................................................................................... 31 

9.1   The model ............................................................................................................................................ 33 

10. Finale note ................................................................................................................................................. 35 

Page 3: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

1.IntroductionDecisionmakinginabusinessareveryoftenrestrictedbythelimitationofavailableresourcesandatthesametimeabusinessmanagerhas tomeet specifiedgoals. In thispaperquantitativeanalysis isimportanceforthemanagerialdecisionprocess.Butkeepinmindthatquantitativeanalysiscanneverprovidetheentireanswerforallstrategicdecisions.Useitwithcareanduseitasasystematicwayofworkingthroughacomplexmanagerialdecisionprocess.Decisionmodelingisascientificapproachtomanagerial decisionmakingwherewedevelop amathematicalmodel of a real‐worldproblem.Themodelshouldbesuchthatthedecision‐makingprocessisnotaffectedbypersonalbias,emotionsandguesswork.

2.TheprocessofquantitativeanalysisQuantitativeanalysisisascientificmethodthatcanhelpinthemanagerialdecisionmakingprocess.Thedecisionmodelingprocessinvolvesthreedistinctsteps:

Formulation

Solution

Interpretation

Definingtheproblem

Acquiringthedata

Developingamodel

Developingasolution

Testingthesolution

Analyzingtheresults

Implementingtheresults

Page 4: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

2.1 Formulation

Inthisparteachpartofamanagerialproblemistranslatedandexpressedintermsofamathematicalmodel.Oneverycommonpitfallisthattheproblemcannotbeformulatedbecausetheproblemistoocomplex (then one could break down the problem into smaller pieces), another that technical ormanagerial information are not available (often there has not been formulated an objective of themanagerialproblem).Theaiminformulationistoensurethatthemathematicalmodeladdressesalltherelevant issues to the managerial problem at hand. Formulation of the problem should further beclassifiedintoa)Definingtheproblem,b)Developingamodel,andc)Acquiringthedata

Definingtheproblemisperhapsthemostimportantproblem.Whenthemanagerialproblemisdifficulttoquantify,itsometimesmaybenecessarytodevelopspecific,measurableobjectives.Oneobjectiveinmanagerialeconomicscouldbethatofmaximizingtheprofitandanothercouldbethatofminimizingthecosts.Sometimestherearemultipleconflictinggoals,andifthisisthecase,onecouldsolveitbyminimizingthedistancebetweenthegoals.

Developingthemodelisthestepwheredifferenttypesofmodelscanbespecified.Thesemodelsareexpressedasequationsorinequalitieswithoneormorevariablesandparameters.

Usethefollowingthreestepproceduretodefineandidentify

Decisionvariables,whichrepresenttheunknownentitiesinamanagerialproblem.DecisionvariablescouldbecarsoftypeI(X1)andcarsoftypeII(X2).

Objectivefunction,whichstatesthegoalofthemanagerialproblem,canbequantifiedinafunctionlikeMaxprofit=(50000€percartypeI)*(numberofcarstypeIproduced)+

(60000€percartypeII)*(numberofcarstypeIIproduced)

IfweintroduceDecisionvariableX1=numberofcarstypeIandDecisionvariableX2=numberofcarstypeII,wehavetheobjectivefunction

Max.profit=(50000€percartypeI)*(X1)+

(60000€percartypeII)*(X2)

Othertypesofcommonmanagerialproblemsaremaximizing(profit,efficiency, ...)orminimizing(cost,time,labor,...).

Constraints can be classified into technical and economical constraints. A technicalconstraint couldbe the spaceornumberorworkers that are available.Aneconomicconstraintcouldbetheamountofavailablemoneytoinvestinaproject.

Acquiring inputdata is thestepwhere inputdatatobeused inthemodelareobtained.Thisdetailedaswellastechnicalinformationarecollectedandimplementedintothemodel.Youwillhave to use knowledge from the basis ofmanagerial economics. Obtaining accurate data isessential, improperdatawillresult inmisleadingresults.Forrealworldproblems,collectingaccuratedatacanbeoneofthemostdifficultandchallengingaspectsofdecisionmodeling.

Page 5: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

2.2 SolutionItisthestepwherethemathematicalexpressionsfromyourformulationprocessaresolvedtoidentifyanoptimalsolutionofthemanagerialeconomicsproblem.Becausewecanusesoftwarepackagestofindasolutionourfocushasshiftedawayfromdetailedalgorithm(thesimplexalgorithm)andtowardsthebestofthesepackages.Wedistinguishbetweena)developingasolutionandb)testingthesolution.

Developingasolutionisthestepthatinvolvestheuseofanalgorithmthatconsistsofaseriesofprocedures,andtheaccuracyofthesolutiondependsontheaccuracyoftheinputdataandthemodel.Donotwastetimewithspecializedprogrammingskills.Insteaditismucheasiertouseastandardsoftwareprogramthatisabletohandleandsolvetheproblem.Forsmallproblemswithonlytwodecisionvariablesyoucandoagraphicalanalysis,andforlargerproblemsyouwillhavetousetheanalyticalsolution.

Testingthesolutionmeansthatonehastobesurethatnewdatafromanothersourcebehavesinasimilarwayastheoriginaldata.Onehastocheckdataaswellasthemodelitselftomakesurethattheyreallyrepresentthemanagerialeconomicproblem.

2.3 InterpretationAfterasolutionhasbeenfoundyouhavetotakeacloserlookatsolutionandalldecisionvariables.Themostimportantjobforanymanagerialeconomistswouldbetoaskthefollowingquestion:"whatif".

The"whatif"questionhastobeaskedsothatyoucanhaveanideaofhowsensitivethesolutionis.Wedistinguishbetweena)analyzingtheresultsandb)implementingtheresults.

Analyzingtheresultsbeginswithdeterminingtheimplicationsofthesolution.Itisimportanttoaskthefollowingquestion:“Whatistheinterpretationoftheresults?”.Andnextquestiontoaskis“Whatifwechangeoneormoreof the inputdata?”. This sensitivity analysis is importantbecause it showshowsensitivethesolutionistochanges.

Implementationisthestepthatmostoftenisneglectedinrealworld.Mostpeopleforgetthispartandveryoftenawellspecifiedandpreparedplanaremissingthelastandfinalstep:implementationintheorganization.

Page 6: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

3.Practicalapplications

Anumberofpracticalapplicationshavedocumentedtheuseofthequantitativeprocessaswellastheuseofamorecomplexmathematicalformulation.Inthefollowingwewillonlybelookingatapplicationsthatuseaspecificmathematicalmodelcalledlinearprogramming.Thelinearprogrammingmodelisasimpleandimportantmathematicaloptimizationmodel,anditcansometimesbeappliedtoanumberofeconomicproblems.

