An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion...

76
An Enhanced Spectroscopic Census of the Orion Nebula Cluster Lynne A. Hillenbrand 1 [email protected] Aaron S. Hoffer 1,2 [email protected] and Gregory J. Herczeg 1,3 [email protected] ABSTRACT We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution (R 1500 - 2000) red optical spectra acquired using the Palomar 200” and Kitt Peak 3.5m telescopes. Spectral types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of ade- quate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classi- fication based on narrow-band TiO filter photometry from da Rio et al. (2010, 2012), finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion. 1 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 2 Current affiliation: Department of Physics and Astronomy, Michigan State University, East Lansing, 48823 3 Current affiliation: Kavli Institute for Astronomy and Astrophysics, Peking University; Yi He Yuan Lu 5, Hai Dian Qu; Beijing 100871, P. R. China

Transcript of An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion...

Page 1: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

An Enhanced Spectroscopic Census of the Orion Nebula Cluster

Lynne A. Hillenbrand1

[email protected]

Aaron S. Hoffer1,2

[email protected]

and

Gregory J. Herczeg1,3

[email protected]

ABSTRACT

We report new spectral types or spectral classification constraints for over 600 stars

in the Orion Nebula Cluster (ONC) based on medium resolution (R ≈ 1500 − 2000)

red optical spectra acquired using the Palomar 200” and Kitt Peak 3.5m telescopes.

Spectral types were initially estimated for F, G, and early K stars from atomic line

indices while for late K and M stars, constituting the majority of our sample, indices

involving TiO and VO bands were used. To ensure proper classification, particularly for

reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined

for type verification or refinement. We provide an updated spectral type table that

supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars

with spectral type information from 68% to 90%. However, for many objects, repeated

observations have failed to yield spectral types primarily due to the challenges of ade-

quate sky subtraction against a bright and spatially variable nebular background. The

scatter between our new and our previously determined spectral types is approximately

2 spectral sub-classes. We also compare our grating spectroscopy results with classi-

fication based on narrow-band TiO filter photometry from da Rio et al. (2010, 2012),

finding similar scatter. While the challenges of working in the ONC may explain much

of the spread, we highlight several stars showing significant and unexplained bona fide

spectral variations in observations taken several years apart; these and similar cases

could be due to a combination of accretion and extinction changes. Finally, nearly 20%

of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.

1Department of Astronomy, California Institute of Technology, Pasadena, CA 91125

2Current affiliation: Department of Physics and Astronomy, Michigan State University, East Lansing, 48823

3Current affiliation: Kavli Institute for Astronomy and Astrophysics, Peking University; Yi He Yuan Lu 5, Hai

Dian Qu; Beijing 100871, P. R. China

Page 2: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 2 –

1. Introduction

1.1. The Orion Nebula Cluster

Located at less than one-half kpc from the Sun and at moderate galactic latitude (b ≈ −20),

the greater Orion region is the nearest example of recent and ongoing massive star formation; see

Bally (2008) for an overview. A subclustered OB association extends over many tens of pc and

contains stars up to a few tens of Myr old. To the southeast, the Orion A and B molecular cloud

complex harbors stellar nurseries each only a fraction of a pc to a few pc in size, and less than one

Myr old. The Orion composite is a revered touch stone for our developing understanding of star

and planet formation processes on this range of spatial and temporal scales. The identification and

detailed study of the young stellar population across the Orion complex is our best opportunity for

probing in three dimensions a resolved star formation history.

Part of the so-called “integral shaped filament” of molecular gas (Bally et al. 1987), the north-

ern part of the Orion A cloud has up to 100 magnitudes of total visual extinction through its densest

regions. The Orion Nebula, also known as M42 or NGC 1976, betrays a rich young stellar cluster,

the Orion Nebula Cluster (ONC), the center of which contains the massive Trapezium stars 1. The

current three-dimensional model of the Orion Nebula indicates a thin shell of ionized gas (Wen &

O’Dell 1995) with the main ionizing source region θ1 Ori C. Another ∼20 stars A0 or earlier are

within the HII region as is a sizable population (many thousand members) of later spectral type T

Tauri stars. These lower mass stars are still pre-main sequence and can be used to trace the star

formation history as well as measure the initial mass function (IMF), which in the case of young,

unevolved and co-located stars, is equivalent to the present day mass function.

In contrast to the sparsely distributed and older OB association, the ONC is relatively compact

and more recently formed. Its projection on molecular cloud material significantly reduces contam-

ination by background stars. However, the high and spatially variable extinction (e.g. Scandariato

et al. 2011) renders fewer than 50% of the ∼3500 stars within this region having K < 14 mag also

optically bright, I < 17.5 mag. Nevertheless, the bulk of the optically visible ONC members are

extincted by 2 magnitudes or less, with derived extinction values for fainter stars ranging up to

8 magnitudes. The deepest optical surveys as well as most near-infrared surveys measure more

heavily extincted members, but are more likely to suffer contamination at the faint end – both

from intrinsically bright but highly reddened background giants seen through the cloud, and from

intrinsically faint foreground and unreddened but late type field dwarfs.

Cluster membership can be determined kinematically in the ONC. Using astrometric tech-

niques, Jones & Walker (1988) identified 891 probable members from 997 measured proper motions

(measured among 1052 optically visible stars). Radial velocities (e.g. Tobin et al. 2009) have also

1Traditionally, the Trapezium Cluster is the densest part of the ONC within about 2′ (corresponding to ∼0.3 pc),

while the larger ONC extends to about 20′ (<3pc)

Page 3: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 3 –

been used to establish cluster membership. High precision three-dimensional space motion data

from these and other ongoing investigations can be combined with precise cluster distance estimates

(Jeffries 2007; Kraus et al. 2007; Hirota et al. 2007; Sandstrom et al. 2007; Menten et al. 2007),

to study the cluster structure and dynamics and test theories for formation and evolution of dense

clusters in molecular clouds. Additional observation and analysis work in this area is needed.

The ONC contains a broadly populated stellar mass function extending from a single massive

(late-O type) star all the way down to low-mass stars (having late M types) and into the sub-stellar

mass regime of brown dwarfs (likely L and T type), as well as planetary mass objects remaining to

be spectrally typed and identified as such. With a mean stellar age for the optically visible stars

of less than 2 Myr (Herbig & Terndrup 1986; Hillenbrand 1997; da Rio et al. 2010; Reggiani et

al. 2011), the ONC is not only one of the largest but also one of the densest (∼ 104 stars pc−3 in

the inner cluster; McCaughrean & Stauffer (1994); Hillenbrand & Hartmann (1998)) nearby star

forming regions. The ONC population was used to demonstrate definitively that it is possible to

form both high and low mass stars as well as brown dwarfs in the same <0.1 pc region. From the

lower mass stars, the estimated current star formation rate is ∼ 10−4M⊙ per year (Hillenbrand

1997, hereafter H97).

The H97 study of the ONC employed optical spectroscopy and photometry to individually de-

redden and locate over 900 stars on the H-R diagram, enabling estimation of their masses and ages

via comparison to pre-main sequence evolutionary tracks. Work by Luhman et al. (2000), Slesnick

et al. (2004), Riddick et al. (2007b) and Weights et al. (2009) increased the spectroscopically studied

sample, employing optical and near-infrared spectral classification techniques. da Rio et al. (2010)

and da Rio et al. (2012) estimated spectral types for M-type stars from narrow band photometry,

as discussed in more detail below. Additional studies such as those of Hillenbrand & Carpenter

(2000), Muench et al. (2002), Lucas et al. (2005), and Andersen et al. (2011) used photometric

techniques rather than spectroscopic, and arrived at IMF estimates that are useful in a statistical

sense but do not determine masses and ages for individual stars. The general consensus from the

above studies is that the ONC IMF rises from the highest masses to sub-solar masses, realizes a

flattening in the 0.5 − 0.6M⊙ regime, and peaks in the 0.2 − 0.3M⊙ regime before turning over

throughout the sub-stellar (brown dwarf) mass range. There is some discrepancy as to the exact

form of the IMF below the peak and turnover in this cluster (and in many other young clusters).

Increased spectroscopic samples as well as improved understanding of contraction models at young

ages will be required for progress on the IMF in the low mass stellar and sub-stellar domain.

Recent reviews of the ONC region are those by Muench et al. (2008) on the stellar popu-

lation and historical distance measurements, and by O’Dell et al. (2008) on the local ONC in-

terstellar medium including circumstellar structures. The ONC stellar population has been the

sample of choice for investigations of various stellar and circumstellar phenomena, in addition to

the IMF studies described above, in part because it is the nearest and youngest example of an

entire stellar/sub-stellar mass spectrum. Recent studies of circumstellar dust and gas include those

of Megeath et al. (2012), Mann & Williams (2009) and Ricci et al. (2008), of disk accretion include

Page 4: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 4 –

Manara et al. (2012) and Sicilia-Aguilar et al. (2005), and of variability-disk connections include

Morales-Calderon et al. (2012). Recent studies on stellar properties include topics such as rotation

and disk-rotation connections (Rhode et al. 2001; Carpenter et al. 2001; Herbst et al. 2002; Herbst

& Mundt 2005; Rebull et al. 2006; Cieza & Baliber 2007), lithium depletion (Palla et al. 2007),

coronal activity/flaring (Feigelson et al. 2002; Getman et al. 2008; Prisinzano et al. 2008), stellar

abundances (Cunha & Smith 2005), magnetic fields (Petit et al. 2008), and multiplicity (e.g. Simon

et al. 1999; Reipurth et al. 2007; Kohler et al. 2006).

1.2. Motivation for Further Spectroscopic Study

There is still great interest in improving our knowledge of stellar and circumstellar properties

within the ONC. As described above, the H97 paper and its accompanying database have been

used in subsequent years by many other investigators studying e.g. the stellar/sub-stellar IMF,

the age distribution and star formation history, stellar/sub-stellar angular momentum evolution,

circumstellar disks and disk evolution, accretion, magnetic activity, lithium, as well as other prop-

erties of young stars in the ONC. Recent examples of major surveys of the ONC with forefront

facilities that reach unprecedented depth across the electromagnetic spectrum, include those from

X-ray (with Chandra; PI E. Feigelson) to optical (with Hubble; PI M. Robberto) to mid-infrared

(with Spitzer; Megeath et al. (2012)) and finally to millimeter (with the SMA and CARMA in-

terferometers). Synoptic photometric monitoring studies by various groups at optical and infrared

wavelengths (e.g. Morales-Calderon et al. 2011) continue.

Nearly all of these previous analyses and new surveys are limited in their analysis phases,

however, due to lack of completeness of the ONC spectroscopic survey. Critically important is that

due to the wide range in line-of-sight extinction values to individual stars, spectra are necessary for

de-reddening and thus derivation of extinction estimates, and for subsequent placement on the HR

diagram from which stellar quantities such as stellar luminosity, stellar radius, and (further guided

by theory) stellar age and mass, angular momentum, etc.

The optical color-magnitude diagram for the ONC suggests that the H97 optical photometric

database is sensitive down to the hydrogen burning limit for stars less obscured than 2 magnitudes

of visual extinction and younger than 1 Myr (e.g. da Rio et al. 2010, H97). Infrared surveys extend

well into the brown dwarf regime with the stellar-substellar boundary identified at spectral type

M6.5 given the age of the ONC. While several thousand young objects are known, only about 63%

of the ∼1500 stars with I < 17 mag had spectral types following the H97 study (and only about 5%

before). Considering both optical and infrared-only sources in the region, less than 25% of the total

number of known sources have had their spectral types determined. While infrared spectroscopy

will be required in order to obtain a complete spectroscopic census of the ONC stellar population,

optical spectral types can be obtained for several hundred more objects than have been published

thus far.

Page 5: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 5 –

The present work aims to enhance the H97 optical spectroscopic census. By completing our

optical study of the stellar population, it will be possible for other authors to revisit interests in

many of the above goals.

1.3. Optical Spectral Typing and Challenges in the ONC

Spectral type is a key characteristic of any star, and spectral typing is a typical first step

in estimating the stellar effective temperature. This can lead, in combination with other data or

assumptions, to derivation of other stellar quantities. The optical wavelength range is important

for spectral typing because it contains a rich set of molecular and atomic absorption features that

are temperature dependent. M type stars, which dominate the mass function, are characterized by

metallic oxide TiO and VO bands. These molecular features diminish at hotter temperatures with

mid-K and earlier stars classified using atomic line strengths and ratios involving e.g. Ca I and

Fe I. Reliable surface gravity signatures include the shapes of some of the molecular bands as well

as the strength of the Na I doublet (λλ 8183, 8194 A) for spectral types later than M2. For earlier

type stars, most reliable surface gravity indicators lie blueward of our spectral coverage.

Relevant to the ONC, spectral types can be determined largely independent of reddening and

nebular emission when these effects are modest, though in extreme cases they do bias or even

hinder the analysis. For late type spectra, the ratios of the depths of metal oxide wavebands

are not significantly affected by low reddening and the possibility of reddening can be taken into

account when assigning types. Nebular emission, specfically from low Balmer (e.g. Hα) and high

Paschen lines as well as the Paschen continuum can also affect the spectral typing process or even

prevent it in extreme cases, especially for faint objects or if background subtraction (a combination

of terrestrial sky and ONC nebular backgrounds) is ineffective. For late type stars the TiO and VO

bands are generally strong enough such that the effects of minor nebular emission can be overcome.

For earlier spectral type stars, however, strong nebular contamination is more problematic for

spectral typing.

A final effect is that of non-nebular continuum and emission lines that are associated in young

stars with disk-to-star accretion processes. Spectral typing can be influenced by non-photospheric

contributions to emergent spectrum and in extreme cases the spectrum is accretion-dominated.

2. New Optical Spectroscopic Observations

We obtained low-resolution optical spectra in 15 configurations with the HYDRA multi-object

spectrograph on the 3.5m WIYN telescope at Kitt Peak during two runs in 2006-2007. We also used

the (now decomissioned) Norris multi-object spectrograph on the 5m Hale Telescope at Palomar

in 1999 to obtain 1 configuration on the ONC at the very end of a night allocated to another

program. HYDRA consists of a 1024x2048 CCD fed with 99 fibers, each with a 2′′ aperture (Barden

Page 6: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 6 –

& Armandroff 1995). The field size is 60′ in diameter. We used the 316 l/mm grating blazed at

7500 A setting of the bench spectrograph and the GG-495 filter to obtain spectra from 5000-10000

A at R ∼ 1500. Norris consisted of a 2048x2048 CCD illuminated with 176 fibers, each with a

1.′′5 aperture (Hamilton et al. 1993). The field size was 20′ in diameter. Our Norris observations

were obtained with the 600 l/mm grating blazed at 5000 A to produce 54 A/mm dispersion (1.3

A/pixel). The spectral range is 6100–8750 A at R ∼ 2000.

Table 1 contains the observation log. Fiber assignments were prioritized based on ancillary in-

formation such as existence of a published rotation period, exhibition of large amplitude variability,

and proper motion membership probability; however, our data set is sizable and deep enough that

these original prioritization criteria are not a significant bias. Both instruments were configured to

maximize the total number of quality science targets and minimize the number of repeated spectra.

However there are many cases of multiple observations of the same object. This is useful mitigation

against sky subtraction challenges and also provides independent assessment of spectral types.

In each fiber configuration, between 30–120 fibers were assigned to a stellar position and be-

tween 13–54 fibers were assigned to sky positions. The set of observations for each configuration

includes a long exposure on-target, a shorter sky exposure offset 6′′ − 10′′ from the target position,

and a set of dome flats and comparison lamps exposures. The nearby sky exposure permits ac-

curate correction for nebulosity, which is spatially variable and hence not accurately represented

in averaged spectra of all in-field sky fibers. During our Norris observations we obtained three

on-target and one offset sky integration. During our HYDRA observations the number of on-target

and sky position integrations varied. Total exposure times are listed in Table 1.

3. Raw Data Processing and Spectral Extraction

The observations were reduced using custom routines written in IDL. The bias level was

corrected in each image using the CCD overscan region and the flatfield correction appropriate to

each fiber was applied. The trace of each fiber on the detector was determined using the dome flat

with the absolute position of each fiber independently derived for each individual exposure. Cosmic

rays were corrected by identifying deviations from the illumination profile across each fiber on the

detector. Scattered light was accounted for by fitting a spline to pixels between fiber positions.

The counts in each fiber were re-sampled onto a sub-pixel scale across the dispersion axis to ensure

that the extraction window remained constant for each separate on-target, sky, and flat exposure

within a given configuration. Background counts were subtracted for each fiber based on the counts

between fiber positions.

The spectrum from each fiber was extracted using a window approximately 1.5 times the

average fiber FWHM on the detector, or 5 pixels in the HYDRA spectra and 6 pixels in the Norris

spectra. The 2nd-order wavelength solution (a FeAr lamp for the Norris observations and a CuAr

lamp for the HYDRA observations) was calculated independently for each fiber. We obtained final

Page 7: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 7 –

spectra by summing the counts extracted for a given fiber from each on-target integration and

correcting for sky and nebular emission by subtracting the counts extracted for the same fiber in

the sky exposure, scaled to the difference in observing times. In several configurations the sky

emission was scaled by an additional 10–20% to account for changes in the sky transmission. A

master sky spectrum was created for each fiber configuration by combining the spectra obtained

from all fibers assigned to the sky, accounting for fiber-to-fiber sensitivity differences. Changes in

the sky emission could be accounted for by comparing the master sky spectrum to that obtained

in individual on-target and sky integrations.

Figure 1 shows the distribution of signal-to-noise for the data set, separated by fiber configu-

ration. Despite the significant variation in data quality among the configurations (due to weather;

see Table 1), overlays of spectra of the same object repeated in different fiber configurations show

remarkable agreement in the continuum slope. That stated, some configurations are generally poor

(e.g. M1) while others (such as f2c and f1d) are quite good and these quality factors are taken into

account when assigning final spectral types.

In total we obtained 936 spectra, of which 707 were unique objects and 229 were duplicates

of the same star obtained in more than one fiber configuration. In some cases the duplication was

intentional due to poor signal-to-noise in the first obtained spectrum. In other cases, fibers that

could not be assigned to previously unobserved targets were assigned to stars with existing spectra

rather than random sky positions. When we have more than one spectrum, we typically have 2,

but in a few cases 3-6 different spectra of the same star were obtained.

4. Analysis

Stellar spectral types, spectral type ranges, or spectral type limits are derivable for 619 unique

stars based on photospheric absorption lines. An additional 88 unique stars were observed, but no

spectral type could be ascertained. The unclassifiable spectra were either low signal-to-noise ratio

(the minority) or dominated by contamination from bright nebular continuum and/or strong line

emission (the majority) that could not be removed using our sky subtraction techniques. A small

fraction, however, are extreme accreting objects in which the continuum excess and line emission

is similar to nebular contamination, but originates in the circumstellar environment. In cases of

strong Ca II triplet emission the two possibilities can be distinguished, but in neither scenario

can an underlying spectral type be determined. Consistent with convention, the objects lacking

absorption features but having strong Ca II triplet emission are noted as “cont+emis”.

Figure 2 shows distributions of I-band magnitudes taken from H97 for all stars analyzed in

that paper, as well as for the subset that had spectral types at that time, and also for those that

are spectral typed in this work. The distributions are somewhat similar but the new set of spectra

is biased towards the fainter end of the magnitude distribution. In this section we discuss the

spectral classification process including its sensitivity to effective temperature and surface gravity

Page 8: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 8 –

(Section 4.1), then our quality control procedures (Section 4.2). Our results are presented in Table

2 (Section 4.3). Finally we discuss the Ca II emitters which exhibit unambiguous evidence for

disk-to-star accretion (Section 4.4).

4.1. Spectral Classification Procedure

To classify the spectra we follow the same procedures as are described in Section 3.3 of H97.

Specifically, the classification was performed using spectral indices to measure feature depths, in the

spirit of O’Connell (1973), and followed up by visual examination of the data. For each feature, 30

A wide bandpasses were used in creating spectral strength indices from defined on-feature and off-

feature wavelength ranges; average fluxes over these bands were calculated. Riddick et al. (2007a)

give a thorough description of the relevant molecular and atomic features and their behavior with

temperature and surface gravity, as well as the challenges and pitfalls in classifying young stars

associated with star formation regions. These effects include accounting for the observational

influence of low surface gravity, accretion, large and variable reddening, and nebular contamination

in the classification process.

The vast majority of the stars in the optically visible ONC sample are young late K and M

type stars. For their classification metal oxide bands were used: four of TiO (λ6760, λ7100, λ7800,

λ8465) and two of VO: (λ7445, λ7865). These prominent bands are mainly temperature sensitive,

making them ideal for the spectral classification. Figure 3 shows a sequence of K and M-type

spectra from the WIYN/HYDRA and P200/Norris datasets. The TiO absorption bands used to

initially classify the stars are indicated. Stars earlier than mid-K do not have strong TiO features

and atomic line ratios were used, such as Ca I λ6162 vs. Na I λ5892 for F2-K7 stars, Ca I λ6162

vs. Mg I λ5175, upper Paschen lines, and other Ca I and O I lines for A0-F0 stars. Spectral typing

for stars earlier than late-K is best done blueward of our spectral range.

Classifying our red spectra quantitatively first involved two dimensional plots of spectral feature

index pairs such as: TiO λ6760 vs TiO λ7100, TiO λ7100 vs TiO λ7800, and VO λ7445 vs VO

λ7865. These diagrams were used to initially bin the late type ONC stars by finding the spectral

type along the standard star sequence that is closest to the position of the target star. Second,

cubic equations were used to fit the standard sequence for each TiO band. The standard stars

included those at medium spectral resolution from Allen & Strom (1995) and Kirkpatrick et al.

(1991) extending up to M6 (near the brown dwarf limit) and Kirkpatrick et al. (1999) beyond this.

For the majority of stars, different feature strength ratios predicted consistent spectral types.

However, using line or band indices gives only an estimate for the spectral type. Hence, after

assigning preliminary spectral types by the quantitative analysis techniques described above, each

spectrum was examined visually against a grid of the standard star spectra in order to verify and

in some cases slightly modify the quantitative spectral types. This step was undertaken separately

by two of the authors.

Page 9: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 9 –

Given the age estimate of the ONC, the stars were assumed to be dwarfs in the above quan-

titative classification methods, with surface gravity not explicitly taken into account for the initial

classification. For spectral types later than about M5, however, there is a strong gravity dependence

that must be considered in order to avoid classifying stars later in type than they really are. Since

the TiO and VO bands acquire a distinct shape in proceeding from dwarf-like to giant-like surface

gravities, particularly the red end of the TiO λ8465 band, this could be accounted for during the

visual examination part of the process. Surface gravity effects are also seen in the strength of the

Na I doublet (λλ 8183, 8194 A) at spectral types later than M2.

Indeed, being candidate pre-main sequence stars, our objects are expected to have surface

gravities in between those of dwarf stars and giant stars, though closer to dwarfs. Thus following

Slesnick et al. (2006a) who were themselves guided by the findings of Kirkpatrick et al. (1991),

we investigated quantitatively the strength of the Na I λ8190 doublet in our spectra. This feature

weakens towards lower values of surface gravity (see Figure 7 of Kirkpatrick et al. (2008) for a

demonstration). We show in Figure 4 the same plot utilized by Slesnick et al. (2006b) – their

Figure 4 – of the gravity-sensitive Na I λ8190 index vs the temperature-sensitive TiO λ8465 and

TiO λ7140 indices. ONC stars later than spectral type ∼M2 typically exhibit the intermediate Na

I λ8190 line strengths expected from young 1-2 Myr old pre-main sequence stars. Based on this

Figure, we conclude that the vast majority of the stars M3 and later in our sample can be presumed

ONC members given the consistency of their surface gravities with the assumed young age of the

cluster. While a few of the M dwarfs could be interlopers along the line of sight with higher surface

gravity, the ONC sample at I.17.5 mag appears to be largely uncontaminated by foreground dwarf

stars.

For those late type stars with medium to high signal-to-noise ratio and that are not severely

affected by nebular contamination (which can contribute strong lines in either the on-feature or

off-feature band regions) or strong accretion (which can render observed spectra too blue relative

to the expected slope for the spectral type), the quantitative method is reliable and robust to

visual examination. For stars with a significant amount of reddening, low signal-to-noise ratio,

or both, experimentation has shown that the quantitative technique is in fact more trustworthy

than ab initio examination by eye. Indeed, for most early-to-mid M type stars, the spectral types

adopted were generally those assigned quantitatively. For the late M types, by-eye examination was

more rigorous with detailed attention to surface gravity effects needed for accurate classification.

At earlier types, some adjustments to the quantitative types were made for nearly all FGK stars.

These were at the 1-3 sub-class level for late K stars but more for the earlier types for which our

red region spectra include narrow features that are only weakly varying with temperature, and

therefore challenging for our coarse quantitative technique. Methods employing equivalent width

measurement would be more suitable for quantitative analysis than our wide bandpass methods at

these earlier spectral types. As reported above, not all of the spectra were classifiable.

Page 10: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 10 –

4.2. Spectral Classification Quality Control

In order to assess the quality of the spectral typing, we can look at the sub-set of sources

with more than one spectrum obtained and classified. As a reminder, we have 936 total spectra of

707 unique sources, of which 185 unique sources were observed more than once. Of these, only 89

sources have multiply derived spectral types; the remainder have only one or zero of the multiple

spectra classifiable (due to either signal-to-noise or nebular contamination issues). Among the 89

stars, 78 have two classifiable spectra and 10 have three classifiable spectra. One source, H3132,

had six spectra obtained of which five are classifiable. The range in the resulting, independently

derived, spectral types has a median value of just one sub-class with standard deviation less than

two sub-classes. Of the 89 repeated sources, 52 are typed within one sub-class and 71 within two

sub-classes. The outliers with larger discrepancies tend to be G or K stars where accurate spectral

typing is more difficult from red wavelength data. Notably, H3132 exhibited a range of only one sub-

class among the types derived from the five different spectra, which were independently classified

as M5.5, M6, M5, M5.5, and M5. It is thus clear that in the presence of good data and minimal

complications from astrophysical effects, the methods are robust.

