An introduction to arithmetic groups (via group schemes)

29
An introduction to arithmetic groups (via group schemes) Steen Kionke 25.06.2020

Transcript of An introduction to arithmetic groups (via group schemes)

An introduction to arithmetic groups

(via group schemes)

Ste↵en Kionke

25.06.2020

Content

First definition of arithmetic groups

Group schemes

Definition of arithmetic groups via group schemes

Examples of arithmetic groups

a SLn(Z)

✓ SLn(R)

b SLn(Z[p�5])

✓ SLn(C)

c H3(Z) = {

0

@1 x z

0 1 y

0 0 1

1

A | x, y, z 2 Z}

✓ H3(R)

d U(p, q)(Z) = {g 2 GLn(Z[i]) | gT Ip,qg = Ip,q}

✓ U(p, q)

e The unit group ⇤⇥

✓ GL2(R)

where ⇤ is the ring

⇤ = Z� iZ� jZ� ijZ with i2= 2, j

2= 5, ij = �ji.

Examples of arithmetic groups

a SLn(Z) ✓ SLn(R)

b SLn(Z[p�5]) ✓ SLn(C)

c H3(Z) = {

0

@1 x z

0 1 y

0 0 1

1

A | x, y, z 2 Z} ✓ H3(R)

d U(p, q)(Z) = {g 2 GLn(Z[i]) | gT Ip,qg = Ip,q} ✓ U(p, q)

e The unit group ⇤⇥

✓ GL2(R)

where ⇤ is the ring

⇤ = Z� iZ� jZ� ijZ with i2= 2, j

2= 5, ij = �ji.

A first definition

Definition:

Let G ✓ GLn(C) be a Zariski closed subgroup defined over Q.

An arithmetic subgroup of G is a subgroup

� ✓ G

which is commensurable to G \GLn(Z).

commensurable:

vawüshing Set

of polynom:al

with aIcoeff-

n Gln PQ )#=P

D=GAGEN

AB E H comnenswabk

if An B has finite index in A. FB

Group schemes

R: commutative unital ring

AlgR: Category of commutative R-algebras

Definition: An a�ne group scheme (of finite type over R) is a

covariant functor

G : AlgR! Grp

which is representable by a finitely generated R-algebra OG,

i.e., there is a natural equivalence G ! HomAlgR(OG, ·).

At> GIA)

Group schemes

R: commutative unital ring

AlgR: Category of commutative R-algebras

Definition: An a�ne group scheme (of finite type over R) is a

covariant functor

G : AlgR! Grp

which is representable by a finitely generated R-algebra OG,

i.e., there is a natural equivalence G ! HomAlgR(OG, ·).

* asfmetossets

GAN E- Hohn#getan ,

A) ×

f:*>B GA) ! Ct IF IGCB)¥ Hom

#g(& , B) fod

Examples

(1) The additive group Ga (over R):

Ga : A 7! (A,+)

Representable?

QGA = RET]

Hom#g.(RETJ , A) Es A× IN LIT )

Examples

(2) The multiplicative group Gm (over R):

Gm : A 7! (A⇥, ·)

Representable?

0am = RET ,T"

]

Hom IRETT"

],A) - Ä

AGRL Ins LCT)

Examples

(3) The special linear group SLn (over R):

SLn : A 7! SLn(A)

Representable?

Ogg,

=

R [Tijlicj EH MY( ldetkij ) ) - 1)

Hohn,Sla , A) - SKA)d t) (LC))

ij

Homomorphisms of group schemes

G,H a�ne group schemes over R.

Definition: A homomorphism ' : G ! H is a natural

transformation of functors.

GLA )¥ HCH )

f : A-' B {Gift 0 f. HH )

GCB) - HCB)B

East:[Yonedäslemna] Ü :O# → OG

% : GCAIEHonl9.tt/-sHonlQtAEHH)LhXoCf

Example

' : Gm ! SL2

'A : A⇥! SL2(A) with a 7!

✓a 0

0 a�1

On coordinate rings?

R [Trutz ,Fritze]#Terme -1 )→ RITT

'

]

Tu l- T

Tzz 1-T- t

Tietze Im ⑨

Coordinates

G an a�ne group scheme.

Definition:

A set of coordinates is an ordered tuple c = (t1, . . . , tn) of

elements of OG such that t1, . . . , tn generate OG.

R[T1, . . . , Tn]/Ic⇠=

�! OG

Coordinate map:

c,A : G(A)⇠=

�! HomAlgR(OG, A) �! VA(Ic) ✓ A

n

Ti ht,

a. (Ltte) . . . -Hlt))

# (Ic) = { las . . . . an IEÄ I fan . .ae/--ofoaHfEIe }

OG is a Hopf algebra

Comultiplication:

� : OG ! OG ⌦R OG

Coinversion:

I : OG ! OG

Counit:

" : O ! R

Satisfy axioms dual to the group axioms, e.g.,

G(A) G(A)⇥G(A) OG OG ⌦R OG

{1} G(A) R OG

mult

"

Link id ) II. id )

leftinverse

The counit of a group scheme

The counit of G is the homomorphism " : OG ! R corresponding

to the unit 1 2 G(R) via

G(R)⇠=

�! HomAlgR(OG, R).

Every R-algebra A is equipped with the structure morphism

◆ : R ! A

Usually ◆ � " is also called counit and denoted by ".

1- IN E

^ GCR) Ü GIA) #

EI TEHom R) → Haha , Al

{ co E = E

Extension of scalars

G a group scheme over R.

R ✓ S a ring extension.