Acoupleofoldapplicationsare:

The linear programmingmodel has been used for bank assetmanagement and it has beenimplemented to include comprehensive risk constraints, various policy considerations,economicandinstitutionalrealitiesofthemarketplace,andavarietyofdifferentdynamiceffectswhichmustbeconsideredinordertomakeoptimalassetmanagementdecisions.Conceptualproblemsconcerningtheformulationofthebank'sgoalswereconsideredaswell.1

A linear programming formulation of Shell's distribution network between four sources ofproductandalargenumberoftransshipmentpointsandterminalshasbeenimplemented,withemphasisoncostlogisticsandrankingofvariousalternatives.2

Critical to an airline's operation is the effective use of its reservations inventory. AmericanAirlinesbeganresearchintheearly1960sinmanagingrevenuefromthisinventory.Becauseofthe problem's size and difficulty, American Airlines Decision Technologies has developed aseriesofORmodelsthateffectivelyreducethelargeproblemtothreemuchsmallerandfarmoremanageable sub problems: overbooking, discount allocation, and traffic management. Theresults of the sub problem solutions are combined to determine the final inventory levels.AmericanAirlinesestimatesthequantifiablebenefitat$1.4billionoverthelastthreeyearsandexpectsanannualrevenuecontributionofover$500milliontocontinueintothefuture.3

Alinearprogrammingmodelwithseveralobjectiveswasdevelopedinchoosingmediaplans.4

                                                            1CohenandHammer(1967):"LinearProgrammingandOptimalBankAssetManagementDecisions".JournalofFinance,147‐165.

2 Zierer, Mitchell, and White (1976): "Practical applications of linear programming to Shell's distributionproblems".Interfaces,13‐26.

3Smith.,Leimkuhler,andDarrow(1992):"YieldManagementatAmericanAirlines".Interfaces,8‐31.

4 Charnes, Cooper, Devoe, Learner, and Reinecke (1968): "A Goal Programming Model for Media Planning".ManagementScience,14,B423‐B430. 

Page 7: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

Andacoupleofrecentapplicationsare:

JandeWitCompanyimplementedadecision‐supportsystembasedonlinearprogrammingasaproduction‐planning and trade tool for the management of its lily flower business. The LPmaximizesthefarm'stotalcontributionmargin,subjecttosuchconstraintsasmarketdefinedsales limits,market requirements, characteristics of the production cycle duration, technicalrequirements, bulb inventory, and greenhouse limitations. Themain decision variable to becalculatedisthenumberofflowerbedsinaspecificgreenhouse,fromaspecificbulbbatch,ofaspecific variety, for a specific purpose, taking into consideration planting and expectedharvestingweeks.Between1999and2000,companyrevenuegrew26percent,salesincreased14.8percentforpotsofliliesand29.3percentforbunchesoflilies,costsfellfrom87.9to84.7percentofsales,incomefromoperationsincreased60percent,returnonowner'sequitywentfrom 15.1 to 22.5 percent, and best quality cut lilies jumped from 11 to 61 percent of thequantitiessold.5

U.S.CoastGuardusedlinearprogramminginanextensivepreventativemaintenanceprogramfor its SikorskyHH60Jhelicoptersbasedonhelicopter flight time.Themodelmust considerdifferentmaintenancetypes,maintenancecapacityandvariousoperationalrequirements.6

RecentreformofEuropeanagriculturalpolicyhasresultedinsubstantialchangestothecriteriabywhichpremiapaymentsaremade.Beeffarmers,whohavebeenparticularlydependentonpremia payments to maintain margins, must re‐evaluate their systems to identify optimalsystems in thesenewcircumstances.A linearprogrammingmodelhasbeenused to identifyoptimalbeefproductionsystemsinIreland.Theobjectivefunctionmaximizesfarmgrossmarginandthemodelisprimarilyconstrainedbyanimalnutritionalrequirements.7

SchedulingtheItalianMajorFootballLeague(theso‐called"SerieA")consistsinfindingforthatleague a double round robin tournament schedule that takes into account both typicalrequirements such as conditionsonhome‐awaymatches and specific requests of the ItalianFootballAssociationsuchastwin‐schedulesforteamsbelongingtothesamehome‐town.Themodel takes into account specific cable television companies requirements and satisfyingvariousotheroperationalconstraintswhileminimizingthetotalnumberofviolationsonthehome‐awaymatchesconditions.8

AlinearprogrammingmodelwasimplementedusingActivityBasedCostingforcalculatingunitproduct cost, and dynamic Activity Based Management for assessing the feasibility ofprospective production plans. The model is used to optimize the business plan at a steelmanufacturer.9

                                                            5Filho,José,Neto,andMaarten(2002):"OptimizationoftheProductionPlanningandTradeofLilyFlowersatJandeWitCompany".Interfaces,35‐46.

6HahnandNewmanb(2008):"SchedulingUnitedStatesCoastGuardhelicopterdeploymentandmaintenanceatClearwaterAirStation,Florida".Computers&OperationsResearch35(2008)1829—1843.

7Crosson,O'Kiely,O'MaraandWallace(2006):"ThedevelopmentofamathematicalmodeltoinvestigateIrishbeefproductionsystems".AgriculturalSystems,349‐370.

8 Croce and Oliveri (2006): "Scheduling the Italian Football League: an ILP‐based approach". Computers &OperationsResearch,1963‐1974.

9SingerandDonoso(2006):"Strategicdecision‐makingatasteelmanufacturerassistedbylinearprogramming".JournalofBusinessResearch,387‐390. 

