AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

download AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

of 26

Transcript of AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    1/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    DOI:10.5121/ijcsa.2014.4503 27

    AN APPROACH TO DECREASE DIMENSIONS OF DRIFT

    HETERO-BOPOLAR TRANSISTORS

    E.L.Pankratov1,3

    and E.A.Bulaeva1,2

    1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,

    Russia

    2Nizhny Novgorod State University of Architecture and Civil Engineering,65 Il'insky

    street, Nizhny Novgorod,603950, Russia

    3Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia,3 Ankudi-

    novskoe Shosse, Nizhny Novgorod,603950, Russia

    ABSTRACT

    In this paper based on recently introduced approach we formulated some recommendations to optimize

    manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during

    functioning. The approach based on manufacture a heterostructure, doping required parts of the hetero-

    structure by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radia-

    tion defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations

    of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the

    same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor.

    We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical

    approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous me-

    dia with time-varying parameters.

    KEYWORDS

    Drift heterobipolar transistor, analytical approach to model technological process, decreasing of dimen-

    sions of transistor

    1.INTRODUCTION

    In the present time performance of elements of integrated circuits (p-n-junctions, field-effect and

    bipolar transistors, ...) and their discrete analogs are intensively increasing [1-14]. To solve the

    problem they are using several ways. One of them is manufacturing new materials with higherspeed of charge carriers [1-18]. Another way to increase the performance is elaboration of new

    technological processes or modification of existing one [1-14,19,20]. In this paper we introduce

    one of approaches of modification of technological to increase performance of bipolar transistor.

    To solve our aim we consider hetero structure, which consist of a substrate and three epitaxiallayers (see Fig. 1). One section have been manufactured in every epitaxial layer by using another

    materials so as it is presented on Fig. 1. After manufacturing of the section in the first epitaxiallayer the section has been doped by diffusion or ion implantation to produce required type of

    conductivity (por n) in the section. Farther we consider annealing of dopant and/or radiation de-fects. After that we consider manufacturing of the second and the third epitaxial layers, which

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    2/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    28

    also including into itself one section in each new epitaxial layer. The sections are also been manu-

    factured by using another materials. Both new sections have been doped by diffusion or ion im-plantation to produce required type of conductivity (por n) in the sections. Farther we consider

    microwave annealing of dopant and/or radiation defects. Main aim of the paper is analysis of do-pand and radiation defects in the considered heterostructure.

    Substrate

    Dopant 1 Dopant 2 Dopant 3

    Epitaxial layers

    Fig. 1. Heterostructure, which consist of a substrate and three epitaxial layers with sections, manufactured

    by using another materials. View from side

    2.Method of solution

    To solve our aims we determine spatio-temporal distribution of concentration of dopant.

    We determine the required distribution by solving the second Fick's law [1,3-5]

    ( ) ( ) ( ) ( )

    ++

    +

    =

    z

    tzyxCD

    zy

    tzyxCD

    yx

    tzyxCD

    xt

    tzyxCCCC

    ,,,,,,,,,,,, (1)

    with boundary and initial conditions

    ( )0

    ,,,

    0

    =

    =xx

    tzyxC,

    ( )0

    ,,,=

    = xLxx

    tzyxC,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxC,

    ( )0

    ,,,=

    = yLxy

    tzyxC,

    ( )0

    ,,,

    0

    =

    =zz

    tzyxC,

    ( )0

    ,,,=

    = zLxz

    tzyxC, C(x,y,z,0)=f (x,y,z). (2)

    Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant, Tis the temperature

    of annealing,Dis the dopant diffusion coefficient. Value of dopant diffusion coefficient depends

    on properties of materials of the considered hetero structure, speed of heating and cooling of hete-ro structure (with account Arrhenius law). Dependences of dopant diffusion coefficient could be

    approximated by the following relation [3,21]

    ( ) ( )

    ( )( ) ( )

    ( )

    ++

    +=

    2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,1,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxCTzyxDD LC

    , (3)

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    3/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    29

    whereDL(x,y,z,T) is the spatial (due to inhomogeneity of hetero structure) and temperature (due toArrhenius law) dependences of diffusion coefficient; P (x,y,z,T) is the limit of solubility of do-

    pant; value of parameter depends on materials of heterostructure and could be integer in the fol-lowing interval [1,3] [3]; V(x,y,z,t) is the spatio-temporal distribution of concentration of va-cancies; V

    *is the equilibrium distribution of concentration of vacancies. Concentrational depen-

    dence of dopant diffusion coefficient has been discussed in details in [3]. It should be noted, thatusing diffusion type of doping and radiation damage is absent in the case (i.e. 1= 2= 0). We de-termine spatio-temporal distributions of concentrations of point radiation defects by solving of the

    following system of equations [21,22]

    ( )( )

    ( )( )

    ( )+

    +

    =

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIII

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( )

    ( ) ( ) ( )

    + tzyxVtzyxITzyxk

    z

    tzyxITzyxD

    z VII

    ,,,,,,,,,,,,

    ,,,,

    ( ) ( )tzyxITzyxkII

    ,,,,,,2

    , (4)