However, a number of systematics are present in the Orion Nebula Cluster region that can

affect the spectral types. The main one is the accuracy of the sky/nebula subtraction. Some of our

spectra have a blue SED but also late-type spectral features, which indicates that some nebular

contamination remains. Although this slope/spectrum discrepancy can be seen in rapid accretors

as well, the Orion Nebula itself predominantly causes the effect in our data sets. Several of the

multiply observed stars with large spectral type discrepancies are cases in which one spectrum has

much better sky subtraction than the other. For these stars it is easy to see that the later spectral

type is the more appropriate one; however, other cases may exist where we have only one spectrum

and have classified a star too early, e.g. G or K type, when it is really dominated by nebular

continuum that if accurately subtracted would yield a later spectral type. As noted above, the

presence of a strong accretion continuum can similarly make a spectrum appear blue as well as fill

in the atomic absorption lines, resulting in a spectral classification that is biased earlier than the

true type and we may indeed have some of these cases. Another complication to accurate spectral

typing is reddening. While we believe our methods are able to account for modest amounts of

reddening, it is possible that in extreme cases there are systematic effects that enter and cause

larger than average spectral type errors. A final worry is the possible presence of cool spots, similar

to those seen on older non-accreting but still active young stars. These could either produce or

enhance late type features on the red side of our spectral range, leading to a bias towards a later

spectral type assignment than truly characterizes the underlying star. In summary, one or more

of the above astrophysical effects could be present and therefore there are possible spectral type

biases in both directions.

Finally, we note that for comparison purposes we also ran our spectra through the distributed

“SpTclass” software developed by Hernandez (2005). We found that the combination of spectral

resolution and signal-to-noise effects, plus perhaps the lack of flux calibration in our dataset, ren-

Page 11: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 11 –

dered the SpTclass results suspect. Specifically, the results are somewhat degenerate for stars we

classified by hand as F through K7 stars, with little useful output. Even for the standard stars in

this spectral type range there was quite a lot of scatter and a bias in the F, G, and early K range for

SpTclass to classify stars much later than their true types; in the K5-K8 range, however, there was

good agreement. For the later type objects, M0-M9, we found a systematic offset in both our object

classifications and tests with standard stars of approximately 2 to 2.5 spectral subtypes, now in the

sense that the SpTclass results were too early compared to the actual spectral type. We believe

that this comparison demonstrates the need to classify stars relative to a grid of standards taken

with identical or similar equipment. Furthermore, as our spectra are not flux-calibrated having

been taken with fibers rather than slits, there may be an additional explanation for the systematic

effects reported above if the assumptions of the SpTclass software regarding continuum shape are

being violated in our dataset. Regardless of any specific SpTclass biases, our experience suggests

general caution when considering automated techniques for spectral classification, though they may

be very useful when applied to data sets consistent with their development or in less challenging

spectroscopy environments than the ONC.

4.3. Spectral Type Results

The final spectral types for our ONC sample are presented in Table 2, where 555 are from the

new WIYN/Hydra data and 99 are from the new Palomar/Norris data, with 35 stars classifiable in

both spectral data sets. Our newly derived spectral types are on the same system as those in H97,

having been assessed by the same author. Figure 5 shows the run of apparent I-band magnitude

with spectral type. The scatter at any given magnitude can be attributed to cumulative differences

in foreground extinction, accretion continuum excess, and/or stellar radius. For 254 of the 619

stars, the spectral types are the first ever reported. An additional 63 stars have spectral types in

other literature more recent than the H97 study and compilation, as cited in Table 2.

4.4. CaII Emission Line Results

The strong continuum and line emission from the Orion Nebula combined with the difficulties

of sky subtraction using multi-fiber instruments in high background fields such as the ONC, means

that many of the emission lines traditionally used to diagnose accretion and outflow in T Tauri

stars (e.g. Hα and other Balmer lines, [NII], [SII] and other forbidden lines) can not be used

to identify such objects of interest among our sample stars. However, Ca II triplet (λλ 8498A,

8542A, and 8662A) emission was identified by Hillenbrand et al. (1998) as being a robust accretion

indicator in the ONC, even in the presence of strong nebular background since these high density

Ca II lines typically are not seen in nebular spectra at low spectral resolution. With the line

strengths and profile widths that are observed in young stars, Ca II triplet emission is attributed to

accretion processes rather than to chromosphere activity that would produce weaker lines (Herbig

Page 12: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 12 –

& Soderblom 1980; Hamann & Persson 1992; Soderblom et al. 1993; Azevedo et al. 2006; Kwan &

Fischer 2011). The physical conditions responsible for the emission appear to require high density,

nH ∼ 1012 cm−3 and moderate to low temperature, T < 7500 K (Kwan & Fischer 2011).

Approximately 20% of our stars exhibit Ca II triplet emission, consistent with the fraction

reported in the earlier Hillenbrand et al. (1998) study. Figure 6 shows some example spectra of

strong, medium, and weak emitters which occur mainly among the late K and early M spectral

types while Figure 7 shows a histogram of the measured Ca II λ 8542 (pseudo) equivalent widths.

We measured equivalent widths using splot in IRAF for each of the Ca II triplet lines against the

pseudo-continuum, as well as the nearby O I 8446 A line. Notes were made concerning the strength

of the upper Paschen lines and whether the Ca II lines have significant H I contamination (plausibly

from strong accretion, but more likely from incomplete nebular subtraction). Our identification of

emitters has required that the Ca II line series either have the 8542A line stronger than any 8600A

pure H I, or 8498A stronger than 8542A. Because the local continuum is significantly depressed for

M-type photospheres relative to earlier spectral types, there is an expected spectral type dependence

of the measured equivalent widths for a given constant Ca II line strength. We also note that many

of the stronger emitters are variable among our several spectra, at a level up to 25%.

The range of equivalent width values in the ONC fully populates the range seen in other star

forming regions. A linear relationship between Ca II triplet line flux and total accretion luminosity

is now well-established in the literature (e.g. Muzerolle et al. 1998; Herczeg & Hillenbrand 2008;

Dahm 2008). With knowledge of M∗/R∗, such measurements can lead to derivation of mass accre-

tion rates. In the absence of stellar parameters, however, and with only equivalent widths rather

then line fluxes (which would require either flux-calibrated spectra or contemporaneously obtained

I-band photometry to mitigate errors due to variability) we can not derive accretion rates here.

We can comment though, that the previously established correlations suggest that Ca II λ 8542

equivalent widths in the range 0.5-40 A for low mass stars correspond to accretion luminosities in

the range 10−5 to 0.1 L⊙ and accretion rates from < 10−10 to 10−6.5 M⊙/yr.

We conclude that a wide range of accretion rates characterizes the young ONC population.

Once stellar parameters are better established for our sample, these several hundred young stars

can be further investigated for correlations between accretion properties and stellar mass and age.

5. Comparison with Previous Efforts

All spectral classification results that have been derived from previous spectroscopy for the H97

optical sample are presented in Table 2, along with the spectral types newly derived in this paper.

The historical data is mostly from the H97 compilation, but also included are our own revisions and

Page 13: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 13 –

updates based on that same spectral data set2 as well as more recent estimates of spectral types by

e.g. Luhman & Rieke (2000), Lucas et al. (2001), Rhode et al (2001), Wolff et al. (2004), Slesnick

et al. (2004), K. Stassun (private communication, 2005), Riddick et al. (2007), E. Stempels (private

communication, 2009), Weights et al. (2009), Daemgen et al. (2012), and Correia et al. (2013)

as referenced. We note that for the Weights et al. (2009), Riddick et al. (2007), and Lucas et al.

(2001) papers it is not straight forward to associate the rounded or truncated coordinate naming

system of the authors with objects in our list of interest, especially as the positions for nominally

the same objects have changed for some sources between these various studies. We have done our

best to match the reported spectral types for these low precision coordinate-based names to known

objects within 2”, where possible based on similarity of reported apparent magnitudes.

Spectral types from the sources listed above for stars that are fainter than the compiled H97

sample appear in Table 3. Note that unlike Table 2, the astrometry reported in Table 3 has

varying precision. To the best of our knowledge, Tables 2 and 3 represent the complete list of

spectroscopically determined spectral types for ONC stars. Additional photometric spectral types

may be found in da Rio et al. (2010).

Considering now only Table 2, of the 1576 optically visible stars cataloged in H97, about 500

lacked a spectral type or any spectral type constraint at that time, while now just under 200 lack

a spectral type estimate. Several tens of stars have only wide ranges or limits for their estimated

types, that is, just constraints on the latest or the earliest type that is consistent with the observed

spectrum. Many of the stars lacking adequate classification are in regions of bright nebulosity

such that repeated observations at optical wavelengths have failed to yield a classifiable spectrum.

Others are close companions to brighter stars and likewise have not had suitable spectra obtained.

5.1. Comparison to Hillenbrand (1997) Spectroscopic Types

As reported above, 619 stars are typed from our Norris and HYDRA data. While the observa-

tional focus of the new data acquisition was on those stars without previously determined spectral

types, in practice we placed fibers on other ONC members rather than not assigning them at all.

Thus the set of stars for which spectral types are derived in this paper overlaps significantly with

those in the H97 paper. This enables comparison of results obtained with different equipment but

using similar analysis methods

In the vast majority of cases there is remarkable agreement between the previously and

presently reported spectral types, as can be seen from examination of Table 2. This is despite

the known observational challenges and the likely influence of spectrophotometric variability due

2Some of the latest type stars were reclassified either as described in Slesnick et al. (2004) or here, based on

improved attention to the effects of surface gravity on temperature diagnostics; these are somewhat subtle at low

signal-to-noise ratio and were not fully appreciated at the time of the H97 study.

Page 14: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 14 –

to real changes in accretion / extinction parameters. Figure 8 illustrates the direct correlation

between H97 and this work; the distribution exhibits a root-mean-squared scatter of 2.25 spectral

sub-classes. However, some large discrepancies exist as well, notably when early-K vs mid-M spec-

tral types have been derived for the same star. We advise in these cases that the later spectral

type is likely the more accurate one since, as discussed earlier, there are plausible ways to make

spectral types appear much earlier than the true type in some data.

Histograms in Figure 9 show the distribution of stellar types from H97 compared to the distri-

bution in the new spectral dataset. While the histograms are similar in terms of rising from earlier

to later types with a peak around M5, there are notably fewer extremely late type stars seen here

compared to what was reported in the H97 paper.

5.2. Comparision to da Rio (2010, 2012) Photometric Types

da Rio et al. (2010) derive spectral types for 217 late type stars in the ONC based on narrow

band photometry, employing a novel TiO photometric index defined as the measured magnitude

in a 200 A wide filter centered at 6200 A relative to the magnitude at that same wavelength

interpolated from a linear fit to V- and I-band photometry. da Rio et al. (2012) obtained a deeper

photometric dataset and used a similar technique based on a longer wavelength 7700 A narrow band

filter, to derive spectral types and extinction values for 1280 objects. The TiO index (narrow band

photometric) technique is in fact similar in spirit to the spectroscopic TiO band indices that we

have employed here. The photometric spectral types from these two da Rio studies range between

M2 and M6, where the technique is valid, and have estimated errors of typically 1-2 sub-classes.

In Figure 10 we compare directly the da Rio photometric spectral types with the spectro-

scopic spectral types quoted in Table 2; the correlation exhibits a root-mean-squared scatter of

1.75 spectral sub-classes. In total, a sample of 437 stars is available for comparison between the

spectroscopic and photometric spectral types, with all 437 of those having 7700 A TiO spectral

types, and 315 having 6200 A TiO spectral types as well, when both photometric methods could be

applied. While the scatter seems large between the photometric and spectroscopic methods (filled

symbols), it appears to be no worse at these late types than between the new spectroscopy and the

old spectroscopy (open symbols) probing a slightly earlier spectral type range. It should be noted

that, as discussed above, the error bars in this earlier regime are larger than those suggested at

the later types from either the photometric methods (1-2 sub-classes) or the spectroscopic methods

(0.5 sub-classes based on repeated robust measurements of the same star but up to 2 sub-classes

including systematic effects).

da Rio et al. (2012) also devised procedures to de-redden their photometry and obtain both AV

and Teff for individual late type stars. We have mimicked their analysis by performing synthetic

photometry on our spectra based on the bandpasses specified by da Rio et al. (2012). Although the

spectra we have are not flux calibrated, because the TiO index on-band and off-band filter profiles

Page 15: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 15 –

are so close in wavelength this should have only a minor effect. The resulting color-color diagram

based on our spectra (not shown) is indeed similar in appearance to the one based on narrow band

photometry that is presented in da Rio et al. (2012) – their Figures 5 and 11. Specifically, there

is a narrow finger of stars having no indication of TiO depression but a range of reddening values,

and then a spread along the TiO index or temperature-sensitive axis, as well as along a nearly

orthogonal reddening vector.

We have further followed the da Rio et al. (2012) methodology for deriving both AV and Teff ,

finding for our sample extinction values in the 0-3 magnitude range and effective temperatures in

the 2700 to 3900 K indicated. While illustrative of the consistency between different methods for

deriving spectral types and then physical parameters from them, it should be noted that the scatter

between the two TiO photometric methods (TiO 6200 A in da Rio et al. (2010) vs TiO 7700 A in

da Rio et al. (2012)) is itself 0.03 in log Teff , corresponding to 1.5 spectral sub-classes in the M

star regime, and comparable to the estimated errors in the photometric spectral typing method.

We conclude for mid-to-late M-type stars, that spectral typing through the use of narrow-band

photometric methods is no less accurate in the mean than spectral typing through spectroscopic

methods. For early M stars, however, there is a systematic discrepancy with later types being

assigned through the photometric method than appear reasonable from the spectroscopy. This

could be due to nebular contamination in the spectra, the photometry, or both.

5.3. Spectral Type Variables

There is good correlation demonstrated overall in Figures 8 and 10, as well as general

agreement over many decades in the spectral types derived by different authors for the same stars

(see Table 2). However, there are some cases where large discrepancies are apparent.

We highlight the case of JW 20 as an illustration. The H97 spectral type (based on data

from 1996, February) was M3.5. However, the spectrum presented here (based on data from

2006, January) is that of a K8 star, as illustrated in Figure 11. The star is only a small-amplitude

optical variable (0.05 mag; Herbst et al. 2002) with all available literature and catalog near-infrared

photometry consistent within 0.1 mag and the mid-infrared variability similarly small amplitude

(Morales-Calderon et al. 2011). Nevertheless, between the two spectra taken ten years apart, the

deep TiO and VO bands decreased in strength and Ca II triplet absorption was revealed.

We can not explain this discrepancy in terms of signal-to-noise challenges. Nor can we rational-

ize an explanation through observational confusion since there are no other optical or near-infrared

sources within 30”. Data for both spectra were taken with the WIYN/HYDRA fiber positioner

and there are no indications among the other objects of problems with the pointing. Although the

exact position of the sky fiber location was different, the sky subtraction method employed was the

same, and we can not see a way of producing these two different spectra if sky/nebula subtraction

accuracy was the only variation.

Page 16: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 16 –

Careful examination of Table 2 reveals several other such stars with large spectral type dis-

crepancies. We are driven to the conclusion that in at least some cases, e.g. JW 20 and JW 798,

astrophysical origin must be considered plausible. In other cases there may be explanations; as

examples, for JW 625, H97 3030, and likely others, there is strong nebular contamination either

on-source or in the available sky positions, while for H97 3067 a nearby brighter source could con-

taminate an on-source fiber spectrum during poor seeing conditions. These difficulties inherent to

crowded, nebular star forming regions are non-astrophysical sources of discrepant spectral types

that should be considered, in addition to low signal-to-noise, as possible classification biases.

6. Summary

We have presented an analysis of new low resolution optical spectra that extends and updates

the catalog of spectral types for optically visible stars in the ONC. For 254 of our 619 newly typed

stars, we present the first published spectral classifications. Of the approximately 1600 sources in

the optical photometric catalog presented by H97, 90% now have spectral types or spectral type

constraints based on low resolution optical spectroscopy, compared to just 68% at the time of that

paper and 5% previous to that paper. Many of the optical stars still have only wide ranges or limits

on their spectral types, and not single valued spectral types. A similar number of optically invisible

stars await the application of infrared spectral typing techniqes, which will be no less challenging

given the complex background of the Orion Nebula.

The newly derived and the older optical spectral type distributions appear to have similar

shape. In a point-by-point comparison, spectral classification differences are typically around 2

spectral sub-classes. We have also compared our grating spectrograph methods to narrow band

photometry methods for deriving spectral types, and also found that the scatter of nearly 2 spectral

sub-classes is somewhat larger than the precision estimates claimed for each method. Some young

stars may exhibit real spectral variability over time.

With the current set of spectral types as well as recently available high quality optical pho-

tometry (e.g. da Rio et al. 2009) plus a substantial recent revision in the accepted distance to the

ONC, it is timely to revisit not only the HR diagram and its derivatives, as in da Rio et al. (2012),

but also investigations of stellar activity, stellar rotation, and circumstellar disk properties in this

star forming region.

We acknowledge with gratitude the expert assistance of Todd Small concerning usage of the

Palomar/Norris spectrograph and its data products, as well as team HYDRA at KPNO/WIYN.

Emma Hovanec helped with the measurement and tabulation of emission lines. We thank Nicola

da Rio for providing material that enabled the comparison shown in Figure 10. Some financing for

the middle stages of this work was provided in the mid-2000’s through the HST/Treasury program

on the ONC (PI Massimo Robberto).

Page 17: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 17 –

Facilities: Hale (Norris), WIYN (HYDRA).

REFERENCES

Allen, L. E., & Strom, K. M. 1995, AJ, 109, 1379

Andersen, M., Meyer, M. R., Robberto, M., Bergeron, L. E., & Reid, N. 2011, A&A, 534, A10

Azevedo, R., Calvet, N., Hartmann, L., et al. 2006, A&A, 456, 225

Bally, J. 2008, Handbook of Star Forming Regions, Volume I: The Northern Sky ASP Monograph

Publications, Vol. 4. Edited by Bo Reipurth, p.459

Bally, J., Stark, A. A., Wilson, R. W., & Langer, W. D. 1987, ApJ, 312, L45

Barden, S. C., & Armandroff, T. 1995, Proc. SPIE, 2476, 56

Carpenter, J.M., Hillenbrand, L.A., & Skrutskie, M.F. AJ, 121, 3160

Cieza, L., & Baliber, N. 2007, ApJ, 671, 605

Correia, S., Duchene, G., Reipurth, B., et al. 2013, arXiv:1307.2299

Cunha, K. & Smith, V.V. 2005, ApJ,626, 426

Dahm, S. E. 2008, AJ, 136, 521

Daemgen, S., Correia, S., & Petr-Gotzens, M. G. 2012, A&A, 540, A46

Feigelson, E.D., Broos, P., Gaffney, J.A. III, Garmire, G., Hillenbrand, L.A., Pravdo, S.H., Towns-

ley, L., & Tsuboi, Y. 2002, ApJ, 574, 258

Genzel, R., et al. 1981, ApJ, 247, 1039

Getman, K.V., Feigelson, E.D., Broos, P.S., Micela, G., & Garmire, G.P. 2008, ApJ, 688, 418

Gualandris, A., Portegies Zwart, S., & Eggleton, P. P. 2004, MNRAS, 350, 615

Hamann, F., & Persson, S. E. 1992, ApJS, 82, 247

Hamilton, D., Oke, J. B., Carr, M. A., Cromer, J., Harris, F. H., Cohen, J., Emery, E., & Blakee,

L. 1993, PASP, 105, 1308

Herbig, G. H., & Soderblom, D. R. 1980, ApJ, 242, 628

Herbig, G. H., & Terndrup, D. M. 1986, ApJ, 307, 609

Herbst, W. Bailer-Jones, C.A., Mundt, R., Meisenheimer, K., & Wackermann, R. 2002, a, 396, 513

Page 18: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 18 –

Herbst, W. & Mundt, R. 2005, ApJ, 633, 967

Herczeg, G. J., & Hillenbrand, L. A. 2008, ApJ, 681, 594

Hillenbrand, L. A. 1997, AJ, 113, 1733

Hillenbrand, L. A., & Hartmann, L. W. 1998, ApJ, 492, 540

Hillenbrand, L. A., Strom, S. E., Calvet, N., Merrill, K. M., Gatley, I., Makidon, R. B., Meyer,

M. R., & Skrutskie, M. F. 1998, AJ, 116, 1816

Hillenbrand, L. A., & Carpenter, J. M. 2000, ApJ, 540, 236

Hirota, T., et al. 2007, PASJ, 59, 897

Jeffries, R. D. 2007, MNRAS, 376, 1109

Jones, B. F., & Walker, M. F. 1988, AJ, 95, 1755

Kwan, J., & Fischer, W. 2011, MNRAS, 411, 2383

Kirkpatrick, J. D., Henry, T. J., & McCarthy, D. W., Jr. 1991, ApJS, 77, 417

Kirkpatrick, J. D., Allard, F., Bida, T., et al. 1999, ApJ, 519, 834

Kirkpatrick, J. D., et al. 2008, ApJ, 689, 1295

Kohler, R., Petr-Gotzens, M. G., McCaughrean, M. J., Bouvier, J., Duchne, G., Quirrenbach, A.,

& Zinnecker, H., 2006, a, 458, 461

Kraus, S., Balega, Y. Y., Berger, J.-P., Hofmann, K.-H., Millan-Gabet, R., et al. 2007, A&A, 466,

649

Lucas, P. W., Roche, P. F., Allard, F., & Hauschildt, P. H. 2001, MNRAS, 326, 695

Lucas, P.W., Roche, P.F., & Tamura, M. 2005, MNRAS, 361, 211

Lucas, P.W., Weights, D.J., Roche, P.F., & Riddick, F.C. 2006, MNRAS, 373, L60

Luhman, K. L., Rieke, G. H., Young, E. T., et al. 2000, ApJ, 540, 1016

Manara, C. F., Robberto, M., Da Rio, N., et al. 2012, ApJ, 755, 154

Mann, R. K., & Williams, J. P. 2009, ApJ, 649, 36

McCaughrean, M. J., & Stauffer, J. R. 1994, AJ, 108, 1382

Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2012, AJ, 144, 192

Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515

Page 19: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 19 –

Morales-Calderon, M., Stauffer, J. R., Stassun, K. G., et al. 2012, ApJ, 753, 149

Morales-Calderon, M., Stauffer, J. R., Hillenbrand, L. A., et al. 2011, ApJ, 733, 50

Muench, A. A., Lada, E. A., Lada, C. J., & Alves, J. 2002, ApJ, 573, 366

Muench, A., Getman, K., Hillenbrand, L., & Preibisch, T. 2008, Handbook of Star Forming Regions,

Volume I: The Northern Sky ASP Monograph Publications, Vol. 4. Edited by Bo Reipurth,

p.483

Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 455

O’Connell, R. W. 1973, AJ, 78, 1074

O’Dell, C. R., Muench, A., Smith, N., & Zapata, L. 2008, Handbook of Star Forming Regions,

Volume I: The Northern Sky ASP Monograph Publications, Vol. 4. Edited by Bo Reipurth,

p.544

Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772

Palla, F., Randich, S., Pavlenko, Y.V., Flaccomio, E., & Pallavicini, R., 2007, ApJ, 659, 41

Petit, V., Wade, G. A., Drissen, L., Montmerle, T. & Alecian, E., 2008, MNRAS, 387, L23

Prisinzano, L., Micela, G., Flaccomio, E., Stauffer, J. R., Megeath, T., Rebull, L., Robberto, M.,

Smith, K., Feigelson, E. D., Grosso, N., & Wolk, S., 2008, ApJ, 677, 401

Prosser, C. F., Stauffer, J. R., Hartmann, L., Soderblom, D. R., Jones, B. F., Werner, M. W., &

McCaughrean, M. J. 1994, ApJ, 421, 517

Rebull, L. M., Stauffer, J. R., Megeath, S. T., Hora, J. L., & Hartmann, L. 2006, ApJ, 646, 297

Reggiani, M., Robberto, M., da Rio, N., Meyer, M.R., Soderblom, D.R., Ricci, L. 2011, A&A, 534,

A83

Reipurth, B., Guimaraes, M.M., Connelley, M.S., & Bally, J., 2007, AJ, 134, 2272

Rhode, K.L., Herbst, W., & Mathieu, R.D., 2001, AJ, 122, 3258

Ricci, L., Robberto, M., & Soderblom, D.R., 2008, AJ, 136, 2136

Riddick, F. C., Roche, P. F., & Lucas, P. W. 2007, MNRAS, 381, 1067

Riddick, F. C., Roche, P. F., & Lucas, P. W. 2007, MNRAS, 381, 1077

da Rio, N., Robberto, M., Soderblom, D.R., Panagia, N., Hillenbrand, L.A., Palla, F., & Stassun,

K. 2009, ApJS, 183, 261.

Page 20: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 20 –

da Rio, N., Robberto, M., Soderblom, D. R., Panagia, N., Hillenbrand, L.A., Palla, F., Stassun,

K.G. 2010, ApJ, 722, 1092

da Rio, N., Robberto, M., Hillenbrand, L. A., Henning, T., & Stassun, K. G. 2012, ApJ, 748, 14

Rodrıguez-Ledesma, M. V., Mundt, R., & Eisloffel, J. 2009, A&A, 502, 883

Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., & Plambeck, R. L. 2007, ApJ,

667, 1161

Scandariato, G., Robberto, M., Pagano, I., & Hillenbrand, L. A. 2011, A&A, 533, A38

Sicilia-Aguilar, A., Hartmann, L.W., Szentgyorgyi, A.H., Fabricant, D.G., Furesz, G., Roll, J.,

Conroy, M.A.; Calvet, N., Tokarz, S., & Hernandez, J. 2005, AJ, 129, 363

Simon, M., Close, L. M., & Beck, T. L. 1999, AJ, 117, 1375

Slesnick, C. L., Hillenbrand, L. A., & Carpenter, J. M. 2004, ApJ, 610, 1045

Slesnick, C. L., Carpenter, J. M., & Hillenbrand, L. A. 2006a, AJ, 131, 3016

Slesnick, C. L., Carpenter, J. M., Hillenbrand, L. A., & Mamajek, E. E. 2006b, AJ, 132, 2665

Soderblom, D. R., Stauffer, J. R., Hudon, J. D., & Jones, B. F. 1993, ApJS, 85, 315

Tobin, J. J., Hartmann, L., Furesz, G., Mateo, M., & Megeath, S. T. 2009, ApJ, 697, 1103

Weights, D. J., Lucas, P. W., Roche, P. F., Pinfield, D. J., & Riddick, F., 2009, MNRAS, 392, 817

Wen, Z., & O’Dell, C. R. 1995, ApJ, 438, 784

Wolff, S. C., Strom, S. E., & Hillenbrand, L. A. 2004, ApJ, 601, 979

This preprint was prepared with the AAS LATEX macros v5.2.