Page 8: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

Minnesota's Nutrition Coordination Center used linear programming to estimate content ofcommercialfoodproducts.10

LinearProgrammingwasusedtodecidethedailyroutesofloggingtrucksinforestry.Aspectssuchaspickupanddeliverywithsplitpickups,multipleproducts,timewindows,severaltimeperiods,multipledepots,driverchangesandaheterogeneoustruckfleet.11

Airlineseatisthemostperishablecommodityintheworld.Eachtimeanairlinertakesoffwithanemptyseat,arevenueopportunityislost.DeltaAirLinesusedaLPmodelwithmorethan40,000constraintsand60,000variablestosolvethisemptyseatproblem.Theysavedmorethan$220,000perday.12

AllocationoftraincapacityamongmultipletravelsegmentsonanIndianRailwaystrainroutewithseveralstops.Duetohistoricalandsocialreasons,IndianRailwayssplitsitstraincapacitybased on user and type of travel. The determination of the optimal split of such capacity isnontrivial.TheirLPmodelwasapplied17IndianRailwaystrains,andtheyincreasedrevenuefrom2.6to29.3percentinrevenue,6.7to30.8percentinloadfactors,and8.4to29percentinpassengerscarried.13

Intheshippingandtransportationindustry,thereareseveraltypesofstandardcontainerswithdifferent dimensions and different associated costs. Investigation of the multiple containerloadingcostminimizationproblem,wheretheobjectiveistoloadproductsofvarioustypesintocontainersofvarioussizessoastominimizethetotalcost.14 

This paper describes an integer linearprogrammingmodel conceived as an alternative to atraditionalmaterialrequirementsplanning(MRP)systemforextendingtheconceptofsupplychainsynchronisationupstreaminamulti‐tiersupplychain.Inthismodel,weassumethereisan incumbent application for transmitting original equipment manufacturer (OEM)requirementstofirst‐,second‐andthird‐tiersuppliers.15 

                                                            10Westrich,Altmann,andPotthoff(1988):"Minnesota'sNutritionCoordinatingCenterUsesMathematicalOptimizationtoEstimateFoodNutrientValues".Interfaces,86‐99.

11Flisberg,P.,B.Lidén,M.Rönnqvist(2009):"Ahybridmethodbasedonlinearprogrammingandtabusearchforroutingofloggingtrucks".Computers&OperationsResearch,1122‐1144.

12Subramanian,R.(1994):“Coldstart:FleetAssignmentatDeltaAirLines”.Interfaces,104‐120.

13GopalakrishnanandNarayan(2010):“CapacityManagementonLong‐DistancePassengerTrainsofIndianRailways”.Interfaces,291‐302.

14ChanHouChea,WeiliHuanga,AndrewLima,WenbinZhu(2011):“Themultiplecontainerloadingcostminimizationproblem”.EuropeanJournalofOperationalResearch,501‐511.15 Mula,J.,A.C.Lyons,J.E.Hernández,R.Poler(2014):“Anintegerlinearprogrammingmodeltosupportcustomer‐drivenmaterialplanninginsynchronised,multi‐tiersupplychains”.InternationalJournalofProductionResearch,

14,4267‐4278. 

Page 9: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

 

Thesepracticalapplicationsbelongstoaclassofbusinessproblemsclassifiedasallocationproblemsandundercertainconditionsasolutioncanbeachievedbythelinearprogrammingmodel.

4.Linearprogrammingdefined16We define a linear programming problem as an allocation problemwherein the values of decisionvariablesmustbedeterminedtomeetagoal,underasetoflimitationsbasedonavailableresources.

Linearprogrammingmodels

A linear programming problemmay be defined as the problemofmaximizing(orminimizing)alinearobjectivefunctionsubjecttoasetoflinearconstraints.

Theconstraintsmaybeequalitiesorinequalities.

ALinearProgrammingmodelisbasedonthefollowingproperties:

1.Proportionality Thismeansthatthecontributionofeachdecisionvariabletothevalueofthe objective function and the left hand side of constraints are directlyproportional to the level of thedecision variable. In otherwordswe aretalkingaboutconstantreturnstoscale.

2.Nonnegativity Decisionvariablesarenotallowedtobenegative.Thismeansthatsolutionsvariables of say costs cannot be negative, or the number of workersallocatedtoajobcannotbenegative.

3.Additivity Theobjectivefunctionorthefunctionofthelefthandsideofafunctionalconstraintisthesumoftheindividualcontributionsofeachvariable.

4.Divisibility Decisionvariablesareallowedtofractionalvaluesequaltoorabovezero.Fractionalvaluesforthedecisionvariables,suchas1.25areallowed.

5.Certainty Thisassumptionasserts that theobjectiveandconstraintscoefficientsofthe LP model are deterministic. This means that they are known fixedconstants.

                                                            16WeusetheDantzig(1963)specification.Dantzig,G.B.(1963):LinearProgrammingandExtensions.PrincetonUniversityPress.

Page 10: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

10 

 

4.1 Themanagerialperspective

It is important torealize that linearprogramming isnotapanacea. Instead linearprogramming isamathematicaltoolthatsometimesapproximatesamanagerialproblemquitewell.

Ifwetakeacloserlookattheassumptionsunderlyingthelinearprogrammingmodelwecanveryeasilyspecifyapplicationswheretheassumptionsarenotmeet.

Insteadofhavingconstantreturnstoscalewecouldhaveincreasingordecreasingreturnstoscale.17

Ifweareunsureoftheexactnumberofresourcesthatareneededinamanufacturingproblemthenthecertaintyassumptionwouldbeviolated.

Data that are used in a linear programming model are uncertain because they cannot bemeasuredpreciselyandbecausetheycanfluctuateindifferentunpredictableways.Justthinkofmachinebreakdowns,absenceofworkersorpowerfailures,etc.Thecertaintyassumption‐arare occurrence in real life, where data are more likely to be presented by probabilisticdistributions. If thestandarddeviationsof thesedistributionsaresufficientlysmall, then theapproximationisacceptable.18

Theprofitorthecostapproximatesanuncertainamount.Theactualvaluedependsoncurrentpriceofrawmaterials,defectsduringmanufacturingorchangingininventorycosts,etc.

Tosumuponeshouldhave inmind thatuncertainty in thedata isonereasonwhymodelsare justapproximate.

                                                            17Decreasingreturnstoscalecanbetreatedbyintroducinganewdecisionvariablethatcoversthedecreasingreturnstoscale.Inthiscasewewouldhavetwodecisionvariablesonethattakecareofconstantreturnstoscaleandanothertotakeofdecreasingreturnstoscale.Decreasingandincreasingreturnstoscalecanalsobesolvedbynonlinearprogramming.

18Largestandarddeviationscanbeaccountedbyapplyingsensitivityanalysistotheoptimalsolution. 

Page 11: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

11 

 

5.Asimpleproductionproblem

5.1 ProblemdescriptionA largemanufacturingcompany that specializes inpersonal computersmustdecidewhat typesandquantitiesofoutputtomanufactureforeachday'sproduction.Wejustlookattwokindsofpersonalcomputers‐thesmallandthebig‐fromwhichwemayselecttheproductmix.

Themanufactoryhasthefollowingfreeresourcesavailablefortheproduction:

numberoflaborhours600

numberofprocessinghours800

Frompastexperiencetheycansell

nomorethan100bigcomputersperday.