Observation:

The functor

ES/R(G) : AlgS! Grp

ES/R(G)(A) = G(A|R)

is an a�ne group scheme over S.

atme

K E G

cousiderA

←as R- algebra

CG )= 5¥!

Linear algebraic groups

K a field.

Definition:

A linear algebraic group over K is an a�ne group scheme over K

such that OG has no nilpotent elements.

Remark: char(K) = 0 =) the ring OG is reduced.

§ is veduced"

Integral forms & arithmetic groups

Let G be a linear algebraic group over Q.

Definition:

An integral form of G is a group scheme G0 over Z with an

isomorphism

EQ/Z(G0)⇠= G.

Definition:

A subgroup � ✓ G(Q) is arithmetic if it is commensurable to

G0(Z) for some integral form G0 of G.

An example

Quaternion algebra:

D = (2, 5| Q) = Q�Qi�Qj �Qij

with i2= 2, j

2= 5, ij = �ji.

Linear algebraic group over Q:

G(A) = (A⌦Q D)⇥

Integral form:

⇤ = Z� iZ� jZ� ijZ

G0(A) = (A⌦Z ⇤)⇥

Exercise:-Check that

this D a groupScheine.

An example

Quaternion algebra:

D = (2, 5| Q) = Q�Qi�Qj �Qij

with i2= 2, j

2= 5, ij = �ji.

Linear algebraic group over Q:

G(A) = (A⌦Q D)⇥

Integral form:

⇤ = Z� iZ� jZ� ijZ

G0(A) = (A⌦Z ⇤)⇥

Q ED

Golz) = Ä is au ar: theke subgroup of DX

Relation to first definition?

Fact:

Let G be a linear algebraic group over K. There is a “closed

embedding” G ,! GLn.

Proposition:

Let G be a linear algebraic group over Q and ' : G ,! GLn a

closed embedding. Then there is an integral form G0 of G such

that

'�1

(GLn(Z)) = G0(Z).

9 : G - Gla <owto

closed ewbeddiws if :↳→ OG

Gnade )

Two results

Let G be a linear algebraic group over Q.

Theorem 1:

If G0, G1 are integral forms of G, then G0(Z) and G1(Z) arecommensurable as subgroups of G(Q).

Lemma 2:

Arithmetic groups are residually finite.

Two results

Let G be a linear algebraic group over Q.

Theorem 1:

If G0, G1 are integral forms of G, then G0(Z) and G1(Z) arecommensurable as subgroups of G(Q).

Lemma 2:

Arithmetic groups are residually finite.

" "Ij¥Äj p :p → F Hinte)

ßC g) EFAF

Oberere: Sufticiat to provethat GER ) is esideal} finite

Principal congruence subgroups

G a group scheme over Z, m 2 N

⇡m : Z ! Z/mZG(⇡m) : G(Z) ! G(Z/mZ)

Observation: G(Z/mZ) is finite.

Principal congruence subgroup:

G(Z,m) = ker(G(⇡m)) f.i. G(Z).

finite1

%:*, GC%) Es 4,4) EY, )"

Proof of Lemma 2

Lemma 2: Arithmetic groups are residually finite.

JE Gfk ) zt 1

Cousin : g : Oa - Z , JFEgtx ) # ECX) fasane

XEOG⇒ JG ) # Ecx) modm (fern>>1)

Gltm) G) = Im 0J # Tao{ = 1 C-Gtz)

Proof of Theorem 1

Theorem 1: If G0, G1 are integral forms of G, then G0(Z) andG1(Z) are commensurable as subgroups of G(Q).

Aim:

G0(Z) \G1(Z) ◆ G0(Z, b) for some b 2 N

We know Q⌦Z OG0⇠= OG

⇠= Q⌦Z OG1 .

For simplicity we assume OG0 ,OG1 ✓ OG.

GdzlEG.ca) EGCG )

UI

Gfk)

Simikrlg„ZGCZ.br

')

Proof of Theorem 1

Theorem 1: If G0, G1 are integral forms of G, then G0(Z) andG1(Z) are commensurable as subgroups of G(Q).

Aim:

G0(Z) \G1(Z) ◆ G0(Z, b) for some b 2 N

We know Q⌦Z OG0⇠= OG

⇠= Q⌦Z OG1 .

For simplicity we assume OG0 ,OG1 ✓ OG.They genialeOG ar Q-algebra

Observation 1 EGOCZ ),GfK ) EGCG )

E : OG → Q

ECOG.) EZ

E. (Oau ) EZ

Proof of Theorem 1

Choose coordinates

f1, . . . , fk 2 OG0 with "(fi) = 0

g1, . . . , g` 2 OG1 with "(gj) = 0

Since f1, . . . , fk generate OG as Q-algebra, there are polynomials

p1, . . . , p` 2 Q[X1, . . . , Xk] s.t.

pj(f1, . . . , fk) = gj for all j 2 {1, . . . , `}

if nee neplace f; byL ¥ - Elf ;)

Obst pj her anstaut fern 0

0 = Ecgj ) = Elpjffe . . . . . fa) ) = pjfdfel . . . _ Eda ) )=p; 90. . . .

Proof of Theorem 1

b 2 N : a common denominator of all coe�cients of p1, . . . , p`.

Claim:

G0(Z, b) ✓ G0(Z) \G1(Z)

f- Gothia ) g : → 6 ggf EZ

ycxIEECxlmodbbfarakxefotoshovi.gga) EZ ( GEEK)ie

.

glgjk-kfa.at/jJGiI=Jlpilfa--fnI)=pjttfd....JfzIIEZ'Eöödb-

EI