Page 21: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 21 –

Fig. 1.— Histograms of the achieved signal-to-noise ratio in individual fiber configurations, with

panel labels corresponding to rows in Table 1. S/N is measured simply as the mean count level

divided by the root-mean-square of the count level in the 7500 A continuum region of each final

one-dimensional spectrum. Vertical lines drawn at S/N values of 5 (solid) and 20 (dotted) are to

guide the eye in comparing the panels. The fiber data sets have varying levels of overall quality,

mostly due to weather issues.

Page 22: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 22 –

Fig. 2.— Histograms of I-band magnitudes for the H97 sample, with the top panel showing the full

photometric sample, the middle panel highlighting those stars with spectral types available at the

time of that publication, and the bottom panel showing those stars with spectral types (excluding

limits) presented in the last column of Table 2. There is overlap between middle and bottom panels.

Page 23: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 23 –

Fig. 3.— Sequence of spectra compared to the 30 A-wide regions (shaded) used for the TiO band

depth measurements in the spectral typing analysis. These are among the higher signal-to-noise

ratio spectra in our sample, taken mostly from the WIYN/HYDRA “f2c” configuration. The objects

and their spectral types are (top to bottom): H97 5170 (K5-K6), JW 762 (K8-M0e), JW 340 (M2),

JW 901 (M2.5-M3.5), H97 5084 (M4), JW 812 (M5), H97 3123 (M6), and JW 1036 (M8-M9). Note

the over- and/or under-subtraction in various spectra of numerous nebular emission lines, notably

Hα. The second spectrum from the top exhibits weak Ca II triplet emission (λλ 8498 A, 8542 A,

and 8662 A) as well as O I emission (λ 8446A), that is intrinsic to the source and not nebular

contamination. The top spectrum has the Ca II lines in absorption. Note that continuum shapes

can be affected by blueing due to accretion processes and/or reddening due to circumstellar and/or

interstellar extinction.

Page 24: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 24 –

Fig. 4.— The gravity sensitive Na I 8190 A doublet spectral index is plotted as a function of the

temperature sensitive TiO 7140 A index (left panel) and TiO 8465 A index (right panel), following

Slesnick et al. (2006ab). ONC data (black points) can be compared to standards of known surface

gravity including giants (magenta crosses), dwarfs in the field, Hyades, Pleiades, and AB Dor groups

(blue crosses), and intermediate-gravity pre-main sequence stars in nearby young associations 1-

10 Myr old (red and green crosses), as indicated in the figure legend. A signal-to-noise cut has

been applied to the entire ONC spectral data set with only those objects in the best 20% of our

spectral data shown. In the right panel, the Slesnick et al. (2006b) vectors indicating the effects of

veiling and reddening are shown. For the left panel the veiling vector would be significantly flatter

(Slesnick et al. 2006a) and the reddening vector would be only slightly flatter.

Page 25: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 25 –

Fig. 5.— I-band magnitude from H97 vs spectral type from Table 2. Along the abscissa, spectral

type (SpT) is represented numerically in a scheme where 50 corresponds to G0, 60 to K0, and 70 to

M0. There is a spread in the apparent magnitudes of ∼5m that is roughly constant with spectral

type. We attribute the scatter largely to differential reddening, though variations among stars of

the same spectral type in the amount of accretion-related continuum excess emission or in intrinsic

radii are also possible contributors.

Page 26: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 26 –

Fig. 6.— Example Ca II triplet emission spectra. The top spectrum is one of the strongest emission

line sources in the sample presented here, with λ8542 equivalent width of almost -40A, while the

bottom spectrum is one of the weaker emitters at -1.2A. Note the variation among sources in the

triplet line ratios; for classical T Tauri stars in Taurus, the λ8542 line is generally the strongest

with typical values of 1.20± 0.19 for the 8542 A to 8498 A ratio and 1.28± 0.13 for the 8542 A to

8662 A ratio (based on analysis of our own collection of optical spectra for representative samples).

Most sources show weak O I emission along with the stronger Ca II.

Page 27: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 27 –

Fig. 7.— Histogram of Ca II λ8542 equivalent widths (EQW) measured for several hundred of our

spectra with adequate signal-to-noise in the continuum. Labels mark the identifiers from Table 2

of the readily diagnosed Ca II triplet emitters; each star appears only once, with equivalent widths

measure from different spectra of the same object averaged. Approximately ∼ 40% of the measured

spectra and ∼20% of the total sample have notable emission. Some stars with multiple spectra

exhibited line variability up to the 25% level, which could move them between bins on this plot.

Page 28: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 28 –

Fig. 8.— Comparison of spectral types quoted in H97 with those quoted in the last column of

Table 2, derived in this study. Along both axes, spectral type is represented numerically in a

scheme where 50 corresponds to G0, 60 to K0, and 70 to M0. The dashed line represents one-to-

one correspondence with the root-mean-squared deviation 2.25 spectral sub-classes. The largest

discrepancies can be attributed to obvious errors in sky subtraction in one or the other set of

spectra; this effect probably contributes to the lower level scatter as well.

Page 29: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 29 –

Fig. 9.— Histograms comparing the samples of newly derived spectral types and those previously

reported in H97. Along the abscissa, spectral type is represented numerically in a scheme where

50 corresponds to G0, 60 to K0, and 70 to M0.

Page 30: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 30 –

Fig. 10.— Comparison of spectral types (SpT) quoted in da Rio et al. (2012) with the ones quoted

in the last column of Table 2, derived in this study. Along both axes, spectral type is represented

numerically in a scheme where 50 corresponds to G0, 60 to K0, and 70 to M0. Filled circles represent

spectral types based on the 7700 A TiO index developed by da Rio et al. (2012). Filled triangles

are sources without 7700 A types but instead have their spectral types derived from a similar 6200

A TiO index in da Rio et al. (2010). Open diamonds do not have photometric TiO types available

and so the comparison for these generally earlier type stars is to the spectroscopically determined

spectral type quoted in H97, which was adopted by da Rio et al. (2012). The dashed line represents

one-to-one correspondence with the root-mean-squared deviation 1.75 spectral sub-classes.

Page 31: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 31 –

Fig. 11.— Example of an object, JW 20, whose spectrum appears to have varied significantly

between observations taken about ten years apart. There is no apparent instrumental or observa-

tional reason for the discrepancy and an astrophysical origin is suggested. Furthermore, while a

large change in accretion-induced veiling could change the continuum and weaken the TiO absorp-

tion, it is hard to explain the concomitant appearance of Ca II triplet absorption. A scaled down

sky spectrum is also shown, to illustrate the spectral regions where nebular line contamination are

most prominent.

Page 32: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 32 –

Table 1. Observation Log

Configuration Date Instr.a b On-Targets Offset Sky # Target # Sky Comments

Name Texp. (sec) Texp. (sec) Fibersc Fibersc

Nor 5 Sep. 1999 Norris 2700 900 120 13

f1d 13 Jan. 2006 Hydra 5400 2700d 55 31 thick clouds

f2c 13 Jan. 2006 Hydra 5400 2700d 60 29 thick clouds

b2d 15 Jan. 2006 Hydra 7200 2400d 30 54 thick clouds

C1 5 Jan. 2007 Hydra 1440 418 61 28

C2 6 Jan. 2007 Hydra 1200 600 50 36

M1 6 Jan. 2007 Hydra 2400 900 69 20 poor seeing, quality

N2 6 Jan. 2007 Hydra 2200 750 68 20 poor seeing, quality

G1b 6 Jan. 2007 Hydra 3600 2100d 69 19 poor seeing, quality

G2b 6 Jan. 2007 Hydra 4800 1915d 67 21

D3b 7 Jan. 2007 Hydra 1000 500 38 46

N3d 7 Jan. 2007 Hydra 2000 700 63 27

G3b 7 Jan. 2007 Hydra 4500 1500d 61 25

Z4b 7 Jan. 2007 Hydra 2000 700 70 20

W5a 7 Jan. 2007 Hydra 1800 600 70 20

W6c 7 Jan. 2007 Hydra 1100 600 71 19

aThe Norris Spectrograph was used in a setting covering λ 6100-8750A at R∼ 2000.

bThe Hydra Spectrograph was used in a setting covering λ 5000-10000A at R∼ 1500.

cNumber of fibers assigned to target / sky positions.

dMultiple exposures were combined resulting in the total exposure time.

Page 33: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 33 –

Table 2. ONC Spectral Types

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

3132 5:34:11.52 -5:30:19.7 · · · M5.5

3157 5:34:11.70 -5:33:55.9 M1(H) · · ·

3126 5:34:12.91 -5:28:48.1 K7(H) · · ·

3153 5:34:13.07 -5:33:48.3 M3(H) · · ·

3156 5:34:13.22 -5:33:53.5 M2.5e(Sta) M1.5,M2e

3035 5:34:13.70 -5:17:43.8 G:(H) K4-M1

3118 5:34:14.49 -5:28:16.6 G6(H)K0(WSH) · · ·

3007 5:34:14.90 -5:14:18.0 M2.5(H) M3.5

3024 5:34:14.97 -5:15:49.3 M1(H) · · ·

3078 5:34:15.11 -5:23:00.0 · · · M2.5

3043 5:34:15.34 -5:18:20.2 K2-K4:(H) <M2

3146 5:34:15.69 -5:32:24.0 M2.5(Sta) M3e

3139 5:34:16.98 -5:30:53.2 · · · M5.5

3127 5:34:17.25 -5:29:04.3 M4.5(H) M5

3074 5:34:17.29 -5:22:36.5 early-M::(H) M0.5,M1-M4

3076 5:34:17.33 -5:22:47.9 M2.5(H) M7.5

3135 5:34:17.45 -5:30:35.1 · · · M3

3143 5:34:17.50 -5:31:58.6 · · · M3

3151 5:34:18.02 -5:33:33.3 M1(H) · · ·

3124 5:34:18.14 -5:28:33.4 M1.5(H) M3

3147 5:34:18.31 -5:32:28.4 G:(H) K0-K5:

3141 5:34:18.33 -5:31:16.3 · · · K8-M0

3158 5:34:18.54 -5:34:00.2 M0(H) K8

3149 5:34:19.10 -5:33:11.4 M3.5(H) · · ·

3114 5:34:19.49 -5:27:11.9 G6(H) · · ·

3131 5:34:19.57 -5:30:19.8 K5e(H) · · ·

3148 5:34:20.74 -5:32:35.1 M5(H) · · ·

3136 5:34:20.77 -5:30:45.9 · · · M0.5,M1

3137 5:34:20.77 -5:30:48.6 M2(B) · · ·

3081 5:34:20.82 -5:23:29.0 M3(H)M4(H) M4

3088 5:34:21.02 -5:24:48.4 M3.5(H) · · ·

3017 5:34:21.93 -5:15:30.3 M4.5(H)M2-M5(SHC-ir) M5.5

3160 5:34:22.35 -5:34:47.4 M5(H) M6.5

3068 5:34:22.42 -5:22:26.8 M7(H)M5.5(H) M5.5

3033 5:34:23.70 -5:17:23.6 F2-G0(H) M0::(H)

3020 5:34:23.90 -5:15:40.1 M0.5(H)M0.5(Sta) · · ·

3123 5:34:23.99 -5:28:34.7 M2.5(H) M6

3067 5:34:24.80 -5:22:10.3 M1(H) G8-K1

3066 5:34:24.93 -5:22:05.4 G0:(WSH)G0IV-V(Petal)G0-

1IV(M)G0V(vA)

· · ·

3144 5:34:25.22 -5:32:13.7 M5(H) · · ·

Page 34: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 34 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

3065 5:34:25.69 -5:21:57.4 M2(H) M5

3109 5:34:26.17 -5:26:30.2 K2-K3e(H) · · ·

3085 5:34:26.20 -5:24:18.9 K7(H) · · ·

3080 5:34:26.53 -5:23:23.9 M4(H) M5

3051 5:34:26.81 -5:19:41.3 M4(H) · · ·

3122 5:34:26.82 -5:28:32.2 · · · M1.5

3039 5:34:27.01 -5:18:03.1 M6-M7.5(H)M5.5(SHC)M7(SHC-ir) M4e

3145 5:34:27.08 -5:32:29.1 M3(H) · · ·

3029 5:34:27.15 -5:16:48.6 M5(H) M3.5-M4.5

3086 5:34:27.36 -5:24:22.2 G9IV-V(Petal) · · ·

3120 5:34:27.56 -5:28:28.4 · · · M3.5-4,M4.5

3142 5:34:27.71 -5:31:55.3 G8(H)K2(S) · · ·

3110 5:34:27.95 -5:26:34.5 K6e(H) K6e

1 5:34:28.23 -5:26:39.5 M5.5(H)M6(SHC-ir) M4.5-M5.5

2 5:34:28.55 -5:24:58.0 K8(Sta)K5Ve(D) · · ·

3133 5:34:28.60 -5:30:32.4 · · · M4-M6

3082 5:34:28.99 -5:23:48.0 · · · M5

3 5:34:29.11 -5:14:14.7 K8-M0(H) · · ·

5 5:34:29.28 -5:23:56.8 K1(WSH)K2(Ste) · · ·

4 5:34:29.31 -5:14:39.9 K4(H) · · ·

3152 5:34:29.37 -5:33:39.9 · · · M3

7 5:34:29.40 -5:25:51.8 M4.5(H) · · ·

8 5:34:29.48 -5:23:37.5 M5.5(H) · · ·

6 5:34:29.53 -5:13:55.3 K5-K6:(H) K4-K7

9 5:34:29.56 -5:23:43.5 K2-K5(H) · · ·

11 5:34:30.02 -5:25:17.4 M6-M6.5(H) · · ·

10 5:34:30.27 -5:11:48.3 K5-K6e(H) · · ·

12 5:34:30.34 -5:17:01.2 M3.5(H) · · ·

14 5:34:30.34 -5:27:27.0 G0IV-V(Petal)G0V(vA) · · ·

3063 5:34:30.51 -5:21:55.8 M4.5(H) M5-M6

13 5:34:30.64 -5:11:05.2 M3.5(H) · · ·

15 5:34:31.18 -5:21:56.0 M1(H) · · ·

17 5:34:31.30 -5:28:54.8 M4(H) M4.5-M5

3022 5:34:31.37 -5:15:50.0 M4.5(Sta) M5.5

16 5:34:31.55 -5:12:30.1 G8-K2(H) · · ·

18 5:34:31.70 -5:28:26.8 M2(H) · · ·

21 5:34:31.81 -5:35:20.6 · · · M1

20 5:34:31.93 -5:26:36.8 M3.5(H) K8

3115 5:34:32.04 -5:27:42.5 M3(H) M3.5

19 5:34:32.09 -5:11:25.0 M5.5(H) M6:

Page 35: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 35 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

22 5:34:32.70 -5:21:07.6 M1.5(H) · · ·

23 5:34:33.59 -5:23:09.2 G7V(S) · · ·

25 5:34:33.61 -5:22:08.9 M4.5(H) M4.5

24 5:34:33.72 -5:14:36.4 M1(H) · · ·

26 5:34:33.85 -5:27:18.0 M6(H) · · ·

28 5:34:33.94 -5:34:51.7 · · · K8

27 5:34:33.97 -5:28:24.5 K2(WSH) · · ·

29 5:34:35.15 -5:32:10.5 K2IV(D) · · ·

30 5:34:35.19 -5:34:32.6 M4(H) · · ·

33 5:34:35.66 -5:35:52.8 · · · · · ·

32 5:34:35.71 -5:29:52.0 M4(H) M4

34 5:34:35.78 -5:36:46.5 · · · G-K0

31 5:34:35.98 -5:15:24.3 M2.5-3(H) M3

35 5:34:36.52 -5:36:17.7 M2.5(Sta) M3

36 5:34:37.11 -5:31:08.8 M3e(H) M3.5e

37 5:34:37.45 -5:34:52.2 K2-K5e(H) · · ·

38 5:34:37.68 -5:26:21.5 M5(H) · · ·

39 5:34:38.12 -5:27:40.4 M3(H) M2.5-M3

41 5:34:38.17 -5:35:50.1 · · · M5

40 5:34:38.25 -5:24:23.7 M3.5(H) · · ·

42 5:34:38.77 -5:21:24.9 G:(H) <M2:

3154 5:34:39.13 -5:34:02.3 · · · M6

3113 5:34:39.56 -5:27:17.5 · · · K1-K7

43 5:34:39.80 -5:17:24.5 M5.5(H) · · ·

45 5:34:39.80 -5:24:25.5 K4(WSH)K1IV-

V(Petal)K1(D)K4V(vA)K3,SB2(Ste)

· · ·

47 5:34:39.88 -5:30:06.5 · · · M1.5

46 5:34:39.90 -5:26:41.9 K1(WSH)K0IV(D)K3III-IVe(W)K1(Ste) · · ·

49 5:34:40.00 -5:30:04.2 · · · M1

48 5:34:40.02 -5:26:03.9 M6(H) M6

44 5:34:40.03 -5:10:07.1 B8(WSH)A0(Par)B8V(Her)B8V(vA) · · ·

51 5:34:40.84 -5:26:38.6 M1.5(H) · · ·

52 5:34:40.85 -5:28:09.4 M5(H) · · ·

50 5:34:40.89 -5:22:42.4 M1e(H)G-Ke(Par)K7.3(P)SB2(R)

M1,SB2?(Ste)

· · ·

53 5:34:40.96 -5:25:59.9 M0(H) M3.5

56 5:34:41.58 -5:34:25.1 M4(H) M5

54 5:34:41.64 -5:23:57.5 M5(H) · · ·

57 5:34:41.71 -5:36:49.4 · · · M5.5

55 5:34:41.73 -5:26:52.9 M3(H) · · ·

58 5:34:41.84 -5:34:29.8 · · · <K4

3062 5:34:41.84 -5:21:49.5 M5(H) M7-M8

Page 36: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 36 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

3060 5:34:41.97 -5:21:32.0 · · · M6,M7-M8.5

59 5:34:42.43 -5:12:38.3 M4.5(H) M5

60 5:34:42.45 -5:12:18.9 K0-K1(H)M1e:(GCVS)M1(B) · · ·

3073 5:34:42.50 -5:22:46.1 · · · M5

61 5:34:42.75 -5:28:37.4 · · · M3.5,M4

62 5:34:42.88 -5:25:16.3 early-K:(H) · · ·

63 5:34:42.99 -5:20:07.1 K6(H)K4(Ste)K7+M3(Dae)M0.5+M3(C) · · ·

65 5:34:43.42 -5:30:06.8 M0(H) · · ·

3008 5:34:43.48 -5:14:42.4 · · · M5.5,M7

64 5:34:43.64 -5:18:27.5 F1V(vA)F0-F2III,V(LDW) · · ·

67 5:34:43.77 -5:25:26.5 · · · K1-K5

68 5:34:43.84 -5:35:37.0 · · · M4.5

66 5:34:43.88 -5:12:55.7 K2-K5(H) · · ·

69 5:34:44.37 -5:14:54.5 · · · M3

72 5:34:44.40 -5:32:18.0 · · · M1

70 5:34:44.43 -5:26:06.0 M5(H) M5-M7

71 5:34:44.51 -5:24:38.4 M4(H) · · ·

73 5:34:44.75 -5:33:42.2 M1e(H) · · ·

75 5:34:45.20 -5:25:03.9 K2(WSH)K2(Sam)K3(Ste) · · ·

74 5:34:45.22 -5:10:47.7 M3e(H) · · ·

3026 5:34:45.28 -5:16:25.7 M5(H) M3,M5

76 5:34:45.58 -5:29:20.8 M4(H) M4

77 5:34:45.93 -5:24:55.7 M0(H) M0,M1

79 5:34:46.08 -5:37:32.0 M4.5(H) M4.5

82 5:34:46.27 -5:39:08.7 · · · K6e

78 5:34:46.37 -5:18:53.6 M1:(H) · · ·

81 5:34:46.42 -5:24:31.8 M0(H)K6(Ste)M1+M3.5(C) · · ·

83 5:34:46.59 -5:23:25.6 M2e(H)M3e(Sta) · · ·

80 5:34:46.68 -5:10:40.8 K2(H) · · ·

84 5:34:46.72 -5:21:24.8 M3(H) M5

86 5:34:46.79 -5:26:04.8 · · · M3,M2-M3

85 5:34:46.81 -5:21:29.3 M2.5(H) M2.5

88 5:34:46.92 -5:35:07.9 M1.5(H) M2

87 5:34:46.98 -5:16:19.9 M3.5(H) M4-M4.5

3161 5:34:46.99 -5:35:03.3 · · · M4-M5

1605 5:34:47.00 -5:34:15.1 A0(WSH)B9(Par)A0(S)B9.5V+A0.5(LA)

A0V(vA)A0-1V(J)

· · ·

3038 5:34:47.22 -5:18:09.9 M5(H) M4.5

89 5:34:47.58 -5:37:25.6 · · · · · ·

91 5:34:47.90 -5:30:46.4 M4(H) · · ·

93 5:34:47.91 -5:35:44.1 M4.5(H) M4.5

Page 37: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 37 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

90 5:34:47.95 -5:23:40.4 M3(H) M5-M7

92 5:34:48.14 -5:22:38.6 M3.5(H) · · ·

3130 5:34:48.24 -5:30:10.1 M4.5(H) · · ·

94 5:34:48.29 -5:32:34.9 M2.5(H) · · ·

95 5:34:48.30 -5:37:23.4 K8(H) · · ·

96 5:34:48.47 -5:31:07.1 · · · M5e

98 5:34:48.79 -5:19:07.5 M4(H)M3(Sta) · · ·

97 5:34:48.81 -5:17:46.6 M3.5(H) · · ·

100 5:34:48.82 -5:33:33.0 M2.5(H) · · ·

99 5:34:48.85 -5:23:17.8 M1(H)SB2(R) M1.5

101 5:34:48.89 -5:31:45.7 K0e(Sta)mid-G:e(H) G6-K5e

103 5:34:48.94 -5:31:31.4 M2.5(H) · · ·

102 5:34:48.97 -5:28:16.8 M3.5(H)M3.5(H) M4.5-M5

104 5:34:49.09 -5:26:26.5 M3e(H) · · ·

105 5:34:49.09 -5:28:08.7 M6(H)M6(H) · · ·

106 5:34:49.32 -5:18:55.6 M3(H) M3-M3.5

107 5:34:49.58 -5:29:03.1 M1.5e(H) M1.5-M2e

108 5:34:50.01 -5:18:44.7 A3(WSH)A3:(H)A2(Par)A2Vp(LA)

A5V:(vA)A6-7V(J)Am(M)A2(T)

· · ·

109 5:34:50.12 -5:17:12.5 M2.5(H) M5.5-M6

110 5:34:50.16 -5:20:00.2 M4-M7(H)M5.5(H) M6

3165 5:34:50.23 -5:35:38.9 · · · M2-M6

113 5:34:50.46 -5:20:20.5 K6e(H)K7(Sta) K5-K6e,K8e

112 5:34:50.48 -5:16:30.0 M2.5(H) M4.5-M5

115 5:34:50.48 -5:32:53.8 M5.5(H) · · ·

114 5:34:50.52 -5:23:35.3 M1e(H) · · ·

111 5:34:50.53 -5:11:10.8 K8(H) · · ·

116 5:34:50.73 -5:24:01.3 K5(H)K4(Ste) · · ·

117 5:34:50.75 -5:27:00.9 M0e(H) K8e

120 5:34:50.87 -5:29:24.9 M4.5(H) · · ·

118 5:34:51.02 -5:17:56.7 M5.5(H) M5-M5.5

119 5:34:51.16 -5:12:32.1 G:(H) K5-M0

121 5:34:51.23 -5:16:55.1 M3(H) Ke

122 5:34:51.46 -5:13:29.8 M5(H)SB2(R) · · ·

123 5:34:51.58 -5:25:12.9 K2(H) · · ·

124 5:34:51.82 -5:21:39.2 M3.5(H) M4

125 5:34:52.03 -5:24:18.7 M3.5(H) M3.5

127 5:34:52.05 -5:24:42.9 M3.5e(H) · · ·

128 5:34:52.18 -5:22:32.0 M2.5(H)M0+M0(Dae)M3+M3(C) · · ·

129 5:34:52.21 -5:33:08.5 K:(Par)K1III(vA)K0-K2III,IV(LDW)K0-

2III,IV(Her)