Theresourcesavailablearerelatedtothetwoalternativeoutputsasfollows.Eachunitofsmallpersonalcomputersproducedrequire2.5hoursoflaborand4.5hoursofprocessing,whileeachunitofthebigpersonalcomputersproducedrequires3.5hoursoflaborand5.5hoursofprocessing.

Theprofitperunitofsmallpersonalcomputersmanufacturedis€15,whiletheprofitperunitofthebigpersonalcomputersmanufacturedis€28.

Howmanyofeachtypeofpersonalcomputersshouldthemanufactoryproducetomaximizeprofit?

Decisionvariables

Weintroducetwodecisionvariables.Letourdecisionvariablesbe

X1=numberofsmallpersonalcomputersmanufactured

X2=numberofbigpersonalcomputersmanufactured

Objectivefunction

Theprofit per day is equal to Z the profit from theproduction of each type of personal computersmanufactured.Withaprofitperunitof€15and€28wehavethetotalprofitequalto:

15X1astheprofitfromproductionofsmallpersonalcomputersand28X2astheprofitfromproductionofbigpersonalcomputers.

Themanufactoryhasastheirobjectivetomaximizethetotalprofitfromproducingpersonalcomputerswhichmeansthatourobjectivefunctionisequalto:

MaxZ=15X1+28X2

OnefirstandfeasiblesolutionisnottoproduceanythingthatisX1=0andX2=0whichyieldsatotalprofitofzero.ButanypositivesolutionsofX1andX2givemoreproductionandgreaterprofit.IfX1=2andX2=3

Page 12: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

12 

 

then theprofit is equal to Z=2(15) +3(28) =€114.Unfortunately themaximization of the objectivefunctionhastomeetacoupleofconstraints,andwehavetotaketheseconstraintsintoconsiderationinordertofindanoptimalsolution.

NegativevaluesofX1andX2makenomanagerialsense.

Constraints

Fromtheproblemwehavethreerestrictions:

Laborhours:600hours

Processinghours:800hours

Salesrestriction:nomorethan100bigcomputers

Weformulatethethreeconstraintsas:

Laborhours

Thenumberofhourstoproduce1smallcomputeris2.5hoursandtoproduce1bigcomputeris4.5hours.TotalhoursrequiredtoproduceX1andX2computersis2.5X1+4.5X2.

With600hoursavailabletoproduceX1andX2weformulatethelaborconstraintas:

2.5X1+4.5X2≤600

Processinghours

Numberofprocessinghourstohandle1smallcomputeris3.5hoursandtohandle1bigcomputeris5.5hours.Thetotalprocessinghoursrequiredis3.5X1+5.5X2.

With800hoursavailabletohandleX1andX2weformulatetheprocessingconstraintas:

3.5X1+5.5X2≤800

Salesrestriction

Only100bigcomputerscanbesold.Thelimitationonsalescanbeformulatedas:

1X2≤100

Page 13: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

13 

 

5.2 ThemodelWesummarizetheproblemasfollows.WeintroduceX1unitsofsmallcomputersandX2unitsofbigcomputerssuchthatthetotalprofitZismaximized19withrespecttoavailableresources:

MaximizeZ= 15x₁+28x₂

Subjecttoconstraints

Labor 2.5x₁+4.5x₂ ≤600

Processing 3.5x₁+5.5x₂ ≤800

Sales 1x₂ ≤100

and

X₁,X₂≥0

5.3 SummaryTheproductionexampleaboveisanoptimizationproblemwherewemaximizealinearfunctionofthedecisionvariablessubjecttoasetofconstraints.Eachconstraintmustbea linearequationor linearinequality.We have formulated the production example as an allocation problem in which limitedresourcesareallocatedtoanumberofeconomicactivities.AgeneralLPmodelcanbewrittenasfollows:

MaximizeZ= c₁x₁+c₂x₂+...+cnxn

Subjectto

a₁₁x₁+a₁₂x₂+...+a1nxn≤b₁

a₂₁x₁+a₂₂x₂+...+a2nxn≤b₂

...

am1xn+am2x2+...+amnxn≤bm

x1,x2,…,xn≥0

In thegeneralLPmodelwehavemactivitieswhose levels are representedbyndecisionvariables,x₁,x₂,...,xn.

Eachunitofactivityjuseanamountaijofresourcei,andthemresourcesaregivenbyb₁,b₂,...,bm.

                                                            19Theobjectivefunctionasspecifiedmaximizestheprofit.Rememberthatprofitisequaltoincomeminusexpenditure.Ifourobjectivefunctionwasspecifiedasminimizationofcostswecoulddothateasilyjustbymultiplyingourobjectivefunctionwithminusone.Hereweusethefactthatcostisequaltoexpenditureminusincome.

Page 14: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

14 

 

6.Aserviceproblem

6.1 ProblemdescriptionAninsurancecompanyis introducingtwonewproduct lines:normalriskinsurancemortgageAandexpanded insurance mortgage B. The expected profit is 35€ per unit on mortgage A and 50€ onmortgageB.

Managerofthemortgagedepartmenthasestablishedsalesquotasforthenewproductlinestomaximizetotalexpectedprofit.

Furtherinformationis:

Mortgage Work‐hoursperunit

Department

Underwriting

Administration

Claims

Normalrisk

3

1

4

Expandedrisk

5

2

3

Work‐hoursavailable

1,300

500

900

Decisionvariables

Weintroduce2variables.Let

x₁=numberofnormalriskinsurancemortgageA

x₂=numberofexpandedinsurancemortgageB

Objectivefunction

Theinsurancecompanyseekstomaximizethetotalprofit.Alinearobjectivefunctioncanbespecifiedwhichmaximizethetotalprofit.Wehave

MaxZ=profitperunitfortotalinsurance

Page 15: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

15 

 

TheprofitfromeachmortgageAwas35€wecanformulatethisas35x₁astheprofitfrommortgageAandtheprofitfromeachmortgageBwas50€whichgivesusaprofitfrommortgageBequalto50x₂.Thuswecanformulatethetotalprofitas

Z=35x₁+50x₂€

Theprofitfromlet’ssay5mortgageAand3mortgageBwouldgiveusatotalprofitequalto

Z=5(35)+3(50)=325€.

Constraints

Fromtheproblemspecificationwehavethreerestrictionsonthenumberofworkinghoursavailable.