    ( )( )

    ( )( )

    ( )+

    +

    =

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVV

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( )

    ( ) ( ) ( )

    + tzyxVtzyxITzyxk

    z

    tzyxVTzyxD

    z VIV

    ,,,,,,,,,,,,

    ,,,,

    ( ) ( )tzyxVTzyxkVV

    ,,,,,,2

    ,

    with initial

    (x,y,z,0)=f(x,y,z) (5a)

    and boundary conditions

    ( ) 0,,,0

    =

    =x

    xtzyx , ( ) 0,,, =

    = xLxx

    tzyx , ( ) 0,,,0

    =

    =y

    ytzyx ,

    ( )0

    ,,,=

    = yLyy

    tzyx,

    ( )0

    ,,,

    0

    =

    =zz

    tzyx,

    ( )0

    ,,,=

    = zLzz

    tzyx. (5b)

    Here =I,V; I (x,y,z,t) is the spatio-temporal distribution of concentrations of interstitials; D(x,y,z,T) are the diffusion coefficients of interstitials and vacancies; terms V

    2(x,y,z,t) and I

    2(x,y,z,t)

    correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parameters of recombination of point radiation defects and generation appropriate

    their complexes, respectively.

    We determine spatio-temporal distributions of concentrations of divacancies V(x,y,z,t) and diin-terstitials I(x,y,z,t) by solving the following system of equations [21,22]

    ( )( )

    ( )( )

    ( )+

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyx II

    I

    I

    I

    ,,,,,,

    ,,,,,,

    ,,,

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    4/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    30

    ( ) ( )

    ( ) ( )+

    + tzyxITzyxk

    z

    tzyxTzyxD

    z II

    I

    I,,,,,,

    ,,,,,, 2

    ,

    ( ) ( )tzyxITzyxkI ,,,,,, (6)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    ytzyxTzyxD

    yxtzyxTzyxD

    xttzyx V

    V

    V

    V

    V

    ,,,,,,,,,,,,,,,

    ( ) ( )

    ( ) ( )+

    + tzyxVTzyxk

    z

    tzyxTzyxD

    z VV

    V

    V,,,,,,

    ,,,,,,

    2

    ,

    ( ) ( )tzyxVTzyxkV ,,,,,,

    with boundary and initial conditions

    ( )0

    ,,,

    0

    =

    =xx

    tzyx,

    ( )0

    ,,,=

    = xLxx

    tzyx,

    ( )0

    ,,,

    0

    =

    =yy

    tzyx,

    ( )0

    ,,,=

    = yLyy

    tzyx,

    ( )0

    ,,,

    0

    =

    =zz

    tzyx,

    ( )0

    ,,,=

    = zLzz

    tzyx, I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV (x,y,z). (7)

    Here DI(x,y,z,T) and DV(x,y,z,T) are the diffusion coefficients of simplest complexes of radia-tion defects; kI(x,y,z,T) and kV(x,y,z,T) are the parameters of decay of simplest complexes of radi-

    ation defects.

    We described distribution of temperature by the second law of Fourier [23]

    ( ) ( )

    ( ) ( )

    ( ) ( )

    +

    +

    =

    y

    tzyxTTzyx

    yx

    tzyxTTzyx

    xt

    tzyxTTc

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( )tzyxpz

    tzyxTTzyxz

    ,,,,,,,,, +

    + (8)

    with boundary and initial conditions

    ( )0

    ,,,

    0

    =

    =xx

    tzyxT,

    ( )0

    ,,,=

    = xLxx

    tzyxT,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxT, (9)

    ( )0

    ,,,=

    = yLxy

    tzyxT,

    ( )0

    ,,,

    0

    =

    =zz

    tzyxT,

    ( )0

    ,,,=

    = zLxz

    tzyxT, T (x,y,z,0)=fT (x,y,z),

    where T(x,y,z,t) is the spatio-temporal distribution of temperature; c (T)=cass[1-exp(-T(x,y,z,t)/Td)] is the heat capacitance (in the most interesting case, when temperature of annealing is ap-

    proximately equal or larger, than Debay temperature Td, one can assume c (T)cass[23]); is theheat conduction coefficient, which depends on properties of materials and current temperature ofannealing; temperature dependence of heat conduction coefficient in the most interesting tem-

    perature interval could be approximated by the following function (x,y,z,T)=ass(x,y,z) [1+(Td/T(x,y,z,t))

    ] (see, for example, [23]); p(x,y,z,t) is the volumetric density of heat power, gener-

    ated in heterostructure during annealing; (x,y,z,T)=(x,y,z,T)/c (T) is the heat diffusivity. First ofall we determine spatio-temporal distribution of temperature. To calculate the distribution of tem-

    perature we used recently introduced approach [24-26]. Framework the approach we transform

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    5/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    31

    approximation of heat diffusivity to the following form: ass (x,y,z) =ass(x,y,z)/cas s=0ass[1+TgT(x,y,z)]. Farther we determine solution of Eq.(8) as the following power series