· · ·

126 5:34:52.29 -5:12:03.5 M3(H) · · ·

Page 38: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 38 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

132 5:34:52.35 -5:30:07.8 M4(Sta) M4.5-M5.5

130 5:34:52.37 -5:25:00.6 · · · M5-M7

133 5:34:52.61 -5:24:03.7 M1.5(H) · · ·

131 5:34:52.62 -5:15:37.0 · · · K6-K8,K6-K8

135 5:34:52.66 -5:29:45.1 M3e(H) · · ·

134 5:34:52.70 -5:21:25.4 · · · M4.5

136 5:34:52.78 -5:27:54.8 M0.5(H) M0.5

137 5:34:52.78 -5:27:52.8 · · · M1.5

139 5:34:52.85 -5:33:48.3 M3.5(H) M4.5

138 5:34:52.94 -5:28:58.9 M3.5e(H) · · ·

140 5:34:53.45 -5:10:28.2 M3.5(H) · · ·

141 5:34:53.62 -5:26:37.0 G:(H) K0-K3

143 5:34:53.90 -5:22:20.7 M5.5(H) · · ·

144 5:34:53.95 -5:27:49.0 M3(H)M4.5e(Sta) M5-M5.5

145 5:34:54.13 -5:22:26.5 M5.3(P) · · ·

148 5:34:54.20 -5:28:54.1 M0(H) K8

146 5:34:54.27 -5:21:35.4 M2(H) M0-M1e

147 5:34:54.42 -5:17:21.4 M5(H) · · ·

149 5:34:54.66 -5:28:18.0 M3e(H) · · ·

151 5:34:54.85 -5:25:12.5 M3e(H) · · ·

150 5:34:54.96 -5:17:01.9 K4-K6e(H) K4-K5e

3111 5:34:55.01 -5:26:58.7 M5.5e(H)M4.5e(H) M5e

152 5:34:55.07 -5:25:29.3 M3(H) · · ·

153 5:34:55.30 -5:30:21.8 B8(WSH)B9(Par)B8.5V(LA)B9V(vA)

B8-9V(J)B8V(M)B8-9(S)B9n(T)

· · ·

156 5:34:55.55 -5:36:06.4 M0.5(H) · · ·

155 5:34:55.61 -5:29:37.3 M4.5(H) · · ·

3046 5:34:55.84 -5:19:45.4 M5(H)M5.5(SHC)M5(SHC-ir) · · ·

154 5:34:55.91 -5:08:21.4 G8-K1(H) · · ·

159 5:34:55.98 -5:31:12.8 M2(H) M3

157 5:34:55.99 -5:23:12.9 K2(WSH)K2-K4(P)K0(vA)

K1(CK)K4III(Ham)K3(Ste)

· · ·

158 5:34:55.99 -5:29:26.2 M1.5(H) M0-M1

162 5:34:56.37 -5:33:40.4 M5-M6(H) · · ·

166 5:34:56.40 -5:38:06.0 M5(H) · · ·

165 5:34:56.49 -5:31:35.9 K5(Ste) · · ·

164 5:34:56.53 -5:27:50.8 M2e(H) · · ·

160 5:34:56.64 -5:11:12.7 M2.5(H) · · ·

168 5:34:56.77 -5:26:37.1 M5.5(H) M5

161 5:34:56.80 -5:10:44.0 M4(H) M3.5

163 5:34:56.84 -5:11:33.3 K5(H)K6(CK) · · ·

167 5:34:56.86 -5:21:36.5 K7(H) · · ·

Page 39: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 39 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

169 5:34:56.95 -5:22:06.3 M3(H)M0e(Sta) M3

171 5:34:57.03 -5:23:00.1 M4(H) · · ·

173 5:34:57.16 -5:33:29.4 M4(H) M4.5

170 5:34:57.23 -5:08:24.0 late-G/early-K(H) · · ·

172 5:34:57.39 -5:14:33.7 M4.5(H) · · ·

174 5:34:57.46 -5:30:41.8 M2.5(H) · · ·

176 5:34:57.78 -5:23:52.1 K8(H)K5(Ste)K7+M0(Dae)M1+M1(C) · · ·

175 5:34:57.79 -5:22:51.2 M3(H) M3.5,M3-M4

179 5:34:57.88 -5:28:41.8 M5.5(H) · · ·

181 5:34:57.93 -5:29:45.7 M3(H) · · ·

177 5:34:58.05 -5:17:37.9 M0(H) M1.5

182 5:34:58.06 -5:29:40.3 · · · M7-M9

178 5:34:58.21 -5:09:27.7 M2(H) · · ·

180 5:34:58.21 -5:11:54.0 M5(H) M5

183 5:34:58.28 -5:25:33.2 M5(H) M6

184 5:34:58.39 -5:21:16.8 M1.5(H)M3.5(RRL) M3

186 5:34:58.54 -5:32:49.8 M2.5(H)M5.5e(Sta) · · ·

185 5:34:58.71 -5:12:26.4 M5.5(H) · · ·

187 5:34:58.81 -5:21:17.8 K5(H) K6

188 5:34:58.91 -5:28:03.2 M3(H) · · ·

5010 5:34:58.93 -5:13:45.1 late-G::(H) K5-K7

189 5:34:59.20 -5:23:07.8 M4.5IV-M5V(H) · · ·

190 5:34:59.32 -5:23:32.6 M6(H) M5,M5-M7

191 5:34:59.57 -5:24:00.2 M4(E)M2.5(H) · · ·

192 5:34:59.64 -5:25:39.8 M2(H) M1

195 5:34:59.89 -5:36:39.7 · · · K0-K3

193 5:35:00.13 -5:23:01.9 K0-K2e(H)K0e(Par)K6(CK)K0e(J) · · ·

197 5:35:00.13 -5:25:16.1 B9(WSH)A0(Par)A1Vn+Am(LA)B9V(vA)

A0V(J)A0(T)

· · ·

5106 5:35:00.23 -5:24:09.2 >M2(H) M5-M6

5038 5:35:00.24 -5:15:58.7 K5-K6:(H) · · ·

196 5:35:00.26 -5:18:51.0 M0(H) K7-K8,K8

194 5:35:00.41 -5:09:44.4 M5.5(H) · · ·

198 5:35:00.47 -5:25:14.2 K6e(H) · · ·

203 5:35:00.82 -5:38:08.6 M0(H) · · ·

200 5:35:00.85 -5:31:05.6 M2.5(H) M5

199 5:35:00.87 -5:09:39.2 M4(H) · · ·

201 5:35:01.03 -5:24:10.3 M2.5(H) · · ·

5084 5:35:01.07 -5:20:27.5 M3.25(RRL) M4

202 5:35:01.10 -5:23:03.8 M4.5(H) · · ·

209 5:35:01.16 -5:29:54.8 · · · · · ·

Page 40: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 40 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

206 5:35:01.19 -5:24:06.7 · · · M1

205 5:35:01.24 -5:21:44.4 M6(H)M7(SHC-ir) · · ·

208 5:35:01.31 -5:20:16.9 M2.5(H) · · ·

207 5:35:01.33 -5:18:21.5 · · · M4.5

210 5:35:01.35 -5:20:22.3 K6-K8(H) M1e

204 5:35:01.45 -5:09:32.8 M1.5(H) · · ·

211 5:35:01.49 -5:28:20.6 M2.5(H) · · ·

213 5:35:01.59 -5:25:33.9 M5(H)M5.25(RRL) M5

212 5:35:01.61 -5:24:10.1 M5(H)K8(Luc01)M5(WLR) M5

216 5:35:01.62 -5:33:38.0 M3(H) · · ·

214 5:35:01.68 -5:26:36.3 M5.5(RRL) M3e

215 5:35:01.72 -5:27:09.8 M6(RRL) M4e,M4.5-M6e

218 5:35:01.83 -5:30:19.1 M4.5(H) · · ·

217 5:35:02.02 -5:18:34.3 M3(H) · · ·

219 5:35:02.09 -5:18:22.8 M5(H) M5

220 5:35:02.09 -5:26:36.1 M1.5(H)K6(Ste) · · ·

3013 5:35:02.12 -5:15:37.3 M3(H) M3.5

222 5:35:02.19 -5:29:09.5 M2(H) · · ·

3138 5:35:02.32 -5:31:10.6 · · · M6-M8

221 5:35:02.40 -5:15:48.1 K3(H) · · ·

223b 5:35:02.40 -5:20:48.4 · · · · · ·

223a 5:35:02.44 -5:20:46.6 K5(H) · · ·

225 5:35:02.50 -5:33:09.8 M1.5(H) M2.5

227 5:35:02.70 -5:32:24.8 · · · M5,M6

224 5:35:02.75 -5:19:44.7 M1e(H) · · ·

228 5:35:02.77 -5:32:02.6 M5e(H) M5.5

226 5:35:02.85 -5:22:08.2 G:(H) mid-K

232 5:35:03.01 -5:30:01.2 K1-K2(Sam)K4(Ste) · · ·

230 5:35:03.10 -5:22:37.8 M6(H) · · ·

229 5:35:03.17 -5:18:30.1 M1.5(H) · · ·

231 5:35:03.23 -5:17:53.5 M6(H) · · ·

5042 5:35:03.33 -5:16:22.5 · · · · · ·

234 5:35:03.44 -5:26:10.0 M4.5(H)M5.25(RRL) · · ·

233 5:35:03.45 -5:23:32.8 M3.5e(H)M6.75(RRL) · · ·

235 5:35:03.57 -5:29:26.0 M2.5e(Sta)?+M3(Dae) M1-M1.5,M2.5e

5100 5:35:03.71 -5:22:45.6 M5.5e(H)M6(SHC-ir)M5.5(RRL) M6-M7e

236 5:35:03.79 -5:24:54.0 · · · M3e

239 5:35:03.93 -5:29:03.2 M1.5(H)M4:(E)K5,SB2(Ste) · · ·

237 5:35:03.97 -5:18:59.9 M4(H) M4

243 5:35:04.07 -5:26:37.0 M2(H) M1.5

Page 41: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 41 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

241 5:35:04.17 -5:20:15.8 · · · M4

244 5:35:04.17 -5:22:24.3 M5(H) M4

245 5:35:04.20 -5:26:27.7 M2e(H)M7(Luc01) · · ·

240 5:35:04.21 -5:15:21.6 M1(H) · · ·

238 5:35:04.32 -5:08:13.0 K0V(vA) · · ·

248 5:35:04.38 -5:23:13.9 M0.5-M2e(H)M1.2(P)M3(E)K4-

M0(Sam)K6(Ste)M1+M7.5(C)

· · ·

242 5:35:04.41 -5:08:16.9 · · · K0

249 5:35:04.51 -5:23:56.5 K2(H)M0,M4(Sam) · · ·

250 5:35:04.51 -5:26:04.3 M3(H) · · ·

252 5:35:04.53 -5:29:38.1 K4-K5(H) · · ·

255 5:35:04.59 -5:28:26.4 · · · K5

254 5:35:04.61 -5:26:22.8 M3(H) · · ·

251 5:35:04.62 -5:24:42.3 M2(H) · · ·

246 5:35:04.63 -5:09:53.6 · · · M4

247 5:35:04.63 -5:09:56.0 · · · M1.5,M4

256 5:35:04.67 -5:29:36.0 M3.5(H) · · ·

3084 5:35:04.70 -5:24:35.9 · · · cont+emis

258 5:35:04.76 -5:26:37.8 M0.5(H) K8,M0.5

253 5:35:04.77 -5:17:42.4 K5(H)K7(Sta) K8

257 5:35:04.82 -5:22:38.8 M4.5(H) · · ·

259 5:35:04.87 -5:20:57.6 M3.5(H) · · ·

263 5:35:05.08 -5:36:44.1 M4.5(H) M5

261 5:35:05.14 -5:20:24.5 · · · M2-M2.5e,M3e

262 5:35:05.20 -5:26:03.5 M4.5(H) M4

260 5:35:05.21 -5:14:50.5 F8(WSH)G5(S)G0+F7(Dae) · · ·

5112 5:35:05.30 -5:25:02.9 M6(Luc01)M6.5(RRL)M7.5(WLR) M4.5

271 5:35:05.34 -5:34:28.4 M0(H) · · ·

265 5:35:05.38 -5:24:10.5 M0(H) · · ·

268 5:35:05.41 -5:27:16.9 K5-K6(H)K5(Ste) · · ·

266 5:35:05.42 -5:24:15.0 · · · M1.5,M2.5

267 5:35:05.45 -5:25:21.8 · · · K3e

5096 5:35:05.46 -5:22:30.4 M6.5(H)M7.25(Luc01)M6.75(RRL)>M9.5(WLR)M6

270 5:35:05.47 -5:25:55.6 M3.5(H) · · ·

272 5:35:05.50 -5:27:52.0 M1.5e(H) · · ·

264 5:35:05.62 -5:11:50.9 K3-K5(H) <M0-giant?

277 5:35:05.62 -5:29:22.1 M0.5(H) · · ·

3040 5:35:05.62 -5:18:24.7 · · · M5.5

273 5:35:05.65 -5:25:19.3 K0(WSH)K0-

K3e(H)A0V+K1V(?)A0V(vA)

K0:e(J)K4eIV(W)K3(CK)K2,SB2?(Ste)

· · ·

274 5:35:05.70 -5:23:44.6 <M0e(H) M5::

275a 5:35:05.70 -5:25:06.2 M2(H) · · ·

Page 42: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 42 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

276 5:35:05.72 -5:23:54.0 M4-4.5(H) M5-M5.5

269 5:35:05.74 -5:11:35.2 · · · M3(III ?)

278 5:35:05.74 -5:24:18.3 K2-K7e(H) · · ·

280 5:35:05.74 -5:26:26.1 M3(H) · · ·

275b 5:35:05.75 -5:25:04.0 · · · · · ·

284 5:35:05.77 -5:33:55.7 M3e(H) M4e

3162 5:35:05.78 -5:35:21.9 · · · M5.5

279 5:35:05.80 -5:23:15.9 M5.5e(H) M6.5e

281 5:35:05.86 -5:27:01.4 M3.5(H) M3-M4.5

283 5:35:05.89 -5:27:08.8 K8(H) · · ·

282 5:35:06.11 -5:14:25.1 M4.5(H) · · ·

285 5:35:06.16 -5:19:55.7 M4(H) · · ·

1744 5:35:06.18 -5:12:15.5 B5(WSH)B5(Par)B4V(LA)B3V(vA)B3-

5V(J)

· · ·

3064 5:35:06.19 -5:22:12.5 M4(H) M2.5

286 5:35:06.29 -5:22:02.6 K5(H) · · ·

290 5:35:06.43 -5:27:04.6 · · · M5-M7

287 5:35:06.45 -5:22:07.5 M3.5e(H) M5.5-M6.5e

289 5:35:06.45 -5:23:15.1 · · · M6

295 5:35:06.45 -5:33:35.1 M0.5e(H)M2(E) · · ·

294 5:35:06.46 -5:31:09.0 M4.5(H) · · ·

288 5:35:06.47 -5:21:18.8 M5(H) · · ·

291 5:35:06.52 -5:24:41.3 M1(H)K4-M0(Sam)K6(Ste) · · ·

292 5:35:06.55 -5:25:01.4 M4(H)M4.5(H) M4.5

5159 5:35:06.57 -5:32:51.4 · · · M3:,M6-M9

296 5:35:06.60 -5:26:50.8 M4.5e(H)M6(WLR) · · ·

297 5:35:06.79 -5:20:19.1 M5.5(H)M4.5(Luc01)M5.75(RRL)M7(WLR) M2

293 5:35:06.84 -5:10:38.7 M5(H) · · ·

298 5:35:06.90 -5:22:09.3 M6(H)M5(Luc01)M6(RRL)M6(WLR) M1.5

299 5:35:06.92 -5:26:00.6 · · · M3.5

5064 5:35:07.15 -5:18:30.3 M6(H)M5.5(H) M5

300 5:35:07.28 -5:22:26.5 M2-M4:(H)M6(SHC-ir) M4.5

5138 5:35:07.35 -5:29:40.8 · · · M5.5-M8

302 5:35:07.39 -5:22:29.0 M6(SHC-ir) M5,M5.5

303 5:35:07.40 -5:25:47.9 · · · M6.5-M8e

304 5:35:07.45 -5:26:40.1 M5(H) · · ·

301 5:35:07.54 -5:11:14.6 K5(Sta) K7-M0

5075 5:35:07.54 -5:19:50.1 · · · M1:

308 5:35:07.62 -5:36:19.6 M3(H)M4(E)M2(B) · · ·

305 5:35:07.64 -5:24:00.6 M3-M3.5(H) · · ·

310 5:35:07.69 -5:36:59.0 M4.5(H) M5

Page 43: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 43 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

306 5:35:07.71 -5:24:52.7 M4(H)M6.5(RRL)WLR(M6) · · ·

311 5:35:07.85 -5:29:17.3 M3.5(H)M3.8(P)M5(E)M3.5(Sta) · · ·

307 5:35:07.86 -5:17:05.5 M3(H) · · ·

312 5:35:07.87 -5:32:42.6 · · · M2,M3,M4.5

309 5:35:07.95 -5:21:17.2 M3-M4(H) M3.5

313 5:35:08.03 -5:32:44.1 M0(H) · · ·

315 5:35:08.03 -5:36:46.9 M3.5(H) · · ·

316 5:35:08.05 -5:36:14.2 · · · M5.5

314 5:35:08.23 -5:24:03.1 M4.75(RRL) M4.5

321 5:35:08.23 -5:37:05.0 M0e(H) · · ·

318 5:35:08.26 -5:29:11.9 M4.5(H) · · ·

317 5:35:08.30 -5:24:34.8 · · · M5.5e

319 5:35:08.35 -5:27:56.8 K7e(Sta) K7-M0

3025 5:35:08.36 -5:16:20.1 M4::(H) M3,M5

320 5:35:08.39 -5:28:29.2 K2(H) · · ·

322 5:35:08.53 -5:24:41.5 M4.5(H) · · ·

323 5:35:08.54 -5:25:17.8 M2(H) · · ·

324 5:35:08.60 -5:26:19.3 M4.5(H) · · ·

326 5:35:08.69 -5:29:01.5 K6-K8,M0(H) K6

3072 5:35:08.74 -5:22:56.5 · · · M1.5

328 5:35:08.85 -5:31:48.8 K4(H)K6(Ste) · · ·

3045 5:35:08.92 -5:19:33.1 · · · M3,M4

325 5:35:08.95 -5:10:25.3 M3(H) · · ·

327 5:35:09.05 -5:20:17.4 M4(H)M3.5(Luc01)M5(RRL)M4.5(WLR) · · ·

330 5:35:09.06 -5:29:59.0 K1-K4(H)K1IV-

Ve(Par)K3(CK)K3(D)K3-

K5.5(P)K6(E)K3(Ste)

· · ·

329 5:35:09.19 -5:16:51.5 · · · >M7

3134 5:35:09.22 -5:30:58.3 G3(Sta) K5-K8e

3166 5:35:09.26 -5:16:54.7 M2(H) · · ·

331 5:35:09.47 -5:20:58.5 M6(Luc01)M6.25(RRL)M7.5(WLR) · · ·

5127 5:35:09.51 -5:27:48.8 · · · · · ·

333 5:35:09.60 -5:27:59.8 M5-M6(H) · · ·

334 5:35:09.60 -5:28:22.8 M1e(H) · · ·

335 5:35:09.65 -5:26:23.1 M1e(H) · · ·

9001 5:35:09.68 -5:23:55.7 · · · · · ·

332 5:35:09.70 -5:21:25.0 M3.5(H) M3

336 5:35:09.77 -5:21:28.2 · · · M0,K5-K7

337 5:35:09.77 -5:23:26.8 K8(H)K4-M0(Sam)K4(Ste) · · ·

338 5:35:09.86 -5:19:34.1 M3.5-M4(H)M3(E) · · ·

1772 5:35:09.89 -5:27:53.2 B2.5(WSH)B2Vp(Par)B2(LA)B2Vp(vA)

B1-2V(J)B1.5pV(S)B3(T)

· · ·

9002 5:35:09.92 -5:23:38.3 · · · · · ·

Page 44: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 44 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9003 5:35:09.94 -5:23:58.8 · · · · · ·

5023 5:35:09.95 -5:14:49.8 · · · · · ·

5050 5:35:10.08 -5:17:06.6 · · · · · ·

3044 5:35:10.09 -5:19:02.5 · · · · · ·

340 5:35:10.15 -5:22:32.6 · · · M2

5129 5:35:10.16 -5:27:57.7 · · · M1-M2

339 5:35:10.19 -5:20:21.2 M3.5(H) · · ·

3056 5:35:10.20 -5:21:00.2 M6.25(RRL) M7-M8

341 5:35:10.21 -5:23:21.4 K4-K7(H) · · ·

342 5:35:10.27 -5:21:57.0 M5(SHC-ir)M5.75(RRL) M5.5

3047 5:35:10.31 -5:19:56.1 M4.5(H) · · ·

343 5:35:10.32 -5:21:13.0 K7(H) M0

344 5:35:10.41 -5:19:52.0 · · · M5.5

5142 5:35:10.41 -5:30:07.8 · · · M5.5

351 5:35:10.44 -5:38:25.2 G4-G6(H) · · ·

3104 5:35:10.49 -5:26:00.2 · · · M5.5

345 5:35:10.50 -5:22:45.5 M0.5(H)M0-M2(Sam)K6(Ste) · · ·

348 5:35:10.51 -5:26:18.1 K0(WSH)<M0(Sam)K2(Ste) · · ·

349 5:35:10.57 -5:24:16.2 K:(H) K8-M0

353 5:35:10.58 -5:33:13.5 M5(H) M2-M3.5

347 5:35:10.59 -5:21:56.2 K3-K7(H)M0(H)M2(E)K2-

K4(Sam)K5(Ste)

· · ·

350 5:35:10.60 -5:22:44.4 · · · M2

352 5:35:10.74 -5:23:44.5 K8(H)M0.1(P)M1(E)K2V(HT)

K5IV(Ham)K2-K3(Sam)K5(Ste)

· · ·

354 5:35:10.74 -5:26:28.0 M3.5(H) K2-K5:

346 5:35:10.80 -5:10:34.8 · · · early-M:

3102 5:35:10.85 -5:25:56.9 · · · M6.5

357 5:35:10.89 -5:28:00.6 M4.5(H) · · ·

355 5:35:10.93 -5:22:46.3 mid-K::(H) M0-M0.5

356 5:35:10.94 -5:24:48.5 M3e(H)M3(SHC-ir) · · ·

362 5:35:11.13 -5:34:59.6 M4.5(H) · · ·

363 5:35:11.15 -5:36:51.4 M2(H) · · ·

3098 5:35:11.15 -5:25:32.1 M4.75(RRL) M5

359 5:35:11.17 -5:19:35.9 · · · · · ·

358 5:35:11.21 -5:17:21.0 M1(H) · · ·

360 5:35:11.26 -5:19:38.6 · · · · · ·

3005 5:35:11.35 -5:14:01.4 M4.5(H) · · ·

361 5:35:11.38 -5:19:12.2 M1(H) K8-M0

365 5:35:11.50 -5:26:02.1 K2-K3(Sam)K4(Ste) · · ·

364 5:35:11.63 -5:16:57.8 G0-G2(WSH)K0:IV-V(W)G8(Ste) · · ·

3070 5:35:11.63 -5:22:51.7 · · · · · ·

Page 45: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 45 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

366 5:35:11.65 -5:24:21.2 M4.5-M5e(H) · · ·

371 5:35:11.66 -5:31:01.0 · · · M5-M7

368 5:35:11.72 -5:23:51.9 · · · M0-M3

3071e 5:35:11.73 -5:22:56.4 · · · nebular

9008 5:35:11.73 -5:23:40.6 M4.5(H) · · ·

369 5:35:11.78 -5:21:55.6 M6(SHC-ir) M5.5

367 5:35:11.85 -5:17:26.1 · · · M3.5

370 5:35:11.87 -5:19:26.3 K0-K3(H) · · ·

375 5:35:11.89 -5:31:55.2 M0.5(H)K5(Ste) · · ·

3058 5:35:11.89 -5:21:03.1 <=K7(H) G-M0e

373 5:35:11.97 -5:20:33.1 K2-K3(H)<K7(P)K3(E) · · ·

9009 5:35:12.01 -5:22:53.7 M2:(SHC-ir) M0-M3(emis?f )