Underwriting:1,300hours

Administration:500hours

Claims:900hours

Weformulatethethreeconstraintsas:

Underwriting

Thenumberofhoursrequiredtohandle1unitofmortgageAis3hoursandtohandle1unitofmortgageBis5hours.Thusthetotalhoursrequiredtohandlex₁andx₂mortgagesis3x₁+5x₂

With1,300hoursavailabletohandlex₁andx₂weformulatetheUnderwritingconstraintas:

3x₁+5x₂≤1,300

Administration

Numberofhoursrequiredtohandle1unitofmortgageAis1hourand1unitofmortgageBis2hours.Thetotalhoursrequiredis1x₁+2x₂.

With500hoursavailabletohandlex₁andx₂weformulatetheAdministrationconstraintas:

1x₁+2x₂≤500

Claims

Numberofhoursrequiredtohandle1unitofmortgageAis4hoursand1unitofmortgageBis3hours.Thetotalhoursrequiredis4x₁+3x₂.

With900hoursavailabletohandlex₁andx₂weformulatetheClaimconstraintas:

4x₁+3x₂≤900

Page 16: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

16 

 

6.2 ThemodelWesummarizetheinsuranceproblemasfollows.Weintroducex₁unitsofmortgageAandx₂unitsofmortgageBsuchthatthetotalprofitZismaximizedwithrespecttoavailableresources:

MaximizeZ= 35x₁+50x₂

Subjecttoconstraints

Underwriting 3x₁+5x₂≤1,300

Administration 1x₁+2x₂≤500

Claim 4x₁+3x₂≤900

and

X₁,X₂≥0

6.3 PerformingtheanalysisGraphicalSolution

ThegraphicalsolutiontoLP‐problemscanonlybeshownwithtwovariables.Webeginwithamapthatexpressesonlynonnegativeconstraints.

Page 17: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

17 

 

We continuewith the three constraints and graph them each by each, and endswith the objectivefunction.Thefinalgraphicalsolutionhasafeasibleregion.Wedefinethefeasibleregionfortheproblemboundedby the three constraints and the assumptionsof nonnegativity. Pointswhere twoormoreconstraintsintersectarecalledcornerpoints(orcornersolution).

Ifwetakealookatthefourcornersolutionswehave:

0: (x1=0,x2=0) →Z=0

1: (x₁=225,x₂=0) →Z=7,875

2: (x₁=60,x₂=220)→Z=13,100

3: (x₁=0,x₂=250) →Z=12,500

Fromthisweseethatthesolutionthathasitsmaximumatcornersolution2wherex₁=60andx₂=220whichgivesasolutionequaltoZ=13,100.AtthispointthevalueofZismaximizedandtheotherthreecornersolutionshaveaZvaluelessthancornersolution2.

Page 18: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

18 

 

6.4 UtilizationofresourcesAttheoptimalsolutionjustfoundwehadx₁=60andx₂=220.Atthatcornersolutionwecanseethatnotallavailableresourcesareused.

TheUnderwritingconstraint3x₁+5x₂≤1,300

utilize3(60)+5(220)=1,280<1,300

Ifweaddanextravariable,s₁,totheconstraintwecanwritetheconstraintasanequalityas

3x₁+5x₂+1s₁=1,300

Thedifferencebetweentheresourcesactuallyusedandthoseavailableequals

s₁=1,300‐1,280=20

Thismeansthedepartmenthas20hoursavailablewhichhasnotbeenusedforthepurpose,buttheycanbereallocatedbymanagementforotherpurposes‐ifpossible.

The20hoursavailablearecalledslackorunusedhoursandwenamevariables₁asslackvariablenumber1.Becausethevalueofslackvariable1isnotequaltozerowesaythattheconstraintisnotbinding.

TheAdministrationconstraint1x₁+2x₂≤500

utilize1(60)+2(220)=500

If we add an extra variable, slackvariable number s₂ , to the constraint we can write theconstraintasanequality1x₁+2x₂+1s₂=500

Thedifferencebetweenresourcesusedandthoseavailableequalsslackvariablenumber2

s₂=500‐500=0.

Thismeans the department has used all available resources allocated at the Administrationdepartment,andwesaythisconstraintisbindingandtheslackorunusedhoursareequaltozero.

Ifaconstraintisbindingthereisnoslack.

ThefinalClaimconstraint4x₁+3x₂≤900

utilize4(60)+3(220)=900

Ifwe add an extra variable, slackvariable number 3 s₃ , to the constraintwe canwrite theconstraintasanequality4x₁+3x₂+1s₃=900

Thedifferencebetweenresourcesusedandthoseavailableequalss₃=900‐900=0.

ThismeansthedepartmenthasusedallavailableresourcesallocatedforClaims.Thisconstraintisbindingandtheslackisequaltozero.

Page 19: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

19 

 

Wehave introduced an important part in linear programming and that is the introduction of slackvariables.Aswehaveseenaslackvariableisequaltounusedamountofaresource.

SlackVariable

Aslackvariablecontainsthedifferencebetween

theresourcesactuallyusedandthoseavailable.

6.5 TheManagerialPerspectiveFromtheabovesolutionandconclusionwithrespecttousedorunusedresourcesfurthershouldbementioned.Whenallresourcesareusedonecouldaskwhatifwecouldhavemoreresourcesallocated,and ifwe could choose freelybetween the twobinding constraints (Administration andClaim) andwhichofthetwoshouldbethefirsttohavemoreresourcesallocated.Thebestwaytoallocatemoreresourceswould be to the department that utilizes the resources the bestway. From an economicperspectivethebestwayresourcesareallocatedarewithaneyetowhatthealternativesare.Iftheonlyalternativesarebetween the twobindingconstraints then theresources shouldbeallocated to thatconstraintthatincreasethevalueoftheobjectivefunctionmost.

IfoneextraresourceisallocatedtoUnderwritingwewouldhave1,301hoursavailable.Wehavefoundthattheslackvariables₁=20,andifweallocateonehourmoretoUnderwritingwewouldaddextratotheslackvariables₁=20+1=21.Weintroduceanewvariable"shadowprice"andtheshadowpriceatUnderwritingequaltoλ₁=0.

IfoneextraresourceisallocatedtoAdministrationwenowhave501hoursavailable.Ourslackvariablewasequal tos₂=0andwithoneextrahourwehave501hoursavailableandweendupwithanewoptimalsolutionwherex₁=59.4andx₂=220.8andanewobjectivefunctionZ=13,119.Theincreaseintheobjectivefunctionisequalto19,andwehaveashadowpriceofλ₂=19.

IfoneextraresourceisallocatedtoClaimwenowhave901hoursavailable.With901hoursavailablewe end upwith another optimal solutionwith x₁=60.4 and x₂=219.8 and a new objective functionZ=13,104.Theincreaseintheobjectivefunctionisequalto4,whichisequaltoourshadowprice,thatisλ₃=4.

ThebestwayoneextrahourcanbeusedshouldbeattheAdministrationdepartment.TheshadowpriceattheAdministrationequaltoλ₂=19andthereforeextrahoursallocatedtoAdministrationdepartmentincreases theobjective functionmorecomparedwiththeClaimdepartmentwhichonly increasetheobjectivefunctionwithλ₃=4.

Page 20: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

20 

 

Weintroduceanewvariable"unitworthofaresource"whichwewillcallaShadowPrice.

ShadowPrice

Ashadowpricecontainstheamounttheoptimal

objectivefunctionvaluechangesperunitincrease

intherighthandsidevalueoftheconstraint.

Wehavedemonstratedtheconnectionbetweenslackvariablesandshadowpricesandwesummarizetheresults:

Constraint Slack Shadowprice

Underwriting

Administration

Claim

20

0

0

0

19

4

Page 21: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

21 

 

7.UsingthecomputerWecansolvetheaboveLP‐problemusingthecomputer.InthefollowingweuseaLPprogramthatisavailableatCopenhagenBusinessSchool.Weproceedasfollows.

Afterinstallationoftheprogram20youstarttheprogramandreceivethefollowingstartwindow.

AsyoucanseeyouhavetheoptionofchoosingbetweenaDanishorEnglishversion.WecontinuewiththeEnglishversionandwebeginwithformulatinganewmodel.Youpushthestartbottom,andgetthefollowingpicture.

                                                            20AvailableviaLearnatCBS.

Page 22: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

22 

 

PushingtheNewmodelbottomweget

Weformulateanewmodelandcallit"Myownmodel".

Wemaximizetheobjectivefunctionandwehave2variablesand3constraints.

Page 23: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

23 

 

Afterpushing theOKbottomwecan fill in all the coefficients from theLP‐problem, andweget thefollowingpicture.

PushingtheOKbottomwehavethepossibilitytohavesolutionseitherasAnalyticalorGraphical.Wechoosetheanalyticalsolution.

Theanalyticalsolutionhastheoptimalvalueswefoundinthegraphicalsolution,butwehavefurthernumbersthatrequireafewwords.

Page 24: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

24 

 

OPTIMAL SOLUTION OBJECTIVE FUNCTION 13100.0000 PARTIAL SENSITIVITY ANALYSIS SOLUTION REDUCED OBJECTIVE FUNCTION RANGES VARIABLE VALUE COST LOWER GIVEN UPPER __________________________________________________________________________________ Mortgage A 60.0000 0.0000 25.0000 35.0000 66.6667 Mortgage B 220.0000 0.0000 26.2500 50.0000 70.0000 SHADOW SLACK RIGHT HAND SIDE RANGES CONSTRAINT TYPE PRICE LOWER GIVEN UPPER __________________________________________________________________________________ Underwriting ≤ 0.0000 20.0000 1280.0000 1300.0000 +INFINITY Administration ≤ 19.0000 0.0000 225.0000 500.0000 509.0909 Claim ≤ 4.0000 0.0000 750.0000 900.0000 1000.0000

TheoptimalsolutionZequals13,100

Thetwodecisionvaluesarex1=60andx2=220.

Theobjectivefunctionforeachdecisionvariablealsocomputesranges.Thecoefficientvalueofx1=35has"lower”range=25and"upper“range=66.6667.Theserangestellusthatthesolutionofthedecisionvariablex1=60willremainthesamewithinthe"lower"and"upper"ranges.Ifwechangethegivencoefficientfrom35to36thesolutionwillremainthesamex₁=60,butwehaveanewoptimalobjectivefunctionthatisincreasedwith60toanewvalueequalto13,160.Wehave"lower"and"upper"rangesforx₂equalto(26.25;70).Ifthecoefficientofx₂ischangedfrom50to51westillhavetheoptimalsolutionofx₂=220.Wecanchangethecoefficientfrom50upto51andthevalueoftheobjectivefunctionincreaseswith220.

TheRighthandsideofthethreeconstraintshastheirownranges.Ifwelookatconstraint2(theAdministrationconstraint)wehavea"Shadowprice"=19.Thisshadowpricewill remainthesameintheintervaloftheRighthandsidefrom(225;509).IfwechangetheRighthandsidefrom 500 to 501 the value of the objective function will change from 13,100 to13,100+19=13,119.IfwechangeConstraint1from1,300to1,301weseewithaShadowprice=0thatwedonotgetabettersolution.Theobjectivefunctionremainsthesame.

TheReducedcost21columnshowsthevalueofvariableswhenthesevariableshavesolutionsequaltozero.

                                                            21Reducedcost=[(changeinoptimalobjectivefunctionvalue)/(unitincreaseofvariable=0)]

Page 25: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

25 

 

Reducedcost

Thereducedcostofanunusedactivityistheamountby which profits will decrease if one unit of thisactivityisforcedintothesolution.

Obviously, a variable that already appears in theoptimalsolutionwillhaveazeroreducedcost.

Sometimestheobjectivefunctionisparalleltooneofthebindingconstraintsandwewillhavewhatiscalled alternative optimum. Alternative optimum can be important because it gives managementanothersolutionwiththesamefinalvalueof theobjective function. If theprofit frommortgageB ischangedfrom50€to70€wehaveanoptimalsolutionwithmortgageA=0andmortgageB=250.ButtheobjectivefunctionisparalleltotheAdministrationconstraintintherangefromA=0andA=60.Thismeans management can include mortgage A in their product portfolio, and instead of having oneproducttooffertheycanhavetwoproducts.

7.1 TheManagerialPerspectiveLinearprogrammingisamathematicaltoolwhichsometimesfitorapproximatesamanagerialsituation.Justlikeahammer.Ahammercanbeusedtohammernails,butitcanalsobeusedtohammerscrews,holes,andbolts.Itisobviousthattheabovetasksaremoreefficientlydonebyascrewdriver,adrill,butsometimesthereisnoappropriatetoolexceptfromthehammer.Inthiscasethehammeristhebestavailable tool, and that is the same with linear programming. Linear programming is the bestmathematicaltooltodescribemanymanagerialsituations.

Amanagershouldnotgointoallthetechnicaldetailsofhowlinearprogrammingmodelsaresolved.Insteadamanagercanhelpwiththeformulationofeconomiccoherenceandlatertranslatetheresultsinamanagerialcontentandtakeadecision.