372 5:35:12.05 -5:14:14.4 · · · M2.5

5132 5:35:12.06 -5:28:08.2 · · · M3.5

374 5:35:12.08 -5:19:24.8 M4.5(H) · · ·

376 5:35:12.15 -5:24:33.7 M5.5(RRL)M7(WLR) M1-M2e

380 5:35:12.15 -5:31:38.6 M5(H) M4.5

379 5:35:12.16 -5:30:20.0 M5.4(P)M5.5(Sta) · · ·

381 5:35:12.21 -5:30:32.7 M0.5(H) · · ·

378a 5:35:12.27 -5:23:48.0 K1(H)M0(Sam) · · ·

378b 5:35:12.27 -5:23:48.0 · · · · · ·

377a 5:35:12.29 -5:20:45.5 · · · · · ·

377b 5:35:12.30 -5:20:45.5 · · · · · ·

384 5:35:12.33 -5:36:39.7 K2.5-K3(P) · · ·

9015 5:35:12.41 -5:20:47.6 · · · · · ·

9016 5:35:12.43 -5:21:32.0 · · · · · ·

9017 5:35:12.43 -5:21:31.8 · · · · · ·

382 5:35:12.60 -5:20:43.0 M4.5(H) · · ·

385 5:35:12.60 -5:23:43.9 K1V(HT)<K7(P)<M0(Sam)K4(Ste) · · ·

5074 5:35:12.62 -5:19:45.3 · · · · · ·

9018 5:35:12.62 -5:23:01.6 M5(SHC-ir) · · ·

387 5:35:12.69 -5:19:35.5 M2-2.5,M3(H) >M0

392 5:35:12.70 -5:27:10.6 M6-M6.5(H) · · ·

383 5:35:12.71 -5:16:13.6 M3(H) · · ·

386 5:35:12.74 -5:16:52.9 K6-K8(H) K8

389 5:35:12.77 -5:20:35.0 M4.5-M6(H) · · ·

390 5:35:12.79 -5:20:39.1 M5(H) M3

388 5:35:12.82 -5:15:24.1 K5(H)M0.3(P)M1(E) · · ·

391 5:35:12.82 -5:20:43.6 M1e(H)M0.0(P)K0(Sam)M2(Ste)

M0.5+M3.5(Dae)M0+M7(C)

· · ·

398 5:35:12.85 -5:39:08.6 M0(H) K7

Page 46: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 46 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9024 5:35:12.88 -5:21:04.7 · · · · · ·

397 5:35:12.94 -5:28:49.8 · · · · · ·

393 5:35:13.01 -5:19:04.2 K6e(Sta) · · ·

395 5:35:13.02 -5:22:00.7 M2(H) M5.5

9025 5:35:13.03 -5:20:52.6 M8.5(RRL)>M9.5(WLR) · · ·

394 5:35:13.04 -5:20:30.3 K6(H) · · ·

402 5:35:13.05 -5:34:03.5 M5.5(H) · · ·

9029 5:35:13.06 -5:22:15.1 M4.5(H) · · ·

9028 5:35:13.09 -5:21:53.0 · · · emis?f

9030 5:35:13.13 -5:22:52.9 M2:(H) mid-M:

9032 5:35:13.13 -5:21:13.3 M2.5e(H) M5

9031 5:35:13.15 -5:22:46.8 K:(H) · · ·

399a 5:35:13.18 -5:22:21.7 · · · M2.5-M3

399b 5:35:13.18 -5:22:21.4 · · · · · ·

410 5:35:13.20 -5:36:18.2 · · · M4-M5e

400 5:35:13.21 -5:20:52.8 K8-M0(H) K8-M0

401 5:35:13.21 -5:24:55.2 K0-K2e(H)<M0(Sam) · · ·

405 5:35:13.25 -5:27:54.0 M2(H)K6(Sta) M3-M6

9036 5:35:13.28 -5:20:41.7 · · · · · ·

9037 5:35:13.31 -5:23:53.0 · · · · · ·

396 5:35:13.32 -5:09:19.7 M2.5(H)M2.5(Sta) M1

403 5:35:13.32 -5:20:18.6 M2.5(H) · · ·

414 5:35:13.33 -5:37:16.3 · · · M5.5

9038 5:35:13.33 -5:22:57.6 cont(H) M2-M6

404 5:35:13.35 -5:22:26.3 M4.5-M5.5(H) · · ·

9040 5:35:13.37 -5:23:53.1 · · · · · ·

409 5:35:13.44 -5:23:40.0 <M0(Sam)K4(Ste) · · ·

406 5:35:13.46 -5:17:10.4 M1(H) · · ·

416 5:35:13.48 -5:30:48.0 M3.5(H) · · ·

9043 5:35:13.49 -5:21:07.8 · · · · · ·

407 5:35:13.50 -5:17:31.4 K6(H) · · ·

408 5:35:13.51 -5:17:17.5 M3(H) · · ·

411 5:35:13.52 -5:22:19.5 M1.4(P)K-M(LR) · · ·

415 5:35:13.53 -5:27:28.5 M3(H) · · ·

412 5:35:13.54 -5:23:30.9 M3(H) · · ·

9045 5:35:13.56 -5:23:04.2 late-K:(H) M3

418 5:35:13.57 -5:27:57.2 · · · M5

426 5:35:13.59 -5:35:08.1 M1(H) · · ·

417 5:35:13.61 -5:24:25.5 M0.5(H) · · ·

421 5:35:13.61 -5:30:57.4 K5e(H)F8-G0III-IV(?) · · ·

Page 47: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 47 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9047 5:35:13.61 -5:20:31.3 M2:(H)late-K(H) M1,M2:

413 5:35:13.62 -5:19:54.8 K5,K6(H) · · ·

422 5:35:13.66 -5:28:46.2 M2.5e(Sta) M2.5,M3

9048 5:35:13.66 -5:21:21.7 M3(H) · · ·

9049 5:35:13.68 -5:21:21.5 · · · · · ·

420 5:35:13.74 -5:22:21.9 M1.5(H)>G6(LR) M2e

430 5:35:13.76 -5:34:55.0 M4.5e(Sta) M4,M5

419 5:35:13.79 -5:19:25.6 · · · M1

433 5:35:13.79 -5:39:10.8 K2-K4(P) · · ·

423 5:35:13.80 -5:22:07.0 K2e(H)M0,M4(Sam)G4-K3(LR)K5(Ste) · · ·

428 5:35:13.81 -5:30:24.2 M2.5(H) M3.5

424 5:35:13.83 -5:22:02.9 · · · M1

427 5:35:13.83 -5:27:36.8 M4e(H) M3

425 5:35:13.90 -5:18:53.3 · · · M1:,early-M:

9053 5:35:14.02 -5:21:23.9 · · · · · ·

429 5:35:14.05 -5:19:52.1 late-G(H)K6(Ste) · · ·

431 5:35:14.05 -5:23:38.3 M3(H)<M0(Sam) · · ·

3099 5:35:14.05 -5:25:49.9 M4.5(H) M6

434 5:35:14.07 -5:26:35.6 · · · M3.5

432 5:35:14.08 -5:22:36.5 M3.1(P)K5-M2(LR) · · ·

3093 5:35:14.08 -5:25:20.3 · · · M6

5176 5:35:14.18 -5:23:00.9 · · · · · ·

438 5:35:14.20 -5:28:43.3 · · · late-K-M:

9056 5:35:14.20 -5:20:24.1 · · · · · ·

435a 5:35:14.23 -5:20:04.2 M4:(H) · · ·

437 5:35:14.28 -5:24:24.5 K7(H)K4,M0-M1(Sam)K5,SB2?(Ste) · · ·

435b 5:35:14.32 -5:20:04.3 · · · · · ·

436a 5:35:14.33 -5:22:04.3 · · · · · ·

436b 5:35:14.35 -5:22:04.2 · · · · · ·

3091 5:35:14.36 -5:25:15.5 · · · · · ·

9061 5:35:14.36 -5:23:08.0 mid-M:(H)K5-M2(LR) · · ·

441 5:35:14.39 -5:23:33.6 M1(H)K5-M2(LR) · · ·

9062 5:35:14.39 -5:22:54.4 · · · · · ·

9063 5:35:14.42 -5:22:36.7 · · · · · ·

9064 5:35:14.42 -5:22:56.0 cont(H) · · ·

439 5:35:14.45 -5:17:25.5 M1(H) · · ·

447 5:35:14.45 -5:32:46.3 M4(H)M4(Sta) M3

449 5:35:14.45 -5:33:18.9 K5(P)K4-M0:(H) · · ·

443 5:35:14.46 -5:25:02.0 M2(H)K5(Ste) · · ·

446 5:35:14.50 -5:29:03.1 M4.5(H) · · ·

Page 48: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 48 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

442 5:35:14.51 -5:22:06.5 M3(H) · · ·

444 5:35:14.63 -5:16:46.3 · · · M4

448 5:35:14.65 -5:22:33.7 K7(P)K3-K4,M0-M1.5(Sam)K5-M2(LR) · · ·

9066 5:35:14.65 -5:22:00.8 K:(H) · · ·

440 5:35:14.67 -5:08:52.1 M3.5(H)SB2(R) · · ·

445b 5:35:14.67 -5:20:43.1 · · · · · ·

445a 5:35:14.68 -5:20:42.7 cont(H) · · ·

460 5:35:14.70 -5:39:11.7 K0-K3(P) · · ·

9069 5:35:14.70 -5:23:02.2 M0.5-M2.5(H)M0-M3(LR) · · ·

450 5:35:14.74 -5:20:28.9 · · · · · ·

458 5:35:14.76 -5:34:16.8 M3e(H) · · ·

451 5:35:14.78 -5:23:22.7 M3e(H)K-M(LR) · · ·

9071 5:35:14.78 -5:21:07.0 M:(H) · · ·

453 5:35:14.84 -5:23:46.0 K6-M4(LR) · · ·

9073 5:35:14.84 -5:23:05.1 · · · · · ·

452 5:35:14.85 -5:22:31.6 · · · K-M:

9074 5:35:14.87 -5:22:23.8 · · · · · ·

465 5:35:14.89 -5:38:06.1 · · · K8

454 5:35:14.91 -5:22:39.1 K4(H)K7(E)K4-M0(Sam)K5-

M2(LR)K3(Ste)

· · ·

9075 5:35:14.91 -5:23:05.4 K5-M3(LR)K4(Dae) · · ·

9077 5:35:14.92 -5:24:11.4 M4(H) · · ·

455 5:35:14.94 -5:23:28.7 K-M(LR) · · ·

456 5:35:14.94 -5:23:39.2 K5-M2(LR) · · ·

466 5:35:14.95 -5:36:39.1 M3.5(P) · · ·

9079 5:35:14.95 -5:24:12.5 · · · · · ·

9080 5:35:14.95 -5:24:12.6 M5.5(H) · · ·

457 5:35:14.98 -5:21:59.9 K3-K4(Sam)K5-M2(LR)K5(Ste) · · ·

9081e 5:35:14.99 -5:22:21.7 · · · nebular

459e 5:35:15.00 -5:23:32.2

9083 5:35:15.04 -5:21:47.8 · · · · · ·

9084 5:35:15.04 -5:20:53.0 M0-M4(SHC-ir) · · ·

9085 5:35:15.08 -5:23:01.3 <M0(H) emis?f

9086 5:35:15.08 -5:22:31.8 M6(H)M6(H) · · ·

464 5:35:15.17 -5:23:46.0 K5-M2(LR) M0-M1

461 5:35:15.19 -5:20:14.7 · · · · · ·

463 5:35:15.19 -5:22:54.4 K2-K5(H)G4-K5(LR) · · ·

9087 5:35:15.19 -5:20:48.6 · · · · · ·

467 5:35:15.22 -5:22:24.0 K7(H)K5-M2(LR) K6

9088 5:35:15.22 -5:20:51.8 M0-M4(SHC-ir) · · ·

468 5:35:15.25 -5:22:56.7 G6-G8(H)K0-K7(LR) · · ·

Page 49: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 49 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

5034 5:35:15.28 -5:15:47.9 · · · · · ·

9092 5:35:15.29 -5:20:29.4 M4(H) · · ·

9093 5:35:15.29 -5:21:56.1 · · · · · ·

462 5:35:15.33 -5:13:38.1 M3.5(H) · · ·

469 5:35:15.34 -5:19:02.2 M4.5-M5.5(H) · · ·

470 5:35:15.34 -5:22:15.5 K3-K5(H)<=K5(P)G4-K5(LR)K3e(Sta) · · ·

472a 5:35:15.35 -5:22:26.1 · · · · · ·

472b 5:35:15.35 -5:22:26.0 · · · · · ·

9096 5:35:15.39 -5:22:25.7 M0-M3(LR) · · ·

473 5:35:15.40 -5:21:13.9 M2-M3e(H) M3.5e

5177 5:35:15.40 -5:23:33.4 M2e(H)M0-M3(LR) · · ·

475 5:35:15.42 -5:23:45.4 M1e(H)K0-K7(LR) · · ·

471 5:35:15.43 -5:17:39.1 · · · M0-M1

3103 5:35:15.43 -5:25:59.5 M6.5(RRL) · · ·

477 5:35:15.47 -5:27:22.6 M2.5(H) · · ·

476 5:35:15.48 -5:22:48.6 M2(H)K5-M2(LR) · · ·

474 5:35:15.50 -5:17:36.9 M4-M4.5(H) · · ·

483 5:35:15.50 -5:35:11.9 · · · M3.5

5178 5:35:15.54 -5:23:37.2 K(LR) · · ·

478 5:35:15.55 -5:25:14.1 M0.4(P)K4,K7-M1(Sam)K4,SB2(Ste) · · ·

491 5:35:15.60 -5:34:46.6 M5(H) · · ·

480 5:35:15.62 -5:24:02.9 K8-M0(H)<M0(Sam)K5(Ste) · · ·

479 5:35:15.63 -5:22:56.4 G8-K1(H)K0-K7(LR)K3(Ste) · · ·

9104 5:35:15.63 -5:22:59.1 · · · · · ·

482 5:35:15.68 -5:25:33.0 K8e(H)<M0(Sam) · · ·

486 5:35:15.69 -5:28:15.3 M4.5(H) · · ·

3032 5:35:15.69 -5:17:47.2 · · · <M3

9108 5:35:15.71 -5:25:10.7 M1.5(H) · · ·

485 5:35:15.72 -5:26:28.2 M1.5(H) M3

481 5:35:15.75 -5:21:39.8 M3(H) · · ·

484a 5:35:15.75 -5:24:24.5 · · · · · ·

498 5:35:15.77 -5:32:59.1 M1e(H)M1e(Sta) M0.5,M1.5

484b 5:35:15.78 -5:24:24.5 · · · · · ·

9110 5:35:15.79 -5:24:11.3 · · · · · ·

488a 5:35:15.80 -5:23:22.3 mid-Ke(H)K1(CK)>G6(LR) · · ·

489 5:35:15.80 -5:23:26.3 G4-K5(LR) · · ·

501 5:35:15.80 -5:33:12.2 M0(H) M1

1864 5:35:15.81 -5:23:09.9 B5-B8+G0-G5(Par)G4-K3(LR) · · ·

492 5:35:15.84 -5:22:45.7 M3e(H)K6-M4(LR) · · ·

1865 5:35:15.85 -5:23:14.5 O9(WSH)B2(Par)B0.5V(LA)O9V(vA)

B1(J)B1(S)B1.5(T)

· · ·

Page 50: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 50 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

490 5:35:15.87 -5:20:40.5 M5(H) · · ·

494 5:35:15.87 -5:23:02.0 K7(H)K4-M2(LR) · · ·

502 5:35:15.89 -5:28:52.7 M2.5(H) · · ·

9114 5:35:15.89 -5:21:22.1 · · · · · ·

9116 5:35:15.91 -5:24:31.0 M5.5-M7(H) · · ·

9118 5:35:15.93 -5:24:17.7 cont+emis(H) cont+emis

496 5:35:15.94 -5:22:21.0 K7e(H)K-M(LR) · · ·

9119 5:35:15.94 -5:22:34.1 M2.5:e(H) M4-M6e

487 5:35:15.95 -5:14:59.1 K6(H)K5(Ste) · · ·

499 5:35:15.95 -5:23:49.7 K0:e(H)G5:(HT)G4-

K5(LR)K3(Ste)M0.5+M2(Dae)

· · ·

493 5:35:15.96 -5:16:57.7 · · · M3.5

503 5:35:15.99 -5:23:52.8 F2-F7e(H)K0-K7(LR) · · ·

497 5:35:16.00 -5:21:09.9 <=K5(P) K3-K6

500 5:35:16.00 -5:21:47.0 M5.5(H) · · ·

9122 5:35:16.01 -5:20:21.0 M1.5(H) M4.5e

514 5:35:16.02 -5:39:15.1 G6(H)G8IV-V(Petal) · · ·

504a 5:35:16.06 -5:20:36.7 · · · · · ·

504b 5:35:16.06 -5:20:36.6 K2-K4(Sam) · · ·

9124 5:35:16.06 -5:25:50.8 M4(H) · · ·

1863b 5:35:16.07 -5:23:06.5 · · · · · ·

505 5:35:16.11 -5:24:10.9 M2(H) M2-M4:

1863a 5:35:16.13 -5:23:06.7 B4(Par)B3V(LA)B0V(vA)

B3(J)B3(S)B6n(T)

· · ·

3016 5:35:16.14 -5:15:48.2 · · · M4

495 5:35:16.16 -5:09:19.2 M5(H) M5

506 5:35:16.18 -5:21:10.7 · · · M5.5

9128 5:35:16.18 -5:22:55.5 M0-M3(LR) · · ·

507 5:35:16.19 -5:21:32.5 M3e(H) M4.5

509a 5:35:16.19 -5:24:55.7 · · · · · ·

509b 5:35:16.22 -5:24:55.3 · · · · · ·

9132 5:35:16.23 -5:22:37.6 M3.5(H) · · ·

3117 5:35:16.26 -5:28:33.7 · · · M6.5

517 5:35:16.27 -5:31:00.6 M4.5(H)M4.5(Sta) · · ·

518 5:35:16.28 -5:32:02.0 M5.5(H) · · ·

512 5:35:16.29 -5:23:16.8 cont(H)K0-K7(LR) · · ·

5056 5:35:16.30 -5:17:44.1 · · · · · ·

510 5:35:16.31 -5:20:25.3 M5(H) · · ·

511b 5:35:16.31 -5:22:10.1 · · · · · ·

508 5:35:16.32 -5:15:38.2 K7-M1(H) K8

9135 5:35:16.32 -5:21:09.3 M4.5(H) · · ·

511a 5:35:16.33 -5:22:09.8 M1.5-M2e,M3-M3.5(H) · · ·

Page 51: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 51 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

513 5:35:16.34 -5:22:48.8 M1.5e(H)K4-M2(LR) M2e,M3e

516 5:35:16.36 -5:25:09.6 M1.5(H) M0

515 5:35:16.37 -5:24:03.0 K4-K7(H)<M0(Sam)K4(Ste) · · ·

9138 5:35:16.37 -5:22:24.0 cont+emis(H) · · ·

9140 5:35:16.38 -5:22:21.6 >=M2(H)K-M(LR) M3e

9142 5:35:16.41 -5:21:51.0 M2.5(H) · · ·

519a 5:35:16.51 -5:22:35.1 M4(H) · · ·

1891 5:35:16.51 -5:23:22.9 O7(WSH)<09(H)O7(Par)O6:(LA)O7V(vA)

O6(J)O9(T)O6(S)

· · ·

519b 5:35:16.54 -5:22:35.6 · · · · · ·

9145 5:35:16.56 -5:20:40.7 · · · · · ·

521 5:35:16.58 -5:24:05.7 M0(H) M3.5e

520 5:35:16.60 -5:19:35.8 M0e(H) · · ·

527 5:35:16.61 -5:32:48.0 M0.5(H) · · ·

9147 5:35:16.62 -5:25:18.1 M2(H) · · ·

9148 5:35:16.62 -5:21:15.7 G-K:(H) · · ·

522 5:35:16.63 -5:17:23.3 · · · · · ·

9149 5:35:16.66 -5:21:31.1 · · · · · ·

3052 5:35:16.73 -5:20:19.9 · · · M0.5

524 5:35:16.75 -5:23:16.5 G4-K5(LR) · · ·

9151 5:35:16.75 -5:22:31.4 M4(H)K-M(LR) · · ·

523 5:35:16.78 -5:16:53.5 M4.5(H) · · ·

3031 5:35:16.78 -5:17:16.7 · · · M6-M7

526b 5:35:16.79 -5:24:04.2 · · · · · ·

526a 5:35:16.80 -5:24:04.3 K6(H)K6(E)K4III(Ham)K2-K3(Sam) · · ·

1892 5:35:16.82 -5:23:26.3 B8(Par) · · ·

529 5:35:16.88 -5:22:22.4 M0(Sam)K5-M2(LR)K5(Ste) · · ·

525 5:35:16.89 -5:17:03.2 >=M3e(H) · · ·

9153 5:35:16.91 -5:23:06.7 · · · · · ·

535 5:35:16.94 -5:25:46.9 M2.5(H) M2e,M4.5e

3055 5:35:16.95 -5:20:59.9 · · · · · ·

9155 5:35:16.96 -5:22:09.4 · · · · · ·

532 5:35:16.97 -5:22:48.5 <K7(H)K5-M2(LR) M0:

533 5:35:16.97 -5:23:00.9 M0(H)>G6(LR)K5(Ste) · · ·

531 5:35:16.98 -5:21:45.3 A0(WSH)A2V(Par)A2:V(GS)A2(T) · · ·

534 5:35:16.98 -5:23:36.9 M2e(H)K3(Ste) · · ·

528 5:35:17.00 -5:15:44.4 · · · M5e

536 5:35:17.00 -5:22:33.0 K0-K2(H)<M0(Sam)K5-M3(LR)K3(Ste) · · ·

9158 5:35:17.01 -5:22:20.9 K7(H) · · ·

5081 5:35:17.03 -5:20:12.1 · · · · · ·

537 5:35:17.05 -5:23:39.6 K8e(H)K4-M2(LR) K5e

Page 52: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 52 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

538 5:35:17.06 -5:23:34.0 K0-K2(H)K0-K7(LR)K3(Ste) · · ·

543 5:35:17.06 -5:28:58.1 · · · M0,M4-M5.5

9163 5:35:17.10 -5:21:24.0 M3.5(H) · · ·

539 5:35:17.11 -5:22:50.1 M4.5(H)K6-M4(LR) M1

540 5:35:17.11 -5:24:58.4 M5(H) M4.5

530 5:35:17.14 -5:12:39.5 M5(H) · · ·

546 5:35:17.16 -5:26:45.5 · · · M5

544 5:35:17.21 -5:21:31.7 K4-K7(H)K5:III(HT)K7(E)K4III(Ham)

K3(Sam)K4(Ste)

· · ·

542 5:35:17.22 -5:20:27.8 M3(H) · · ·

1889 5:35:17.25 -5:23:17.1 B1(Par)B0.5V(LA)B0Vp(vA)B1(J)B1(S)B1.5(T)· · ·

9171 5:35:17.28 -5:24:24.4 M0.5-M1.5(H) · · ·

548 5:35:17.35 -5:22:35.6 <=K5(H)<=K5(P)<M0(Sam)

cont+emis(CK)G4-K5(LR)

K0-K2,K2-K4

547 5:35:17.36 -5:20:15.0 M0.5(H) · · ·

549 5:35:17.36 -5:24:00.1 G4-K5(LR)K2-K7(H) · · ·

541 5:35:17.37 -5:12:29.7 M6(H) · · ·

551b 5:35:17.38 -5:25:44.5 · · · · · ·

551a 5:35:17.39 -5:25:44.5 M1(H)<M0(Sam) · · ·

555 5:35:17.41 -5:30:46.6 M4(H) · · ·

9175 5:35:17.42 -5:23:04.5 M4-M6(H)M4-M6(LR)M7(H) · · ·

9176 5:35:17.42 -5:24:14.0 M5(H) · · ·

9178 5:35:17.43 -5:23:41.4 M2.5(H)K-M(LR) · · ·

556 5:35:17.44 -5:30:25.2 · · · M3.5

5047 5:35:17.45 -5:16:56.8 · · · · · ·

545 5:35:17.47 -5:09:49.3 M5(H)M5.5(Sta) · · ·

9179 5:35:17.50 -5:24:17.5 M5e(H) · · ·

550 5:35:17.51 -5:17:40.1 K2-K3(H) · · ·

9180 5:35:17.51 -5:23:20.8 K7-K8e(H)K0-K7(LR) · · ·

9181 5:35:17.53 -5:22:51.0 K5-M2(LR) M0-M1

557 5:35:17.54 -5:25:42.7 K8(H) K8

554 5:35:17.55 -5:23:24.6 >G6(LR) · · ·

552a 5:35:17.59 -5:21:45.1 · · · K5-K6:

552b 5:35:17.60 -5:21:45.5 · · · · · ·

553a 5:35:17.60 -5:22:56.5 K3-K4(H)>G6(LR)K5(Ste)K7(Dae) · · ·

553b 5:35:17.63 -5:22:56.6 M1(Dae) · · ·

558 5:35:17.68 -5:23:41.0 <K6(H)K-M(LR) · · ·

565 5:35:17.68 -5:32:02.3 M4(H) · · ·

559 5:35:17.69 -5:24:54.1 M5.5e(H) · · ·

9187 5:35:17.69 -5:22:07.5 >=M2(H) M5.5e

9188 5:35:17.70 -5:22:51.3 K5-M2(LR) · · ·

9189 5:35:17.70 -5:25:11.2 · · · · · ·

Page 53: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 53 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9191 5:35:17.73 -5:25:40.6 M4.25(RRL) · · ·

9192 5:35:17.74 -5:24:43.0 M6.5e(H) · · ·

9194 5:35:17.77 -5:23:14.5 · · · · · ·

9195 5:35:17.79 -5:23:42.2 M4-M6(LR) M3

9196 5:35:17.80 -5:23:43.9 M3-M5(LR) M5.5

562 5:35:17.81 -5:23:15.4 M0(H)K5-M2(LR) · · ·

9197 5:35:17.81 -5:22:31.3 M2-M5:(LR) · · ·

9198 5:35:17.82 -5:24:41.0 · · · · · ·

9199 5:35:17.82 -5:24:30.4 · · · · · ·

561 5:35:17.84 -5:20:54.2 <M0(Sam) K5

571 5:35:17.86 -5:30:40.7 M0-M3e(H) · · ·

560 5:35:17.91 -5:15:32.9 · · · K5-K6,K6-K8

9201 5:35:17.91 -5:23:02.8 K8(H)K4-M2(LR) · · ·

569 5:35:17.93 -5:25:20.9 M3.5(H) M0

567 5:35:17.94 -5:22:45.4 late-G(H)K3-4(HT)K4III(Ham)K2-

K3(Sam)K5-M2(LR)K2(Ste)