Page 26: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

26 

 

8.TheDualProblemLinear programming models have brought to economists the meaning of duality22. We know thateconomistsareinterestedinproductionandcost,pricesandquantities,but,dualitypossessesameaningthat transcends linearprogrammingand itseconomic interpretation.Mostproblemshavea twofoldrepresentationandwecallthistheduality.

Insteadoflookingatthemaximizationofnetprofitweturnourfocustowardstheresourcesusedandwe now look at theminimization of the availableresources.

Intheinsuranceexamplethecompanyhadanumberofavailableworkinghours,butwedidnotuseallthehours.Wefoundthat20hourswasnotusedintheUnderwritingdepartment.Thequestioniswhattheeconomicvalueassociatedwiththelasthourisworth?Thelessweuseofavailableworkinghoursthebetter.Anyfreeworkinghourcanbeusedforanotherpurpose.

Ifwetakeacloserlookattheworkinghoursandweconnectthesetothedepartmentswecanswitchtoanotherproblemwhereinsteadweminimizetheuseofavailableresources.Intheinsurancecaseouroriginal problem was the maximization of the profit per unit for total insurance. The model wasformulatedwithrespecttoavailableworkinghoursatthreedepartments.

We could alternatively formulate the same problem by focusing on the minimization of availableworkinghourswithrespecttohavingtheprofitperunitfortotalinsuranceaslargeaspossible.

Weformulatethedualproblemasfollows.

Wehave1,300Underwritinghours,500Administrationhours,and900Claimshours.Thisinformationcannowbeusedtoformulateourobjectiveistominimizetheuseofavailableworkinghours.

Decisionvariables

Weintroducethreedecisionvariables.Let

λ₁=numberofhoursatUnderwritingdepartment

λ₂=numberofhoursatAdministrationdepartment

λ₃=numberofhoursatClaimsdepartment

Objectivefunction

                                                            22 ThewordcanbefoundintheworksbyEulerandLegendrein1750wheretheywereinterestedinmethodsforsolvingdifferentialequations.LaterBoole(1859)wrote:“Thereexistsinpartialdifferentialequationsaremarkableduality,invirtueofwhicheachequationstandsconnectedwithsomeotherequationofthesameorderbyrelationsofaperfectlyreciprocalcharacter”.Boole,G.B.ATreatiseOnDifferentialEquations.NewYork,ChelseaPub.Co.,5th,1859.

Page 27: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

27 

 

Ourobjectiveistominimizethenumberofworkinghoursusedatthethreedepartments.Wespecifyourlinearobjectivefunctionby

MinimizeZ'=1,300λ₁+500λ₂+900λ₃hours

Constraints

Inouroriginalproblem(theprimalproblem)wemaximizedthetotalprofit.Inthedualproblemwenowminimizetheavailableworkinghourswithrespecttohavingtheprofitfromthetwomortgagesaslargeaspossible.

Fromtheinsurancecasethemanagerhasestablishedquotasforthenewproductlines:

normalriskinsurance

expandedinsurance

IfwelookattheMortgageA=normalriskquotasweseethat

thesalesquotais3hoursattheUnderwritingdepartment,

1houratAdministration

4hoursatClaimsdepartment

Wealsoknowthattheexpectedprofit is35€perunitofnormalrisk.WecannowformulatethisasconstraintsinthedualLPmodelasfollows:

WewanttohaveMortgageAaslargeaspossible(thelargerthebetter):

MortgageA: 3λ₁+1λ₂+4λ₃≥35

AlsowewantmortgageBaslargeaspossible(again,thelargerthebetter):

MortgageB: 5λ₁+2λ₂+3λ₃≥50

Page 28: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

28 

 

8.1 TheModelThefinaldualLP‐problemtosolveis:

MinimizeZ’= 1,300λ₁+500λ₂ +900λ3

Subjecttoconstraints

MortgageA: 3λ₁+1λ₂+4λ3≥35

MortgageB: 5λ₁+2λ₂+3λ3≥50

and

λ₁,λ₂,λ3≥0

Usingthecomputerwehave

Page 29: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

29 

 

Ifwesolvethisminimizationproblemwefindthefollowingoptimalsolution:

FirstweseethattheoptimalsolutionofZ'=13,100whichisidenticaltotheoptimalsolutionoftheoriginalprimalproblemwhereZ=13,100.

Ascanbeseenthevaluesofthethreedecisionvariablesareλ₁=0,λ₂=19,λ₃=4

Rememberfromourpresentationaboveintheprimalproblemthatthethreeshadowpriceswhere:

{0,19,4}.Thisisanimportantobservation.

Wehave thecorrespondencebetween theoriginalproblems‐theprimalproblem‐tothedualproblem,thatshadowpricesintheprimalproblemareequaltosolutionvaluesinthedualproblem.

Theshadowprices in thedualproblemareequal to solutionvalues in theprimalproblem.Shadowpricesinthedualproblemhavesolutionvaluesequalto{60,220}.Thesevaluesareequaltothesolutionvaluesfromtheprimalproblem{60,220}.

Wealsohaveareducedcostthatisnotequaltozero.Weseeinthisdualsolutionthatthereducedcostofvariable1isequalto20andthisisexactlyequaltothevalueoftheslackvalueintheprimalproblem.

Dualprice

Thedualpriceofaconstraintmeasurestherateatwhichthesolutionvalueimprovesastheright‐handsideisincreased.

Page 30: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

30 

 

8.2 TheManagerialPerspectiveThereisadirectlinkbetweenaprimalandadualproblem.Dualityisnothingelsethanthespecificationofoneproblemfromtwodifferentpointsofview.Onceaproblemisspecified,werefertoitastheprimalproblem. A second, associated problem very often exists and it is called the dual specification. Inmanagerial economicsweareoftenmore interested in thedualproblembecause it containsmostlyeconomicinformation.Sometimesamanagerislessconcernedabouttheprofitfromasolutionthantheuse of available resources. This is because a manager has more control over the use of availableresourcescomparedwiththeprofits.Thedualsolutiongivesamanagertheinformationaboutthevalueofresources,andthisinturnisimportantwhenhehastodecideifmoreresourcesshouldbeallocatedandhowmuchtopayfortheseextraresources.

TheprofitofMortgageA=35andMortgageB=50appearascoefficientsintheobjectivefunctionintheprimalproblem.And in thedualproblemtheyareconstraintscoefficientsweseek tobeas largeaspossible.

Tofullyunderstandthedualityrelationsinlinearprogramming,itisimportanttoknowhowtosetupdualpairsofproblemsproperlyandhowtointerpretalltheircomponentsineconomicterms.