· · ·

3054 5:35:17.95 -5:20:49.3 M4(H) M1.5e

579 5:35:17.96 -5:35:15.8 M3(H) · · ·

563 5:35:17.97 -5:15:38.8 K7-M0(H)M3(Sta) · · ·

564 5:35:17.97 -5:16:45.2 · · · M3

570a 5:35:17.97 -5:25:34.4 cont(H) · · ·

570b 5:35:17.97 -5:25:34.2 · · · · · ·

573 5:35:17.97 -5:26:50.6 M4.5(H) · · ·

577 5:35:17.98 -5:30:31.4 M5.5(H) · · ·

9204 5:35:17.98 -5:25:07.0 M0(H) · · ·

9206 5:35:17.99 -5:23:35.2 K6-M4(LR) M0e

9208 5:35:17.99 -5:23:35.1 · · · · · ·

566 5:35:18.00 -5:16:13.4 K8e(Sta)K7+M1.5(Dae) · · ·

576 5:35:18.00 -5:29:34.5 M1.5(H) M2

9209 5:35:18.04 -5:22:05.6 M0:(H)K5-M2(LR) G-K7

575 5:35:18.06 -5:24:01.1 · · · M4-M5e

9210 5:35:18.07 -5:24:03.3 M1(H) M4-M5.5e

9211 5:35:18.07 -5:23:30.5 cont+emis(H)K-M(LR) · · ·

568 5:35:18.08 -5:15:46.3 M3.5(H) · · ·

580 5:35:18.10 -5:28:24.8 M1e(H) · · ·

574 5:35:18.20 -5:16:34.2 M4.5(H) · · ·

581 5:35:18.20 -5:23:35.7 early-Ke(H)<M0(Sam)G4-

K3(LR)K4(Ste)

· · ·

9213 5:35:18.21 -5:24:30.2 · · · · · ·

572 5:35:18.22 -5:13:07.3 · · · M0e

582 5:35:18.22 -5:23:15.5 M2(H)K5-M3(LR) · · ·

583 5:35:18.22 -5:25:34.9 M1(H) · · ·

Page 54: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 54 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9214 5:35:18.22 -5:23:31.2 M0(H)K-M(LR) · · ·

3083 5:35:18.23 -5:24:12.9 · · · nebular

9215 5:35:18.23 -5:23:46.0 M7.5(SHC-ir) · · ·

590 5:35:18.26 -5:29:53.7 M3.5(H) · · ·

591 5:35:18.29 -5:28:46.1 M2.5(Sta) M2-M3

9219 5:35:18.29 -5:24:38.7 M2.5(H) · · ·

9220 5:35:18.32 -5:23:07.1 M4(H)M4-M5(LR) M5

588 5:35:18.33 -5:24:04.7 M3(H) · · ·

3140 5:35:18.33 -5:31:41.9 composite(Sta) K0-K2

9221 5:35:18.34 -5:24:38.8 · · · · · ·

584 5:35:18.36 -5:20:16.6 M4.5(H) · · ·

589 5:35:18.36 -5:22:37.3 K0(H)G8-K0:(HT)K1IV(Ham)M0(E) K5-

M2(LR)K3(Ste)

· · ·

9222 5:35:18.36 -5:24:26.7 · · · · · ·

586 5:35:18.38 -5:20:20.2 · · · K8-M1.5,M1.5-M3,M3-M4

9224 5:35:18.38 -5:24:26.6 M2.5(H) · · ·

9225 5:35:18.39 -5:21:44.2 M1e(H) · · ·

585 5:35:18.45 -5:16:37.8 K7(H)K2.5-K7.1(P)K3(Ste) · · ·

578 5:35:18.46 -5:08:30.8 M4.5(H) · · ·

9227 5:35:18.47 -5:25:19.6 · · · · · ·

9228 5:35:18.50 -5:24:07.3 M3e(H) · · ·

594 5:35:18.51 -5:20:42.9 M3.5(H) · · ·

9229 5:35:18.51 -5:23:57.5 · · · · · ·

587 5:35:18.52 -5:13:38.5 M2e(H) · · ·

592 5:35:18.53 -5:18:20.7 M2.5(H)M4(E) · · ·

9230 5:35:18.53 -5:23:29.1 M0(H)K-M(LR) · · ·

593 5:35:18.58 -5:16:35.4 K7(H) · · ·

9231 5:35:18.64 -5:22:31.4 cont(H) · · ·

596 5:35:18.65 -5:23:13.8 K2-K5e(H) G5-K1

595 5:35:18.67 -5:20:33.8 F8:np(HT)G0::(P)K0(Sam)K4(Ste) · · ·

5057 5:35:18.69 -5:18:01.5 · · · · · ·

9232 5:35:18.69 -5:23:56.2 M2(H)M0-M3(LR) K8-M0e,M1ef

598a 5:35:18.72 -5:22:56.7 K0-K3,K1-K5,K6(H)>G6(LR)K5(Dae) · · ·

598b 5:35:18.73 -5:22:55.7 M2(Dae) · · ·

600 5:35:18.74 -5:22:02.1 M2.5(H)K5-M2(LR)M1(SHC-ir) M1

5058 5:35:18.79 -5:18:02.8 · · · · · ·

599 5:35:18.80 -5:17:29.2 A8-F0(H) · · ·

604 5:35:18.83 -5:23:29.0 M0e(H)K4-M2(LR) <M2:

597 5:35:18.85 -5:14:45.4 M2.5(Sta) M3

603 5:35:18.85 -5:21:41.2 · · · K8

611 5:35:18.85 -5:37:33.8 · · · · · ·

Page 55: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 55 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

602 5:35:18.86 -5:20:30.8 · · · K1

601 5:35:18.89 -5:16:14.0 K3-K4(H)K2.5-

K5(P)K5(E)K2V(Ham)K3(Ste)

· · ·

9238 5:35:18.89 -5:24:17.2 MM3(H) · · ·

9239 5:35:18.90 -5:22:23.4 · · · · · ·

9241 5:35:18.91 -5:22:23.6 M3(H)K5-M3(LR) · · ·

606 5:35:18.95 -5:21:07.9 M3.3(P) · · ·

605 5:35:18.96 -5:20:52.1 K7(H) · · ·

614 5:35:19.00 -5:37:37.1 M1(H) · · ·

9243 5:35:19.00 -5:22:18.8 K7(H)K5-M2(LR) · · ·

607 5:35:19.05 -5:23:49.5 G8-K2(H)<=K5(P)>G6(LR) · · ·

9245 5:35:19.09 -5:25:03.7 K7(H) · · ·

610 5:35:19.11 -5:23:26.9 K8(H)K5-M2(LR)M1(SHC-ir) K7

608 5:35:19.13 -5:20:38.8 A5(WSH)A4-A7(H)B-A(HT)B5(P) · · ·

609 5:35:19.15 -5:20:35.7 M3(H) · · ·

9246 5:35:19.15 -5:23:06.7 · · · · · ·

9248 5:35:19.17 -5:21:43.7 · · · · · ·

9249 5:35:19.19 -5:22:35.2 · · · · · ·

5147 5:35:19.21 -5:31:03.0 · · · M6

615 5:35:19.23 -5:27:31.8 M6(H)M7(SHC-ir) · · ·

9250 5:35:19.25 -5:22:50.9 K5(H)K8-M0(H)K5-M2(LR) · · ·

612 5:35:19.29 -5:16:44.8 M3.5e(H) · · ·

613 5:35:19.29 -5:20:08.0 K2(Sam) · · ·

5040 5:35:19.33 -5:16:09.5 · · · M2.5

5041 5:35:19.42 -5:16:08.3 · · · · · ·

616 5:35:19.49 -5:21:04.7 M3.5(H) · · ·

617 5:35:19.50 -5:22:21.4 >=M6(H) M3.5

618 5:35:19.51 -5:36:51.4 · · · · · ·

621 5:35:19.57 -5:27:35.6 · · · M0-M3e

620 5:35:19.60 -5:23:57.2 K8(H) M0,M2

622 5:35:19.66 -5:24:26.4 M0-M2.5e(H)M0.5(P)<M0(Sam) · · ·

626 5:35:19.68 -5:35:35.8 M5(H) · · ·

619 5:35:19.78 -5:14:05.5 M4(H) · · ·

628 5:35:19.79 -5:30:37.3 M5(Sta) M5.5,M6.5

623 5:35:19.80 -5:21:08.3 · · · <M2

624 5:35:19.82 -5:22:21.6 late-M(H) · · ·

625 5:35:19.84 -5:24:47.8 M1(H)M6-M6.5(H) K7

633 5:35:19.86 -5:31:03.7 · · · M1-M3,M3e

632 5:35:19.87 -5:30:32.1 M5.5(H) · · ·

9256 5:35:19.93 -5:24:02.3 M2(H) · · ·

639 5:35:19.95 -5:33:53.5 M3(H)M3(Sta) M3.5

Page 56: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 56 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

630 5:35:19.99 -5:22:26.1 M5(H) cont+emis

5066 5:35:19.99 -5:18:46.5 · · · · · ·

638 5:35:20.02 -5:29:11.8 · · · M3e,M5e

9257 5:35:20.03 -5:22:33.5 · · · · · ·

631 5:35:20.04 -5:21:06.0 K7(H)<M0(Sam)K2,SB2?(Ste) · · ·

636 5:35:20.04 -5:25:37.5 M0.3(P) · · ·

634 5:35:20.08 -5:20:44.1 · · · M1-M3,M9-L3

627 5:35:20.12 -5:13:13.1 · · · K4e

637 5:35:20.13 -5:21:33.6 <M0(Sam) · · ·

629 5:35:20.14 -5:13:15.8 early-Ke(H)K5-M0e(H) K3-K5e

641 5:35:20.16 -5:26:39.0 mid-G–early-K(H)K4,SB2(Ste) · · ·

642 5:35:20.17 -5:28:41.5 M5(H) · · ·

646 5:35:20.17 -5:34:57.3 M3(H) · · ·

3075 5:35:20.18 -5:23:08.5 M2(SHC-ir) · · ·

9260 5:35:20.18 -5:25:34.1 M1(SHC-ir)M:(H) · · ·

640 5:35:20.21 -5:20:57.0 K0(Par)G0nV(HT)G5-K3:(GS) F7-

G2(Sam)G2(Ste)

· · ·

9261 5:35:20.22 -5:22:29.1 · · · M3

635 5:35:20.24 -5:13:59.5 M4.5(H) · · ·

644 5:35:20.27 -5:25:04.2 · · · · · ·

649 5:35:20.28 -5:32:16.8 M6(H)M8(SHC-ir)M2.5(Sta) · · ·

647 5:35:20.30 -5:30:39.3 M5e(H) M0.5e

654 5:35:20.34 -5:36:39.7 >=M5(H) · · ·

5152 5:35:20.34 -5:31:16.1 · · · M5:

5119 5:35:20.36 -5:26:17.3 M5.5(H) · · ·

645 5:35:20.39 -5:22:13.7 mid-K(H)K5-M2(LR) M0,M1

643 5:35:20.41 -5:17:14.5 M1(H) · · ·

648b 5:35:20.45 -5:23:29.8 M3.5(Dae) · · ·

653 5:35:20.47 -5:29:11.0 M6-M6.5(H) · · ·

648a 5:35:20.49 -5:23:30.0 M0(H)M0(Dae) · · ·

650 5:35:20.52 -5:20:52.3 · · · M3.5

9264 5:35:20.53 -5:23:31.3 · · · · · ·

652 5:35:20.54 -5:24:20.9 cont(H) · · ·

9266 5:35:20.54 -5:23:23.2 · · · · · ·

651 5:35:20.56 -5:20:43.4 M3e(Sta) · · ·

5091 5:35:20.56 -5:21:41.2 · · · · · ·

656 5:35:20.61 -5:22:55.4 M:(H)M4-M8(SHC-ir) · · ·

658 5:35:20.62 -5:24:46.3 M2e(H) · · ·

657 5:35:20.64 -5:22:45.2 M1(H) M4.5

659 5:35:20.66 -5:23:53.0 · · · M4-M6e

660 5:35:20.71 -5:21:44.3 B3(WSH)B1(H)B8IV-V(Par)

B2:Vshell(LA)B8(GS)B0Vp(J)B2(S)B8(T)

· · ·

Page 57: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 57 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9270 5:35:20.72 -5:22:31.5 · · · M2

3106 5:35:20.74 -5:26:15.8 · · · · · ·

655 5:35:20.75 -5:15:49.4 K0-K5:(H) · · ·

661 5:35:20.76 -5:21:55.0 M0(H)K5(Ste) · · ·

667 5:35:20.77 -5:37:54.2 M4.5(H) · · ·

662 5:35:20.81 -5:21:21.8 K7(H) K4-K6e

663 5:35:20.83 -5:21:30.1 M4.5(H) · · ·

665 5:35:20.92 -5:21:50.8 M:e(H) K-M1e

9271 5:35:20.94 -5:23:22.0 M0(H) · · ·

664 5:35:20.99 -5:16:37.7 <=K7(H)K5.5(P)K7:(E) · · ·

673 5:35:21.00 -5:31:21.5 K5(H)K5(Ste) K5

675 5:35:21.01 -5:33:39.3 · · · <M0

9272 5:35:21.02 -5:23:55.6 · · · · · ·

672 5:35:21.03 -5:28:08.9 K8(H) · · ·

669 5:35:21.04 -5:23:48.9 G8(H)<=K5(P)K3(CK)K1-

K2(Sam)SB2(R)K2,SB2(Ste)

· · ·

9274 5:35:21.08 -5:22:23.6 M3:(H) · · ·

9275 5:35:21.10 -5:22:26.0 cont+emis(H) · · ·

668 5:35:21.15 -5:18:21.5 · · · M4.5

674 5:35:21.15 -5:25:56.8 M0.5(H) M0

9276 5:35:21.20 -5:24:00.1 · · · M3::

9277 5:35:21.20 -5:23:33.4 M6(H)M6(SHC-ir) M4.5

682 5:35:21.22 -5:33:17.5 M2(H) · · ·

666 5:35:21.26 -5:09:16.1 G1(WSH)G0(Par)F9IV(vA)K2Ve(D)F8-

G0 III-IV,V(LDW,J,M)G0III(W)

· · ·

680 5:35:21.26 -5:27:38.6 · · · M3,M5

9278 5:35:21.26 -5:21:59.7 · · · · · ·

9280 5:35:21.26 -5:22:59.5 M3(H)M1.5-M4(SHC-ir) · · ·

678 5:35:21.28 -5:24:57.2 K1-K2(Sam)K4(Ste) · · ·

681b 5:35:21.30 -5:23:46.0 M3.5(Dae) · · ·

670 5:35:21.31 -5:12:12.7 G8:(WSH)G0-2IV-III(M)G0-

G2III(LDW)G6IV(SBB)

· · ·

679 5:35:21.32 -5:24:11.5 M0.5(H)K7:(P) M0

681a 5:35:21.35 -5:23:45.5 K7(P)M1(Dae) · · ·

9283 5:35:21.37 -5:22:16.4 M1.5(H) · · ·

671 5:35:21.38 -5:09:42.4 M2(H) · · ·

683 5:35:21.39 -5:26:43.9 K6(H)K5(Ste) · · ·

685 5:35:21.49 -5:23:16.7 M3.5(H) · · ·

684 5:35:21.56 -5:21:05.8 M:e(H) cont+emis

676 5:35:21.57 -5:09:39.0 K5(H) · · ·

677 5:35:21.57 -5:09:49.8 M3(H) M4

688 5:35:21.62 -5:26:57.5 · · · M5.5:

689 5:35:21.62 -5:27:14.4 M5.5(H)M6(SHC-ir) · · ·

Page 58: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 58 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

686 5:35:21.63 -5:17:19.3 · · · M1

700 5:35:21.63 -5:34:58.4 M2.5(Sta) M3

690 5:35:21.66 -5:25:26.3 M0(H) · · ·

9285 5:35:21.66 -5:23:26.0 M5.5(H) · · ·

687a 5:35:21.69 -5:21:47.0 M1:(H)M2.5(Dae) · · ·

687b 5:35:21.70 -5:21:46.8 M2(Dae) · · ·

701 5:35:21.71 -5:34:46.8 G8-K0e(H)K6(CK) · · ·

695 5:35:21.72 -5:26:44.3 M2.8(P)M2(H) · · ·

9287 5:35:21.72 -5:23:48.3 <M2(H) · · ·

693 5:35:21.78 -5:23:10.7 M1.5(H) · · ·

694 5:35:21.78 -5:23:39.1 K5-K7(H) · · ·

698 5:35:21.80 -5:23:53.9 K3(H)G6-K3(H)K4(Ste) · · ·

697 5:35:21.84 -5:22:08.3 M2(H) · · ·

9292 5:35:21.88 -5:23:55.4 M1(H) · · ·

9293 5:35:21.88 -5:22:41.2 M0-M5(H) M0.5

696a 5:35:21.89 -5:17:03.5 · · · M4.5,M5-M5.5

699e 5:35:21.89 -5:21:28.6

9294 5:35:21.89 -5:23:06.7 · · · · · ·

691 5:35:21.90 -5:15:01.3 M4(H)M3.5(Sta) · · ·

692 5:35:21.92 -5:14:27.8 M2-3(H) · · ·

702 5:35:21.93 -5:28:27.1 M3.5(H) · · ·

9296 5:35:21.94 -5:23:07.6 M5(SHC-ir) · · ·

696b 5:35:22.01 -5:17:04.9 · · · · · ·

704 5:35:22.06 -5:28:15.1 M1(H)M0.5e(Sta) K8

3116 5:35:22.07 -5:28:10.4 · · · M6

3121 5:35:22.08 -5:28:55.6 · · · · · ·

5179 5:35:22.10 -5:24:32.7 · · · · · ·

9297 5:35:22.11 -5:22:34.2 K7(H) · · ·

707 5:35:22.18 -5:24:24.8 K2-K3(H)<K7(P)K4,SB2(Ste) · · ·

9298 5:35:22.19 -5:22:13.0 M5(H) · · ·

709 5:35:22.20 -5:26:37.2 M0.5(H)K7+K7(Dae)M0.5+M0.5(C) · · ·

711 5:35:22.23 -5:28:36.4 M6(H)M7:(SHC-ir) · · ·

706 5:35:22.25 -5:20:29.3 K3(WSH)K2-K4(Sam)K4(Ste) · · ·

3034 5:35:22.26 -5:18:08.6 · · · M5

715 5:35:22.28 -5:31:16.8 M6(H)M5(E) · · ·

719 5:35:22.29 -5:35:26.8 M4-M6(H) M4

9299 5:35:22.30 -5:22:18.4 M4-M5(H) · · ·

710 5:35:22.31 -5:24:14.0 M0.5-M1.5(H)M0.1(P)K5(Ste) · · ·

9300 5:35:22.32 -5:21:42.0 · · · · · ·

722 5:35:22.35 -5:33:55.9 M4.5(H) M4

Page 59: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 59 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

716 5:35:22.37 -5:27:28.2 M4.5e(H) · · ·

703 5:35:22.40 -5:08:05.0 · · · M0e

713 5:35:22.40 -5:25:09.3 · · · M3.5

712 5:35:22.44 -5:22:01.0 K2-K4(H)<K7(P) K5-K6

705 5:35:22.45 -5:09:11.0 late-K::(H) · · ·

718 5:35:22.46 -5:25:45.0 · · · · · ·

720 5:35:22.49 -5:26:11.5 · · · M2

721 5:35:22.53 -5:23:43.7 <=K7(H)M0(E)<M0(Sam) · · ·

9302 5:35:22.53 -5:23:02.2 · · · · · ·

708 5:35:22.55 -5:08:00.7 · · · K8

714 5:35:22.61 -5:14:11.5 · · · M3

5007 5:35:22.61 -5:13:28.2 · · · M5.5

725 5:35:22.63 -5:36:57.2 · · · M1:

717 5:35:22.66 -5:15:08.6 M2.5(H) M4.5

9303 5:35:22.66 -5:21:37.6 · · · · · ·

3023 5:35:22.71 -5:16:13.9 · · · M1

3089e 5:35:22.74 -5:25:17.6 · · · nebular+emisf

9304 5:35:22.75 -5:21:40.6 · · · · · ·

723 5:35:22.79 -5:23:13.3 K7-M1(H) · · ·

9305 5:35:22.79 -5:21:57.2 · · · · · ·

727 5:35:22.80 -5:31:37.1 M2(H) · · ·

724 5:35:22.82 -5:25:47.6 · · · M5.5

9307 5:35:22.90 -5:22:28.2 K:(H) · · ·

728 5:35:22.91 -5:32:28.9 M1(H) · · ·

1993 5:35:22.93 -5:24:57.6 B0(WSH)B0-B2(H)O9.5V(Par)O9.5(LA)

O9(S)O9V(vA)O9V(J)

· · ·

5008 5:35:22.93 -5:13:39.8 · · · M1

726 5:35:22.96 -5:22:41.7 K5-K7(H) K3-M0

729 5:35:23.04 -5:29:41.4 M4(H) · · ·

3105 5:35:23.11 -5:26:15.1 · · · M:

5009 5:35:23.12 -5:13:43.4 · · · M6-M7

730 5:35:23.21 -5:21:35.7 · · · M3.5,M2.5-M3.5

734 5:35:23.21 -5:28:33.8 · · · M7-M8.5

3100 5:35:23.24 -5:25:54.3 · · · M2:

9309 5:35:23.24 -5:22:29.5 · · · · · ·

735 5:35:23.31 -5:28:10.0 M3.5,M4(H) · · ·

732 5:35:23.32 -5:21:25.4 K5-M0.5e(H) · · ·

733 5:35:23.38 -5:18:50.8 M0.5(H) · · ·

731 5:35:23.43 -5:10:51.8 K8(H)K5.5-M0(P)M0:(E) · · ·

5027 5:35:23.49 -5:15:23.3 · · · M6.5

736 5:35:23.52 -5:18:57.2 M0(H) M0.5

Page 60: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 60 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

3155 5:35:23.52 -5:34:23.2 · · · M3.5,M4.5

737 5:35:23.59 -5:25:26.3 · · · M3-M3.5e

738 5:35:23.64 -5:23:31.9 K5(H) K6-K7

741 5:35:23.65 -5:24:57.4 · · · M5

743 5:35:23.65 -5:26:26.9 M3(H) · · ·

740 5:35:23.66 -5:23:46.3 M1(H)<K7(SHC-ir) · · ·

742 5:35:23.71 -5:23:19.8 M3e(H) · · ·

739 5:35:23.75 -5:18:40.0 M2e(H) · · ·

9311 5:35:23.76 -5:22:14.0 · · · · · ·

5131 5:35:23.77 -5:28:04.2 · · · · · ·

745 5:35:23.78 -5:24:16.9 · · · emis?f

744 5:35:23.79 -5:23:34.1 M1e(H) M1e

747 5:35:23.83 -5:30:47.2 K0(WSH)K1(Sam)K3(S)G8(S)K1(Ste) · · ·

9312 5:35:23.93 -5:21:19.0 · · · <K7e

746 5:35:23.95 -5:19:07.7 M3.5(H) · · ·

9313 5:35:23.96 -5:23:01.3 · · · · · ·

3041 5:35:23.97 -5:18:38.8 · · · M4.5-M6

3087 5:35:23.99 -5:25:09.7 M1(H) · · ·

748b 5:35:24.11 -5:21:33.1 · · · · · ·

748a 5:35:24.13 -5:21:33.2 M3(H) · · ·

9316 5:35:24.15 -5:21:55.6 M4.5(H) · · ·

750 5:35:24.24 -5:25:18.6 K4-K5e(H)K0-K2(Sam)K6(Ste) · · ·

753 5:35:24.24 -5:29:57.1 M2(H) · · ·

755 5:35:24.31 -5:28:44.0 M6.5(H) · · ·

3101 5:35:24.34 -5:26:00.2 · · · · · ·

9317 5:35:24.40 -5:22:33.7 · · · · · ·

756 5:35:24.42 -5:24:39.7 M0e(H)K7(H)K6(Ste) · · ·

758 5:35:24.45 -5:26:31.3 M4-M4.5e(H)M5.3(P)M4(E) · · ·

749 5:35:24.47 -5:11:58.3 · · · M4

751 5:35:24.47 -5:17:00.0 M1e(H) · · ·

757 5:35:24.47 -5:24:01.0 · · · M1-M3:

759 5:35:24.50 -5:25:01.5 M1e(H) · · ·

760b 5:35:24.50 -5:19:09.4 · · · · · ·

752 5:35:24.59 -5:11:29.7 K6e(H) M1e

754 5:35:24.63 -5:11:58.5 · · · M3.5

760a 5:35:24.63 -5:19:09.7 M3.5e(H) · · ·

761 5:35:24.66 -5:22:42.6 M6:(H) M4.5

762 5:35:24.69 -5:24:35.7 M0e(H) K8,M0e

763 5:35:24.69 -5:28:25.4 M5(H) M4.5-M6

9319 5:35:24.76 -5:21:34.4 · · · · · ·

Page 61: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 61 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

9320 5:35:24.85 -5:21:57.7 K6(H) · · ·

764 5:35:24.88 -5:25:10.1 M5(SHC-ir) M3

772 5:35:24.95 -5:34:44.8 K:(H) · · ·

768 5:35:25.07 -5:23:53.8 cont+emis(H) · · ·

769 5:35:25.08 -5:23:46.6 K2-K4(Sam)K5(Ste) · · ·

766b 5:35:25.10 -5:22:59.4 · · · · · ·

766a 5:35:25.11 -5:22:59.4 K1-K4(H)<M0(Sam) · · ·

770 5:35:25.12 -5:22:24.9 M1.5-M2.5(H) · · ·

773 5:35:25.20 -5:24:57.1 <M1e(H) cont+emis

767 5:35:25.22 -5:15:35.9 M2.5e(H) · · ·

765 5:35:25.23 -5:09:27.7 M3-3.5(H) · · ·

3128 5:35:25.23 -5:29:51.5 · · · M5

778 5:35:25.25 -5:33:21.1 M4(H)M5.5(Sta) · · ·

775 5:35:25.35 -5:24:11.3 M1:(H) · · ·

3095 5:35:25.36 -5:25:29.5 M5(SHC-ir) · · ·

771 5:35:25.40 -5:10:48.2 K3(H) · · ·

3079 5:35:25.43 -5:23:33.2 · · · · · ·

776a 5:35:25.45 -5:21:51.5 M0e(Sta) K7-K8,K8

777 5:35:25.47 -5:21:35.0 K6(H) · · ·

781 5:35:25.47 -5:34:02.5 M5(H) · · ·

776b 5:35:25.49 -5:21:51.4 · · · · · ·

9326e 5:35:25.52 -5:23:01.0

783 5:35:25.54 -5:34:04.6 · · · M3-M4,M4.5

784 5:35:25.61 -5:30:19.6 · · · · · ·

774 5:35:25.65 -5:07:57.2 M3.5(H) · · ·

5059 5:35:25.65 -5:18:04.2 · · · M6.5-M7

787 5:35:25.66 -5:30:20.7 M0.5(H) · · ·

788 5:35:25.68 -5:30:38.0 M4(H) M5

782 5:35:25.70 -5:23:09.4 K8e(H) K6-K7e

789 5:35:25.71 -5:29:35.3 M3,M4,M5III(H)M5e(Sta) · · ·

779 5:35:25.73 -5:09:49.5 K0IV-V(Par)K0-K4(P)K0(GS) · · ·

786 5:35:25.73 -5:26:41.6 M0(H)M1.0(P)M0(E) · · ·

780 5:35:25.85 -5:07:56.5 M1.5(H) · · ·

792 5:35:26.00 -5:25:47.7 K8(H)M0.1(P) · · ·

785 5:35:26.05 -5:08:38.0 · · · M1.5,M2,M3

791 5:35:26.05 -5:21:21.1 · · · K3-K6,K8-M1

793 5:35:26.16 -5:20:06.2 · · · K6

3069 5:35:26.17 -5:22:57.0 M5-M6(H) <M3

796 5:35:26.18 -5:30:18.0 M2.5e(H) · · ·

795 5:35:26.20 -5:27:36.5 G6(H)K1:(WSH)K0-K3(P)K0(E) G3IV-

V(Petal)G5IV(Ham)K0(Ste)

· · ·

Page 62: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 62 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

3090 5:35:26.20 -5:25:20.3 M4(H) M6

790 5:35:26.29 -5:08:40.0 G8(H)K2:(WSH)K0-

K5.5(P)K2(E)K1eIII-IV(W)

· · ·

798 5:35:26.30 -5:27:43.8 M3.5(H) M0

794 5:35:26.33 -5:15:11.3 G9IV-V(Petal) · · ·

799 5:35:26.34 -5:25:40.0 G5(Par)G0III(HB)G-

K:(GS)K1,M3(Sam)K2(Ste)

· · ·

800 5:35:26.41 -5:23:02.2 K4-K5,M0-M2:(H) · · ·

2031 5:35:26.42 -5:25:00.6 B1(WSH)B2-

B5(H)B1V(Par)B0.5V(LA)B1V(vA)

B1V(J)B1(S)B2(T)

· · ·

3021 5:35:26.42 -5:16:12.3 · · · M1.5

3096 5:35:26.43 -5:25:31.4 · · · K0-K2::

802 5:35:26.45 -5:30:16.4 · · · M6

797 5:35:26.48 -5:17:56.6 · · · K6

801 5:35:26.56 -5:17:53.3 · · · M3

3027 5:35:26.75 -5:16:45.0 · · · M3.5

803 5:35:26.85 -5:11:07.4 G3:IV-V(Petal) · · ·

806 5:35:26.93 -5:24:48.1 M6.5(H)M7-M8(H)M5.5(SHC)M6.5(SHC-

ir)

· · ·

807 5:35:26.95 -5:24:00.6 M6(H) M3.5,M5

804 5:35:26.98 -5:13:14.3 G3IV-V(Petal) · · ·

805 5:35:27.04 -5:15:44.9 · · · M5.5,M6-M7

809 5:35:27.12 -5:31:35.2 cont(H) F5-K5

812 5:35:27.21 -5:30:24.7 M5.5(Sta) M5

810 5:35:27.29 -5:23:36.6 K4(Sam) · · ·

813 5:35:27.43 -5:26:28.1 K8(H)M0.1(P)M0(E)K5IV(Ham)K5(Ste) · · ·

811a 5:35:27.45 -5:17:09.9 M0(H) · · ·

808 5:35:27.46 -5:09:44.2 · · · M2e

811b 5:35:27.47 -5:17:11.7 · · · · · ·

814 5:35:27.49 -5:28:35.0 · · · M1-M2

815 5:35:27.49 -5:27:25.8 M3(H)M3.2(P) · · ·

818 5:35:27.53 -5:35:19.7 K8V(D) · · ·

5013 5:35:27.53 -5:13:56.2 · · · M3.5-M5.5

817 5:35:27.55 -5:28:30.9 M4.5(P) · · ·

3119 5:35:27.71 -5:28:51.4 · · · M7

816 5:35:27.72 -5:18:04.8 M1(H) · · ·

3077 5:35:27.78 -5:23:32.7 · · · · · ·

823 5:35:27.88 -5:28:02.0 M5(H) · · ·

819 5:35:27.92 -5:16:57.3 M3.5(H) M3.5-M4

824 5:35:27.97 -5:29:31.0 Ke(H)K3e(Sta) K4-K6e

821 5:35:28.03 -5:17:20.3 M4(H) · · ·

825 5:35:28.12 -5:23:06.5 M3e(H) · · ·

820 5:35:28.14 -5:10:13.8 M2e(H) · · ·

822 5:35:28.16 -5:11:37.6 M2(H) · · ·

Page 63: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 63 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

5035 5:35:28.17 -5:15:50.9 · · · early-M::

826 5:35:28.20 -5:24:58.1 K6-K8e(H) K5e

832 5:35:28.31 -5:37:20.1 · · · M5.5

827 5:35:28.34 -5:17:54.5 M1(H) · · ·

828 5:35:28.34 -5:18:23.1 M4(H) · · ·

830 5:35:28.36 -5:25:03.4 M1.5(H)M4(E) · · ·

829 5:35:28.40 -5:19:02.2 M3(H) · · ·

831 5:35:28.42 -5:26:20.1 A0(WSH)A0(Par)B9.5V(LA)A0V(vA)

A0V(J)A0V(M)A0n(T)

· · ·

833 5:35:28.59 -5:31:26.4 G:(H) late-K-M:

834 5:35:28.92 -5:16:18.5 M0e(Sta) K8e

835 5:35:28.92 -5:35:06.9 M3(H) · · ·

836 5:35:29.09 -5:29:10.3 M0(H) · · ·

838 5:35:29.33 -5:25:46.3 M4(H) · · ·

837 5:35:29.44 -5:16:33.5 M0(H)M1(E) · · ·

3042 5:35:29.47 -5:18:45.6 · · · · · ·

3097 5:35:29.50 -5:25:37.2 · · · M6

839 5:35:29.57 -5:24:56.9 M1(H) · · ·

843 5:35:29.67 -5:31:12.2 M2(H) · · ·

3129 5:35:29.69 -5:30:24.6 · · · M3-M3.5,M3-M4e

3019 5:35:29.83 -5:16:06.3 · · · M3.5

844 5:35:29.84 -5:23:55.5 M1.5(H) M2

847 5:35:29.84 -5:32:53.4 K3(WSH)G8(S) · · ·

845 5:35:29.85 -5:23:48.4 M2e(H) M2e

840 5:35:29.88 -5:12:10.5 M5(H) · · ·

841 5:35:29.97 -5:12:27.6 M4e(H)M5e(Sta) · · ·

842 5:35:30.09 -5:09:09.5 M5.6(P) · · ·

846 5:35:30.13 -5:14:18.7 M4.5(H) · · ·

848 5:35:30.27 -5:25:51.6 M3.5(H) · · ·

5012 5:35:30.29 -5:13:52.5 · · · <K5

849 5:35:30.33 -5:27:37.0 M3(H) · · ·

850 5:35:30.41 -5:25:38.6 K8e(H) · · ·

853 5:35:30.44 -5:28:11.3 M3.5(H) M4.5

856 5:35:30.44 -5:34:38.7 · · · M5

852 5:35:30.47 -5:24:23.1 · · · · · ·

855 5:35:30.49 -5:28:30.5 M2.5(H)M1.8(P) · · ·

5051 5:35:30.54 -5:17:15.2 · · · · · ·

858 5:35:30.56 -5:31:55.8 · · · K1-K5

851 5:35:30.62 -5:15:16.4 · · · M5.5

860 5:35:30.66 -5:27:16.7 M3.5(H)M3.7(P)M4:(E) · · ·

857 5:35:30.67 -5:25:11.1 M3(H) · · ·

Page 64: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 64 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

854 5:35:30.69 -5:18:07.2 · · · M1.5,M2-M4

859 5:35:30.71 -5:24:31.2 M5(H)M8(SHC-ir) M3

863 5:35:30.80 -5:30:36.1 M3.5(H) M4-M5

861 5:35:30.89 -5:18:18.1 M3.5(H) M3.5

3092 5:35:30.93 -5:25:23.5 · · · M3.5

865 5:35:30.95 -5:25:44.0 M5(H) · · ·

862 5:35:31.01 -5:18:45.3 M6e(H) · · ·

3061 5:35:31.01 -5:22:01.2 · · · K6-K8

864 5:35:31.19 -5:12:28.1 M3(H) · · ·

5071 5:35:31.21 -5:19:32.0 · · · M5.5

868 5:35:31.23 -5:23:40.0 K3-K5(H) · · ·

867 5:35:31.25 -5:18:56.0 K8Ve(D)M1:(B)K6(Ste)M1+M2.5(Dae)M0.5+M1.5(C)· · ·

866 5:35:31.28 -5:15:33.2 K1IV(Ham)K3(Ste) · · ·

5126 5:35:31.30 -5:27:43.3 · · · M4-M6

869 5:35:31.37 -5:20:17.3 M1.5(H) M4.5-M6

873 5:35:31.38 -5:33:08.9 F5(WSH)A8(Par)F6(S)F2III-IV(vA) F4-

8III,V(J)A8(T)

· · ·

2074 5:35:31.38 -5:16:02.6 B2(WSH)B0-

B2(H)B1V(Par)B0.5V(LA)B1V(vA)

B1V(J)B1(S)B1.5(T)

· · ·

872 5:35:31.40 -5:28:16.4 M5(H) M5.5

2085 5:35:31.45 -5:25:16.2 B5(WSH)B5(Par)B5V(LA)B4V(vA) B3-

4V(J)B5V(S)B6n(T)

· · ·

870 5:35:31.54 -5:16:36.8 · · · M3.5e

3010 5:35:31.56 -5:15:23.5 · · · M3

871 5:35:31.61 -5:16:58.3 · · · M3,M3.5

3011 5:35:31.65 -5:15:23.5 · · · · · ·

878 5:35:31.68 -5:30:04.1 M6(H) M6.5

875 5:35:31.74 -5:16:40.1 · · · M5.5e

874 5:35:31.76 -5:14:52.5 · · · G0-K2

880 5:35:31.79 -5:29:34.0 M4(H) M4

876 5:35:31.94 -5:09:27.9 K3(WSH)K6(CK)K4-

M0eIV(W)M0.5+M1.5(Dae)

· · ·

5156 5:35:31.94 -5:31:47.6 · · · M8

877 5:35:31.95 -5:15:59.8 · · · M3.5

879 5:35:32.00 -5:16:20.0 <=M1(H)K7e(Sta) · · ·

881 5:35:32.16 -5:11:58.0 · · · M5

882 5:35:32.16 -5:16:03.7 · · · K7-M1e:

886 5:35:32.16 -5:28:51.4 · · · K1-K4,K3-K8

5043 5:35:32.31 -5:16:26.8 · · · · · ·

883 5:35:32.32 -5:18:08.0 M1(H)M1(Sta)SB2(R) K8

887 5:35:32.38 -5:31:11.1 <K0(WSH)F9IV-V(M)G9:e:IV-

V(Petal)M1(B)K4(Ste)

· · ·

884 5:35:32.40 -5:14:24.8 · · · M2-M2.5

885 5:35:32.42 -5:15:06.8 · · · M0-M1

889 5:35:32.50 -5:29:02.0 · · · G6-K1

Page 65: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 65 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

890 5:35:32.51 -5:26:10.4 M1.5(H) · · ·

3014 5:35:32.65 -5:15:51.3 · · · M3-M6

888 5:35:32.68 -5:16:34.9 · · · · · ·

891 5:35:32.79 -5:17:38.5 M0-M3(H) · · ·

5060 5:35:32.84 -5:18:19.8 · · · M7-M8

895 5:35:32.87 -5:30:21.3 · · · K6

892 5:35:32.90 -5:16:05.3 late-K:(H) · · ·

894 5:35:33.10 -5:17:34.1 · · · M5,M5-M6

893 5:35:33.15 -5:14:10.7 M2.5(Sta) M3

3018 5:35:33.21 -5:16:05.4 · · · K7,M1

5076 5:35:33.25 -5:19:57.8 K7-M0(H) · · ·

896 5:35:33.57 -5:15:23.4 · · · · · ·

898 5:35:33.62 -5:28:50.6 M5(H) M5

899 5:35:33.81 -5:32:25.4 · · · M1

897 5:35:33.82 -5:17:11.1 · · · M4:

900 5:35:33.89 -5:38:21.5 M3.5(H) · · ·

901 5:35:34.21 -5:27:18.3 · · · M2.5,M3.5,M3.5

904 5:35:34.30 -5:33:21.6 M1(H) · · ·

902 5:35:34.36 -5:26:59.6 · · · M7

5105 5:35:34.47 -5:23:31.8 · · · · · ·

3002 5:35:34.51 -5:13:07.9 · · · M6

903 5:35:34.60 -5:15:52.9 · · · M3-M4.5e

905 5:35:34.64 -5:27:15.1 · · · M3,M4-M5,M3.5-M5

906 5:35:34.71 -5:34:38.3 M3(H) · · ·

907 5:35:34.91 -5:29:14.3 K1-K4(H)K5,SB2?(Ste) · · ·

910 5:35:35.11 -5:27:54.7 M2.5(H) M2

909 5:35:35.13 -5:21:23.6 · · · M4e

913 5:35:35.15 -5:33:49.3 K1-K5e(H) · · ·

3159 5:35:35.18 -5:35:02.5 K:(H) · · ·

912 5:35:35.21 -5:26:55.0 M3(H) · · ·

911 5:35:35.27 -5:21:27.2 K4(CK)K9(Ste) · · ·

908 5:35:35.33 -5:11:11.5 M4.5(H) · · ·

914 5:35:35.59 -5:15:43.4 M1-M2(H)M3(E) · · ·

916 5:35:35.62 -5:29:36.5 · · · M4-M5

918 5:35:35.65 -5:39:09.3 M3(Sta) M3

5085 5:35:35.70 -5:20:33.2 · · · M1

915 5:35:35.77 -5:12:20.6 A1(WSH)B9(Par)A0Vn(?)A0:V+shell(LA)

A0V(J)A0(S)

· · ·

5086 5:35:35.93 -5:20:34.0 early-K(H) · · ·

917 5:35:35.99 -5:12:25.3 G6-K2e(H) · · ·

919 5:35:36.00 -5:38:43.7 M3(H) M4

Page 66: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 66 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

5025 5:35:36.17 -5:15:01.2 · · · · · ·

5083 5:35:36.22 -5:20:20.4 · · · · · ·

922 5:35:36.35 -5:32:54.8 M1.5(H) M4

921 5:35:36.36 -5:31:37.8 M4.5e(Sta) M4e

923 5:35:36.46 -5:34:11.3 M1(H) · · ·

3049 5:35:36.51 -5:20:09.3 · · · M3.5,M5.5-M6

924 5:35:36.55 -5:34:19.4 K:(H) K3-M0

5067 5:35:36.67 -5:18:51.1 · · · M6

920 5:35:36.71 -5:10:00.4 · · · · · ·

926 5:35:36.74 -5:37:42.2 K7(H) · · ·

927 5:35:36.83 -5:37:47.2 M4(H) · · ·

925 5:35:37.15 -5:10:29.6 M3(Sta) M2.5-M3.5

928 5:35:37.39 -5:26:41.3 · · · · · ·

930 5:35:37.57 -5:27:16.4 >K5-K7(H) M3.5

929 5:35:37.59 -5:19:44.3 M5.5(H) · · ·

933 5:35:38.03 -5:28:21.4 M4(H) · · ·

931 5:35:38.09 -5:18:11.1 · · · mid-K

934 5:35:38.12 -5:28:33.5 M3e(H) · · ·

932 5:35:38.19 -5:14:19.0 M3-3.5(H) · · ·

936 5:35:38.34 -5:28:34.6 M3.5(H) · · ·

939 5:35:38.59 -5:27:36.9 M4.5(H) M2.5-M3.5

935 5:35:38.61 -5:09:56.6 M6.5(Sta) M6

937 5:35:38.70 -5:16:59.3 M6(H) · · ·

938 5:35:38.84 -5:12:42.0 K2(H) · · ·

943 5:35:38.93 -5:36:33.6 M5(H) · · ·

941 5:35:38.99 -5:21:01.9 K8-M0.5(H) · · ·

940 5:35:39.06 -5:08:56.2 M2II-III(?)M3:eII,III?(W) · · ·

942 5:35:39.06 -5:20:25.9 M3(H) · · ·

944 5:35:39.64 -5:27:50.3 M4(H) M3.5

3012 5:35:39.85 -5:15:49.3 · · · M5.5

5121 5:35:39.96 -5:27:09.3 · · · K2-K5

946 5:35:40.04 -5:26:01.2 M3.5(H) · · ·

947 5:35:40.06 -5:27:59.0 M2:(H) M3.5

945 5:35:40.16 -5:17:29.4 B6(H) · · ·

950 5:35:40.49 -5:27:02.1 · · · · · ·

948 5:35:40.60 -5:12:18.9 <=K4(H) · · ·

949 5:35:40.76 -5:09:01.4 late-K:(H)M0-M4(Her)M1(B) · · ·

952 5:35:40.84 -5:32:01.9 · · · M2.5

951 5:35:40.89 -5:22:02.4 M4e(H) M2

955 5:35:41.28 -5:38:30.6 · · · M4.5,M5

Page 67: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 67 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

954 5:35:41.31 -5:27:50.4 M3(H) M3-M3.5e

953 5:35:41.35 -5:12:59.2 M2(H) · · ·

956 5:35:41.36 -5:38:34.0 · · · M4.5

5039 5:35:41.56 -5:16:05.5 K:(H) · · ·

959 5:35:41.97 -5:28:12.7 K0(WSH)K1eIV(Par)K1eIV-V(GS)K0-

1eIV(J)K3(Ste)K3+K3(Dae)

· · ·

957 5:35:41.99 -5:10:11.5 K6-K8(H) · · ·

3001 5:35:42.05 -5:12:59.9 M5(Sta) M5.5

958 5:35:42.10 -5:20:05.5 M4(H) M5

960 5:35:42.27 -5:15:08.0 M0.5e(H) · · ·

962 5:35:42.47 -5:27:33.0 K6(H) · · ·

966 5:35:42.60 -5:33:49.1 M4(H) M5.5

964 5:35:42.61 -5:26:08.3 M5.5(H) · · ·

3107 5:35:42.62 -5:26:33.6 · · · M4,M6

965 5:35:42.66 -5:25:45.1 M3.5(H) M6-M8:

961 5:35:42.75 -5:11:54.8 K6-K7(H)SB2(R) · · ·

969 5:35:42.98 -5:23:02.5 M2e(H) M1.5-M2,M2.5e

963 5:35:43.01 -5:20:13.6 K1-K2V(W)K3(S)K4IV(SBB)K5V(vA) · · ·

967 5:35:43.04 -5:13:45.5 F8IV-V(Petal)K0V(vA) · · ·

968 5:35:43.23 -5:09:17.0 K5Ve(W) · · ·

971 5:35:43.27 -5:36:28.0 K6-K8(H) · · ·

972 5:35:43.42 -5:32:44.2 M1(H) · · ·

973 5:35:43.61 -5:32:11.9 M5(H) · · ·

3030 5:35:43.67 -5:17:25.7 <=K4(H) M0.5

5109 5:35:43.77 -5:24:18.0 late-K::(H) · · ·

970 5:35:43.78 -5:09:58.8 M6.5-M7.5(H)M5.5(H) · · ·

5021 5:35:43.79 -5:14:39.3 · · · · · ·

974 5:35:44.22 -5:36:40.4 M5.5,M6.5(H)M5.5(SHC)M6-M8(SHC-ir) · · ·

976 5:35:44.35 -5:37:34.1 · · · G6-K1,K4-K7

975 5:35:44.54 -5:32:15.7 K3:(S) · · ·

979 5:35:44.57 -5:36:33.9 M5.5(H) M5

978 5:35:44.58 -5:32:55.1 >M4(H) · · ·

980 5:35:44.83 -5:24:34.5 M4(H) M4.5

977 5:35:44.94 -5:15:20.3 K:(H) K:

982 5:35:45.38 -5:28:10.8 M1e(H) M1.5-M2e

981 5:35:45.40 -5:20:36.9 M0(H)K5,SB2?(Ste) · · ·

984 5:35:45.57 -5:28:22.9 M3(H) · · ·

983 5:35:45.62 -5:18:13.8 · · · K2-K5

986 5:35:45.62 -5:34:08.0 · · · · · ·

3004 5:35:45.62 -5:13:36.4 · · · M5.5

987 5:35:46.03 -5:17:49.7 M4(H) M6

Page 68: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 68 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

985 5:35:46.10 -5:10:51.6 K7e(H) · · ·

5167 5:35:46.13 -5:34:35.8 · · · · · ·

989 5:35:46.21 -5:18:08.6 M2(H) M1.5

988 5:35:46.22 -5:15:39.9 M2e(H) · · ·

5169 5:35:46.38 -5:34:44.1 · · · · · ·

5166 5:35:46.44 -5:34:27.7 · · · · · ·

5174 5:35:46.48 -5:35:17.3 K:(H) · · ·

5175 5:35:46.58 -5:35:38.4 · · · M5

990 5:35:46.60 -5:22:24.4 M4.5(H) M4.5-M5

991 5:35:46.82 -5:16:47.0 early-K(H) F7-K0

992 5:35:47.00 -5:17:56.8 K3-M0I(H)M0(Petal)M2:(B)K3-

K5(HP)M0-M1(HP)

· · ·

993 5:35:47.22 -5:17:43.6 M5(H) · · ·

995 5:35:47.37 -5:13:18.6 M1.5(H) · · ·

994 5:35:47.41 -5:10:28.4 K5-K7(H) K7,K8e

998 5:35:47.46 -5:22:49.6 M2.5(H) M2

996 5:35:47.49 -5:12:17.6 late-K:(H) K3-K5,K6

997 5:35:47.50 -5:16:58.1 F2-F7(H) · · ·

1001 5:35:47.51 -5:34:36.0 K8,K2-K6:(H) <M0

1000 5:35:47.63 -5:19:14.5 M2e(H)M1.5(Sta) M1.5

1002 5:35:47.71 -5:37:39.8 M6e(H) · · ·

999 5:35:47.78 -5:10:30.6 K2:(WSH) · · ·

3003 5:35:47.82 -5:13:18.0 M2.5:(H) · · ·

1004 5:35:48.18 -5:31:55.9 M1(H) · · ·

1003 5:35:48.24 -5:11:10.3 · · · K6-K7

1005 5:35:48.56 -5:15:21.3 K:(H) early-M:

1006 5:35:48.71 -5:19:27.5 M3.5(H) M3.5,M4

1007 5:35:49.02 -5:15:37.9 M3(H) · · ·

5036 5:35:49.03 -5:15:53.0 G-K:(H) · · ·

5173 5:35:49.47 -5:35:16.0 · · · <M0

1008 5:35:49.49 -5:35:26.1 M0-M0.5(H) · · ·

1012 5:35:49.78 -5:32:29.3 M2.5(H) M5

5026 5:35:49.85 -5:15:13.0 K7-M0:(H) · · ·

1010 5:35:49.88 -5:18:30.9 · · · M1.5-M2e

5052 5:35:50.03 -5:17:18.2 M2(H) · · ·

1009 5:35:50.06 -5:09:46.3 GK(H) K1-K6

1011 5:35:50.10 -5:10:29.4 M5III(H) · · ·

1013 5:35:50.17 -5:21:17.0 M3e(H) · · ·

5168 5:35:50.32 -5:34:36.4 · · · <M0

1015 5:35:50.46 -5:28:34.9 A3(WSH)A3ea(Par)A5(CK)A3V(vA) B8-

A3Vp(J)B8-A3V(GS)A0:(T)