Page 31: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

31 

 

9.Alinearprogrammingapplication:InvestmentWehaveintroducedthegeneralstructureofthelinearprogrammingproblemandcharacteristicsofthesolution.Nowletustakealookataninvestmentproblem.

Acompanyhas12mill.€forinvestmentwithinthecompany.Therearefivepossibleprojectsunderconsideration.

Purchasing Expectedreturn

Maximuminvestment(mill.of€)

Improvedmaterials‐handlingequipment

Automatingpackagingoperations

Purchasing raw materials in anticipation of priceincrease

Payingupoutstandingnotes

Additionalpromotionforanewproductline

15%

10%

18%

8%

20%

3

5

6

4

1

There is nominimum investment required for any project. Project 1 and 2 are classified as capitalexpenditureprojects,projects3and5arespeculativeinvestmentprojects,andproject4isafinancialproject.Thecompanyhasthefollowingrequirements:

Investmentincapitalexpendituresmustatleastbe40%ofthetotal

Theinvestmentinspeculativeprojectsmustbenomorethan50%oftheamountusedtopaynotes.

Decisionvariables

The decision variablesmust specify the amount ofmoney invested in each of the alternatives.Weintroduce6decisionvariablesthatspecifytheamountinvestedineachofthealternatives.

Let x₁=investmentinImprovedmaterials‐handlingequipment

x₂=investmentinAutomatingpackagingoperations

x3=investmentinPurchasingrawmaterialsinanticipationofpriceincrease

x4=investmentinPayingupoutstandingnotes

x5=investmentinAdditionalpromotionforanewproductline

Page 32: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

32 

 

Objectivefunction

Determinehowmuchtoinvestineachprojectsoastomaximizeannualreturn.Wehave

MaxZ=annualreturn

Z=0.15x₁+0.10x₂+0.18x₃+0.08x₄+0.20x₅

Constraints

Fromtheproblemspecificationwehaveanumberofconstraints

Availablecash(mill.€) 1x₁+1x₂+1x₃+1x₄+1x₅≤12

Maxproject1 1x₁≤3

Maxproject2 1x2≤5

Maxproject3 1x3≤6

Maxproject4 1x4≤4

Maxproject5 1x5≤1

Spec.50%notes 1x3+1x5≤0.5x4

Capitalexpenditureatleast40% (1x1+1x2)/(1x1+1x2+1x3+1x4+1x5)≥0.4

Page 33: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

33 

 

9.1 ThemodelWesummarizetheportfolioselectionproblemasfollows.

Weintroducedecisionvariablesx₁,...,x5

MaxZ=0.15x₁+0.10x₂+0.18x₃+0.08x₄+0.20x₅

Subjecttoconstraints

Availablecash(mill.€) 1x₁+1x₂+1x₃+1x₄+1x₅≤12

Maxproject1 1x₁≤3

Maxproject2 1x2≤5

Maxproject3 1x3≤6

Maxproject4 1x4≤4

Maxproject5 1x5≤1

Spec.50%notes 1x3–1x4+1x5≤0

Capitalexp.atleast40% 0.6x1+0.6x2‐0.4x3‐0.4x4‐0.4x5≥0

and

x₁,x₂,x₃,x₄,x₅,x6≥0

Page 34: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

34 

 

Thesolutiontotheportfolioproblemgivesthefollowingoptimalsolution:

OPTIMAL SOLUTION OBJECTIVE FUNCTION 1.4500 PARTIAL SENSITIVITY ANALYSIS SOLUTION REDUCED OBJECTIVE FUNCTION RANGES VARIABLE VALUE COST LOWER GIVEN UPPER __________________________________________________________________________________ Project 1 3.0000 0.0000 0.1000 0.1500 +INFINITY Project 2 3.0000 0.0000 0.0000 0.1000 0.1133 Project 3 1.0000 0.0000 0.1400 0.1800 0.2000 Project 4 4.0000 0.0000 0.0600 0.0800 +INFINITY Project 5 1.0000 0.0000 0.1800 0.2000 +INFINITY SHADOW SLACK RIGHT HAND SIDE RANGES CONSTRAINT TYPE PRICE LOWER GIVEN UPPER __________________________________________________________________________________ Cash ≤ 0.1000 0.0000 10.0000 12.0000 14.0000 Max proj 1 ≤ 0.0500 0.0000 1.0000 3.0000 6.0000 Max proj 2 ≤ 0.0000 2.0000 3.0000 5.0000 +INFINITY Max proj 3 ≤ 0.0000 5.0000 1.0000 6.0000 +INFINITY Max proj 4 ≤ 0.0200 0.0000 2.6667 4.0000 4.8000 Max proj 5 ≤ 0.0200 0.0000 0.0000 1.0000 2.0000 Notes ≤ 0.0800 0.0000 -1.0000 0.0000 1.2000 Cap. Exp. ≥ 0.0000 -1.2000 -INFINITY 0.0000 1.2000

Theoptimalsolutiongivesavalueoftheobjectivefunctionequalto1.45.

Thismeansanannualreturn=1.45mill€ona12mill€investment.

Fromtheoutputwecanfindthevaluesofthedecisionvariables.

Variable Investment(inmill.€)

Project1

Project2

Project3

Project4

Project5

3

3

1

4

1

Total 12

From theoutputwesee that the shadowpriceoncash is equal to0.1, thismeansa10%returnonadditionalcash;Theshadowpriceonmaxproject1isequalto0.05,thismeans5%additionalreturnforadditionalinvestmentpermittedinproject1;project4hasshadowpriceequalto0.02,thismeans2%foradditionalproject4funds;project5hasshadowpriceequalto0.02,thismeans2%foradditionalproject 5 funds; notes has shadow price equal to 0.08, this means 8% additional return for eachpercentagepointlessthan50%permitted.

Page 35: An introduction to Linear Programming - Tyllesentyllesen.dk/onewebmedia/lp.pdf · An introduction to Linear Programming ... problems concerning the formulation of the bank's ... results

35 

 

10.FinalenoteInthisnoteyouhavebeenintroducedtotheideaofbuildingmanagerialmodelsinascientificway.Mostoftheassumptionsareveryoftenrequirementsthatarenevermeetinpractice,butasanapproximationofanuncertainworldyouhaveatoolthatpointstowardsonefeasiblemanagerialdirection.Withtheuseofsensitivityanalysisseveralotherdirectionscanbeincludedinthemanagerialproposal.Andwiththedualyouhavetheinformationofthevalueofresources.