· · ·

1016 5:35:50.76 -5:16:29.3 K5(CK) · · ·

Page 69: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 69 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

1014 5:35:50.80 -5:09:29.9 M4(H) · · ·

1018 5:35:50.96 -5:33:13.1 M5.5(H) · · ·

1017 5:35:51.02 -5:15:09.2 K7(GCVS) · · ·

1019 5:35:51.76 -5:17:39.6 · · · M4.5

5029 5:35:51.85 -5:15:30.9 >M5(H) · · ·

5016 5:35:51.93 -5:14:16.9 K:(H) · · ·

1020 5:35:52.04 -5:28:47.3 K6(H)K0(Par)K0:(J)K0:(GS) · · ·

5004 5:35:52.27 -5:13:18.6 M5(H) M5

5001 5:35:52.33 -5:12:56.9 M4(H) M4

1022 5:35:52.49 -5:27:57.5 M4.5(H) M4.5-M5

1021 5:35:52.75 -5:12:59.0 K5-K6(H) · · ·

5097 5:35:52.82 -5:22:31.4 K:(H) M1.5

1023 5:35:53.14 -5:19:30.0 M2.5(H) · · ·

1024 5:35:53.63 -5:15:41.7 K2-K3(H) · · ·

5125 5:35:53.94 -5:27:38.0 M5(H) M3

1025 5:35:54.14 -5:17:10.5 M5.5 · · ·

2271 5:35:54.20 -5:37:42.8 B6(WSH)B6Veb(Par)B7eV+shell(LA)

B5V(vA)B5Vne(J)

· · ·

1026a 5:35:54.34 -5:26:44.6 M0.5e(H) · · ·

1026b 5:35:54.49 -5:26:45.5 · · · · · ·

1028 5:35:54.55 -5:21:57.8 K5-K6:(H) <K6

1030 5:35:54.64 -5:27:07.7 M2(H) · · ·

1029 5:35:54.66 -5:22:01.0 K0-K2(H) K0-K5

1027 5:35:54.75 -5:10:55.5 F7-G4(H) · · ·

1032 5:35:54.97 -5:22:35.7 M5.5(H) · · ·

1031 5:35:54.98 -5:13:15.7 F6/K3composite?(H)K1(Sta) · · ·

1033 5:35:55.43 -5:13:55.8 A0-A5(H) · · ·

1034 5:35:55.44 -5:23:43.2 M5(H) · · ·

1035 5:35:56.40 -5:16:31.9 M3(H) · · ·

1037 5:35:56.74 -5:25:26.4 K5(H) · · ·

1036 5:35:56.75 -5:19:58.0 M6(H)M6(SHC-ir) M8-M9

5115 5:35:57.36 -5:25:15.3 K:(H) · · ·

1038 5:35:57.40 -5:25:08.8 M5(H) · · ·

1039 5:35:57.66 -5:17:46.7 M5(H) · · ·

1040 5:35:57.72 -5:23:09.5 M3.5(H) · · ·

1041 5:35:58.08 -5:12:55.0 G0-5(Her) · · ·

5103 5:35:58.18 -5:23:27.0 · · · M5.5,M6

2284 5:35:58.55 -5:22:30.9 B9.5(WSH)B8V(Par)B9.5pV(LA)B8V(vA)

B9V(J)B8(S)

· · ·

1042 5:35:58.94 -5:32:53.7 M5.5(H) · · ·

5160 5:35:59.25 -5:32:59.9 late-M(H) M6

1044 5:35:59.57 -5:37:11.0 M4.5(H) · · ·

Page 70: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 70 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

1043 5:35:59.63 -5:29:43.8 K0-K2e(H) · · ·

1045 5:35:59.74 -5:29:43.8 · · · · · ·

5141 5:35:59.94 -5:30:03.2 M2-M3(H) M3.5

1047 5:36:00.30 -5:34:23.3 M4(H) M4.5

1046 5:36:00.58 -5:23:29.7 K7(H) · · ·

5014 5:36:00.64 -5:14:08.3 · · · K1-K3

1048 5:36:01.38 -5:19:10.8 M5.5(H)M5(Sta) · · ·

1050 5:36:01.82 -5:33:12.5 A2-A7(H) · · ·

1049 5:36:01.85 -5:17:36.6 K6-K7(H) · · ·

5028 5:36:02.77 -5:15:27.1 M6(H) · · ·

1051 5:36:02.82 -5:32:54.1 M3(H) · · ·

5110 5:36:03.35 -5:24:23.2 M4.5(H) · · ·

1052 5:36:03.49 -5:24:36.2 M6(H) M6

1053 5:36:03.85 -5:30:18.6 M5(H) · · ·

5015 5:36:03.97 -5:14:15.8 K:(H) · · ·

5090 5:36:05.18 -5:21:34.4 · · · K1-K2

5068 5:36:05.76 -5:18:55.9 M4.5(H) · · ·

5130 5:36:05.80 -5:28:02.6 K3-K4(H) <M3

5048 5:36:06.33 -5:17:00.8 K:(H) <K5

5053 5:36:06.34 -5:17:20.2 K8-M2(H) · · ·

5165 5:36:07.04 -5:34:18.2 M2e(H) · · ·

5151 5:36:07.24 -5:31:14.6 K:(H) F0-K4

5145 5:36:07.37 -5:30:27.3 M3.5(H) · · ·

5150 5:36:07.83 -5:31:11.7 M4.5(H) · · ·

5033 5:36:08.39 -5:15:43.7 K:(H) · · ·

5087 5:36:08.68 -5:21:02.2 M4(H) · · ·

5024 5:36:08.74 -5:14:54.5 G:(H) · · ·

5149 5:36:09.25 -5:31:09.5 M3e(H) M4e

5107 5:36:09.26 -5:24:13.0 M3.5(H) · · ·

5120 5:36:09.39 -5:26:42.6 K:(H) <M2

5128 5:36:09.63 -5:27:51.0 · · · · · ·

5123 5:36:10.04 -5:27:31.6 M3(H)M6.5(Sta) M6.5

5094 5:36:10.09 -5:22:04.9 M4.5(H) · · ·

5073 5:36:10.48 -5:19:44.9 K3(H)K1e:(GCVS) · · ·

5003 5:36:10.75 -5:13:17.5 K1(H) GK:

5072 5:36:11.30 -5:19:42.2 M2.5(H) M5.5:

5046 5:36:11.81 -5:16:54.4 M1.5:(H) <M1

5037 5:36:11.89 -5:15:55.1 · · · M4.5

5162 5:36:12.15 -5:33:29.5 M3.5(H) M3

5088 5:36:13.07 -5:21:16.3 K:(H) <K5

Page 71: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 71 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

5136 5:36:13.63 -5:28:42.2 M0(H) M4

5032 5:36:14.19 -5:15:38.5 · · · G-K6

5161 5:36:14.56 -5:33:23.8 · · · M5

5116 5:36:14.58 -5:25:49.4 M0(H)M0.5(Sta) · · ·

5030 5:36:14.94 -5:15:33.6 M3.5(Sta) M4

5163 5:36:15.20 -5:34:03.0 M4(H) · · ·

5089 5:36:15.82 -5:21:26.8 K:(H) · · ·

5069 5:36:16.18 -5:18:56.2 K1-K4(H) · · ·

5134 5:36:16.37 -5:28:15.1 K:(H) M1-M3

5099 5:36:16.48 -5:22:41.2 M4.5(H) M4.5

5011 5:36:16.95 -5:13:48.1 M5-5.5(H) · · ·

5019 5:36:18.37 -5:14:27.1 K1-K5(H) · · ·

5061 5:36:19.01 -5:18:28.6 M4.5(H) M4.5

5148 5:36:19.24 -5:31:08.2 M1.5(H) M4-M6:

5020 5:36:19.77 -5:14:38.5 M1.5(H)M1.5(Sta) · · ·

5002 5:36:19.89 -5:13:06.1 M4(Sta) M5

5137 5:36:20.35 -5:29:32.8 G:(H) · · ·

5124 5:36:20.99 -5:27:34.1 K8(H) · · ·

5082 5:36:21.30 -5:20:14.2 M3(H) M3.5

5101 5:36:21.56 -5:23:07.8 K:(H) · · ·

5054 5:36:21.83 -5:17:32.6 K5-K7(H) · · ·

5122 5:36:22.23 -5:27:22.7 · · · · · ·

5114 5:36:22.74 -5:25:10.5 M:(H) M6

5102 5:36:23.38 -5:23:19.3 M5(H) · · ·

5095 5:36:23.47 -5:22:19.8 G-K:(H) <M1

5017 5:36:23.48 -5:14:20.7 · · · K6,K7

5005 5:36:23.62 -5:13:20.1 · · · K2-K5

5006 5:36:23.93 -5:13:22.8 · · · G0-G8,K2-K4

5172 5:36:24.18 -5:35:11.6 · · · early-M:

5170 5:36:24.38 -5:34:50.1 · · · K5-K6

5154 5:36:24.63 -5:31:23.7 K:(H) · · ·

5104 5:36:25.00 -5:23:32.1 M1.5(H) M:

5070 5:36:25.17 -5:19:13.3 M3(H) M5.5

5049 5:36:25.41 -5:17:02.1 M1.5(H) M5-M6

5065 5:36:25.58 -5:18:42.0 M5(Sta) M5.5

5139 5:36:25.92 -5:29:44.1 K:(H) M1:

5045 5:36:26.24 -5:16:53.8 M4.5(H) M4

5062 5:36:26.28 -5:18:30.1 M4.5(H) M5.5

5113 5:36:26.89 -5:25:05.5 K3-K4(H) K5

5164 5:36:26.96 -5:34:12.3 >=M6(H)M5(H) · · ·

Page 72: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 72 –

Table 2—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c Newly Reported SpT d

5055 5:36:27.07 -5:17:39.1 · · · K-M1:

5111 5:36:27.18 -5:24:30.5 A0(WSH)B9V(J)B9.5V(LA) · · ·

5146 5:36:27.52 -5:30:55.6 M2.5(H) M2.5

5135 5:36:28.12 -5:28:36.5 M2.5(H) M3

5108 5:36:28.18 -5:24:17.5 G6-K0(H) · · ·

5092 5:36:28.35 -5:21:42.0 · · · · · ·

5063 5:36:28.37 -5:18:31.2 M2(H) M4.5

5093 5:36:28.44 -5:21:42.0 · · · · · ·

5018 5:36:28.72 -5:14:25.0 · · · K5

5022 5:36:28.92 -5:14:43.2 M4.5(H) · · ·

5079 5:36:29.74 -5:20:06.8 M1(H) M0.5

5153 5:36:29.98 -5:31:20.1 K:(H) · · ·

5078 5:36:30.15 -5:20:05.9 M1(Sta) K8

5118 5:36:30.16 -5:26:12.3 M0.5(H) M0,M1

5044 5:36:30.93 -5:16:28.1 M4(H) M5.5

5117 5:36:31.51 -5:25:59.8 M5(H)M7(Sta) M7-M9

aThe star numbers are those listed from Jones & Walker (1988) between #1-1053, Parenago (1954) between #1054-

2999, Prosser et al. (1994) for sources given as 9000+ the Prosser number, and Hillenbrand (1997) for sources given

as 3000, 5000, 6000 series numbers.

bJ2000.

cThe sources of the literature spectral types (SpT) are as listed in Hillenbrand (1997) with more recent additions

as detailed in the text. The codes are as follows:

B = Blanco, 1963

CK = Cohen & Kuhi, 1979

C = Correia et al., 2013

D = Duncan, 1993

Dae = Daemgen et al., 2012

E = Edwards et al., 1993

GS = Greenstein & Struve, 1946

H = Hillenbrand, 1997 and subsequent updates to electronically available table. An “e” indicates emission in the

CaII triplet lines. A “<” indicates spectral type is earlier than that listed while “>” indicates spectral type is later

than that listed.

Ham = C. Hamilton, 1994 unpublished masters thesis

Her = Herbig, quoted in Walker, 1969

HP = Herbig, private communication, 1996

HT = Herbig & Terndrup, 1986 or reference therein

J = Johnson, 1965

LA = Levato & Abt, 1976 or Abt & Levato, 1977

Page 73: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 73 –

LDW = Lallemand, Duchesne, & Walker, 1960

LR = Luhman, Rieke, et al., 2000

Luc01 = Lucas et al., 2001 (by matching given positions to known objects of similar magnitude within 2” and

translating quoted log-g=4 Teff values into a SpT using the same Teff-SpT calibration employed in H97, largely from

CK)

Luc06 = Lucas et al., 2006

M = McNamara, 1976

P = Prosser & Stauffer, private communication, 1995

Par = Parenago, 1954

Petal = Penston, Hunter, & O’Neill, 1975 or Penston, 1973

R = Rhode, Herbst, Mathieu 2001 identification of SB2’s

RRL = Riddick, Roche, Lucas 2007 (by matching given positions to known objects of similar magnitude within 2”)

S = Strand, 1958 reference (mostly to Sharpless)

Sam = A.E. Samuel, 1993 unpublished PhD thesis

SBB = Smith, Beckers, & Barden, 1983

SHC = Slesnick, Hillenbrand, & Carpenter, 2004. SHC indiates optical spectral types and SHC-ir infrared spectral

types.

Sta = Keivan Stassun, private communication, 2005, February; low dispersion spectra

Ste = Eric Stempels, private communication, 2009, March; high dispersion spectra

T = Trumpler, 1931

vA = van Altena et al., 1988

W = Walker, 1983

WLR = Weights et al., 2009 (by matching given positions to known objects of similar magnitude within 2”; method

is similar to Luc and latest types may be too late)

WSH = Wolff, Strom, & Hillenbrand, 2004

dSpectral type derived in the present study, from the Kitt Peak / WIYN data and/or the Palomar / Norris data.

Many stars were classified based on several different spectra and in the cases of disagreements multiple types are

listed.

eSeveral optically identified objects from previous studies apparently are plate defects (JW 459, JW 699) or

nebular knots (PSH 9081, PSH 9326, H97 3071, H97 3089) rather than true stellar point sources. We list them here

for completeness but these sources should be removed from future list of ONC stellar objects.

fThese sources have nebular contamination in our spectra but may include some Ca II emission contribution.

Page 74: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 74 –

Table 3. Additional ONC Spectral Types: Stars Fainter than those in Table 2

Identifier a Right Ascension b Declination b Previously Reported SpT c

[H97b] 10306 05:34:55.90 -05:21:08.5 M6.25(RRL)

[H97b] 10313 05:34:56.95 -05:21:21.9 M6.75(RRL)

[H97b] 20349 05:35:00.90 -05:21:07.3 M8(WLR)

[OW94] 013-306 05:35:01.3 -05:23:06 M7(Luc01)M9(WLR)

[H97b] 10343 05:35:01.37 -05:24:13.3 M6(Luc01)M6.5(RRL)M7.5(WLR)

[OW94] 016-319 05:35:01.6 -05:23:19 L2.5(Luc01)>M9.5(WLR)

[OW94] 016-430 05:35:01.6 -05:24:30 M9(Luc06)M9(WLR)

[H97b] 10348 05:35:01.87 -05:23:53.7 M5(Luc01)M5.75(RRL)M6.5(WLR)

[H97b] 20339 05:35:01.80 -05:21:06.7 K2(Luc01)

[H97b] 10353 05:35:02.31 -05:21:23.4 >M9.5(WLR)

[OW94] 031-524 05:35:03.1 -05:25:24 M7.5(RRL)M8(WLR)

2MASS J05350313-0525364 05:35:03.13 -05:25:36.5 M8.75(RRL)>M9.5(WLR)

[H97b] 10364 05:35:04.19 -05:20:12.0 M6.5(Luc01)M7.75(RRL)M8(WLR)

[H97b] 20296 05:35:04.44 -05:22:19.5 late-M(RRL)

2MASS J05350445-0525264 05:35:04.46 -05:25:26.5 M8.5(WLR)

[H97b] 20282 05:35:04.62 -05:22:44.8 late-M(RRL)

2MASS J05350467-0525508 05:35:04.68 -05:25:50.8 M8.5(RRL)

[H97b] 20302 05:35:04.95 -05:21:42.8 mid-M(RRL)

2MASS J05350557-0521407 05:35:05.57 -05:21:40.7 >M9.5(WLR)

[OW94] 057-247 05:35:05.7 -05:22:47 >M9(Luc06)>M9.5(WLR)

[OW94] 061-401 05:35:06.10 -05:24:00.6 M8(Luc01)>M9.5(WLR)

[HC2000] 509 05:35:06.35 -05:22:11.6 M2-M5(SHC)M2-M7(SHC-ir)

[OW94] 066-433 05:35:06.6 -05:24:33 K4.5(Luc01)

[H97b] 20270 05:35:07.06 -05:25:00.9 M7-M9(SHC)

[H97b] 10380 05:35:07.23 -05:26:38.6 M6.5(RRL)

[OW94] 073-205 05:35:07.3 -05:22:05 M6(Luc01)

[HC2000] 743 05:35:08.10 -05:23:15.2 M6:(SHC-ir)

[HC2000] 433 05:35:08.11 -05:22:37.5 M8(SHC-ir)

[HC2000] 400 05:35:08.22 -05:22:53.2 M7-M8(SHC)M9(SHC-ir)M8.5(RRL)

[HC2000] 725 05:35:08.27 -05:23:07.8 M7:(SHC-ir)

[H97b] 20335 05:35:08.31 -05:19:37.2 M7.25(Luc01)M9(WLR)

[OW94] 084-104 05:35:08.32 -05:21:02.4 L0(Luc01)>M9.5(WLR)

[HC2000] 749 05:35:08.34 -05:23:21.9 M8(SHC-ir)

[H97b] 20208 05:35:08.44 -05:23:04.9 M7(RRL)

[H97b] 10391 05:35:08.42 -05:22:30.3 M2(SHC-ir)

[OW94] 086-324 05:35:08.62 -05:23:24.4 M5.5:(SHC-ir)

2MASS J05350865-0520223 05:35:08.66 -05:20:22.4 M9.5(WLR)

[HC2000] 455 05:35:08.93 -05:22:30.0 M2-M6(SHC-ir)

[HC2000] 724 05:35:09.03 -05:23:26.3 M6:(SHC-ir)

[OW94] 092-532 05:35:09.2 -05:25:32 M7.5(Luc06)M7.5(WLR)

Page 75: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 75 –

Table 3—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c

[H97b] 20298 05:35:09.20 -05:26:05.5 M8(RRL)

[H97b] 10403 05:35:09.57 -05:19:42.7 M6.5(Luc01)M6.75(RRL)M9(WLR)

[HC2000] 722 05:35:09.79 -05:24:06.7 M6.5(SHC)

[H97b] 20184 05:35:09.91 -05:24:10.5 M3(SHC)

[HC2000] 62 05:35:10.03 -05:25:01.5 M9(SHC-ir)

[HC2000] 90 05:35:10.38 -05:24:51.6 M7.5(SHC-ir)

[OW94] 107-453 05:35:10.7 -05:24:53 M8(Luc06)M8(WLR)

[HC2000] 529 05:35:10.88 -05:22:06.0 M8(SHC-ir)

[HC2000] 111 05:35:11.15 -05:24:36.5 M9(SHC-ir)

[HC2000] 434 05:35:11.20 -05:22:37.8 M2(SHC-ir)

[HC2000] 515 05:35:11.21 -05:22:10.8 M7:(SHC-ir)

[HC2000] 127 05:35:11.33 -05:24:26.6 M0(SHC-ir)

[HC2000] 559 05:35:11.37 -05:21:54.0 M8(SHC-ir)

[HC2000] 709 05:35:11.63 -05:22:46.1 M5(SHC-ir)

[H97b] 10420 05:35:11.67 -05:26:08.6 early-M(RRL)

[HC2000] 708 05:35:11.92 -05:22:50.9 M4(SHC-ir)

[H97b] 20182 05:35:12.93 -05:24:57.6 M5.25(RRL)

[OW94] 137-532 05:35:13.7 -05:25:32 >M9(Luc06)>M9.5(WLR)

[HC2000] 721 05:35:13.18 -05:24:24.9 M3.5:(SHC-ir)

[H97b] 20377 05:35:14.76 -05:28:31.8 M8.5(RRL)

[OW94] 152-717 05:35:15.2 -05:27:17 >M9(Luc06)>M9.5(WLR)

[HC2000] 600 05:35:15.41 -05:21:39.5 M5(SHC-ir)

[HC2000] 4 05:35:15.56 -05:25:46.8 M4.5(SHC)M5.5(SHC-ir)

[HC2000] 565 05:35:16.01 -05:21:53.1 M8(SHC-ir)

[H97b] 20295 05:35:16.52 -05:26:34.4 M8.75(RRL)

[HC2000] 237 05:35:17.41 -05:23:41.8 M2e(SHC)

[HC2000] 469 05:35:17.58 -05:22:27.8 M(SHC-ir)

[HC2000] 162 05:35:17.58 -05:24:09.0 M5.5(SHC-ir)

[HC2000] 383 05:35:17.84 -05:22:58.2 M4(SHC-ir)

[HC2000] 764 05:35:17.97 -05:23:53.6 M7.5(SHC-ir)

[HC2000] 594 05:35:18.05 -05:21:41.2 M7.5(SHC-ir)

[HC2000] 372 05:35:18.08 -05:23:01.8 M9(SHC-ir)

[OW94] 183-729 05:35:18.3 -05:27:29 >M9(Luc06)M8.75(RRL)>M9.5(WLR)

[OW94] 183-419 05:35:18.32 -05:24:19.9 M2.5(SHC-ir)

2MASS J05351862-0526313 05:35:18.63 -05:26:31.4 M8(RRL)M7(WLR)

[OW94] 188-658 05:35:18.8 -05:26:58 >M9(Luc06) >M9.5(WLR)

[HC2000] 409 05:35:19.04 -05:22:50.7 M0(SHC)

[HC2000] 728 05:35:19.51 -05:23:39.7 M5.5(SHC-ir)

[HC2000] 123 05:35:19.64 -05:24:31.6 M0-M5(SHC)M7.5(SHC-ir)

[HC2000] 59 05:35:19.68 -05:25:05.2 K8-M3(SHC)

Page 76: An Enhanced Spectroscopic Census of the Orion Nebula Clusterlah/papers/OrionPaper.pdf · The Orion composite is a revered touch stone for our developing understanding of star ...

– 76 –

Table 3—Continued

Identifier a Right Ascension b Declination b Previously Reported SpT c

[OW94] 196-659 05:35:19.6 -05:27:00 mid-M(RRL)>M9.5(WLR)

[HC2000] 366 05:35:19.63 -05:23:03.6 M7.5(SHC-ir)

[HC2000] 210 05:35:19.86 -05:23:51.6 >M6:e(SHC)M7(SHC-ir)

[HC2000] 365 05:35:20.13 -05:23:04.5 M7:(SHC-ir)

[HC2000] 429 05:35:20.64 -05:22:41.2 M7-M9(SHC)M7.5(SHC-ir)

[HC2000] 732 05:35:20.77 -05:22:39.5 M2.5:(SHC-ir)

[HC2000] 731 05:35:20.79 -05:22:36.3 K7:(SHC-ir)

[H97b] 20241 05:35:20.90 -05:25:34.5 M8(SHC-ir)

[HC2000] 403 05:35:21.02 -05:22:54.3 M7(SHC-ir)

[HC2000] 729 05:35:21.12 -05:22:50.2 M7(SHC-ir)

[HC2000] 27 05:35:21.29 -05:25:33.2 M5(SHC-ir)

[H97b] 20248 05:35:21.35 -05:25:35.0 M8(SHC-ir)

[HC2000] 15 05:35:21.61 -05:25:40.6 M0-M1(SHC)M3.5(SHC-ir)

[H97b] 10597 05:35:21.69 -05:26:52.6 M7.75(RRL)

[HC2000] 730 05:35:21.71 -05:22:38.3 M4(SHC-ir)

[HC2000] 30 05:35:21.83 -05:25:28.4 M0-M3e(SHC)M2(SHC-ir)

[H97b] 10605 05:35:21.99 -05:24:53.3 <K7(SHC-ir)

[HC2000] 55 05:35:22.12 -05:25:07.6 M8(SHC-ir)

[H97b] 10606 05:35:22.17 -05:27:44.7 M5.75(RRL)

[HC2000] 200 05:35:22.54 -05:23:54.8 M3(SHC-ir)

[HC2000] 316 05:35:23.34 -05:23:20.8 M3.5-M5e(SHC)

[HC2000] 212 05:35:23.54 -05:23:51.0 M9(SHC-ir)

[H97b] 10626 05:35:25.03 -05:24:38.4 M7(SHC)

[HC2000] 167 05:35:25.27 -05:24:06.5 M6-M8(SHC)M7.5(SHC-ir)

[HC2000] 48 05:35:25.54 -05:25:11.7 M4(SHC-ir)M6.5(WLR)

[HC2000] 568 05:35:25.56 -05:21:54.0 <K7(SHC-ir)

[HC2000] 70 05:35:25.67 -05:25:02.6 M9(SHC-ir)

aThe star names are SIMBAD compatible. Optical names are preferred to infrared names, though 2MASS is used

above coordinate-based optical names. It should be noted that the [H97b] identifiers in SIMBAD that begin at 10000

actually originate with Herbst et al. (2002) and those beginning with 20000 originate in Rodriguez-Ledesma et al.

(2009).

bJ2000. Note that the reported coordinates have varying levels of precision and hence accuracy in this crowded

field.

cThe sources of the literature spectral types (SpT) have the same codes as in Table 2.