    ( ) ( ) =

    =

    =0 0

    ,,,,,,i j

    ij

    ji

    T tzyxTtzyxT . (10)

    Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for the ini-tial-order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i1,j1).The equations are presented in the Appendix. Substitution of the series (9) into boundary and ini-tial conditions for temperature gives us possibility to obtain the same conditions for all functions

    Tij(x,y,z,t) (i0,j0). The conditions are presented in the Appendix. The equations for the func-tions Tij(x,y,z,t) (i0,j0) with account boundary and initial conditions have been solved by usingstandard approaches [27,28] for the second-order approximation of the temperature T (x,y,z,t) on

    the parameters and. The solutions are presented in the Appendix. The second- order is usuallyenough good approximation to make qualitative analysis and to obtain some quantitative results(see, for example, [24-26]). Analytical results give us possibility to make more demonstrative

    analysis in comparison with numerical one. To calculate the obtained result with higher exactnessand checking the obtain results by independent approaches we used numerical approaches.

    To calculate spatio-temporal distributions of concentrations of point of radiation defects we used

    recently introduced approach [24-26] and transform approximations of diffusion coefficients inthe following form: D(x,y,z,T)=D0[1+g(x,y,z,T)], where D0are the average values of diffu-sion coefficients, 0< 1, |g(x,y,z,T)|1, =I,V. The same transformations have been used forapproximations of parameters of recombination of point radiation defects and generation of their

    complexes: kI,V(x,y,z,T)=k0I,V [1+I,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+I,I gI,I(x,y,z,T)] andkV,V(x,y,z,T) = k0V,V [1+V,V gV,V(x,y,z,T)], where k01,2are the appropriate average values of theseparameters, 0I,V

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    6/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    32

    ( )( )[ ] ( ) ( )+

    ,,,

    ~,,,

    ~,,,1

    ,,,~

    ,, VITgV

    VIVI

    ( )[ ] ( ) ,,,~,,,1 2,,

    VTgVVVVI

    +

    ( ) 0,,,~

    0

    =

    =

    , ( ) 0,,,~

    1

    =

    =

    , ( ) 0,,,~

    0

    =

    =

    , ( ) 0,,,~

    1

    =

    =

    ,

    ( )0

    ,,,~

    0

    =

    =

    ,

    ( )0

    ,,,~

    1

    =

    =

    , ( )

    ( )*

    ,,,,,,~

    f= . (12)

    We determine solutions of Eqs.(11) as the following power series (see [24-26])

    ( ) ( ) =

    =

    =

    =0 0 0

    ,,,~,,,~i j k

    ijk

    kji . (13)

    Substitution of the series (13) into Eqs. (11) and conditions (12) gives us possibility to obtain eq-

    uations for initial-order approximations of concentrations of point defects ( ) ,,,~

    000I and

    ( ) ,,,~

    000V and corrections for them ( ) ,,,~

    ijkI and ( ) ,,,~

    ijkV , i

    1,j

    1, k1. The equa-tions and conditions for them are presented in the Appendix. The equations have been solved by

    standard approaches (see, for example Fourier approach, [27,28]). The equations are presented inthe Appendix.

    Farther we determine spatio-temporal distributions of concentrations of complexes of radiation

    defects. First of all we transform approximations of diffusion coefficients into the following form:

    D(x,y,z,T)=D0[1+g(x,y,z,T)], whereD0are the average values of diffusion coefficients.In this situation Eqs.(6) will be transformed to the following form

    ( )( )[ ]

    ( )( )[ ]

    ++

    +=

    Tzyxgyx

    tzyxTzyxg

    xD

    t

    tzyxII

    I

    III

    I ,,,1,,,

    ,,,1,,,

    0

    ( )( )[ ]

    ( )+

    ++

    z

    tzyxTzyxg

    zDD

    y

    tzyxI

    IIII

    I

    ,,,,,,1

    ,,,00

    ( )[ ] ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkTzyxg IIIII ,,,,,,,,,,,,,,,12

    , +

    +

    ( )( )[ ]

    ( )( )[ ]

    ++

    +=

    Tzyxgyx

    tzyxTzyxg

    xD

    t

    tzyxVV

    V

    VVV

    V ,,,1,,,

    ,,,1,,,

    0

    ( )( )[ ]

    ( )+

    ++

    z

    tzyxTzyxg

    zDD

    y

    tzyxV

    VVVV

    V

    ,,,,,,1

    ,,,00

    ( )[ ] ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkTzyxgVVVVV

    ,,,,,,,,,,,,,,,1 2,

    +

    + .

    Farther we determine solutions of the above equations as the following power series

    ( ) ( ) =

    =

    0

    ,,,,,,i

    i

    itzyxtzyx . (11)

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    7/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    33

    Substitution of the series (14) into Eqs. (6) and appropriate boundary and initial conditions gives

    us possibility to obtain equations for initial-order approximations of concentrations of complexes

    of radiation defects 0(x,y,z,t) and corrections for them i(x,y,z,t) (i1) and appropriate condi-tions for all functionsi(x,y,z,t) (i0). The equations and conditions are presented in the Appen-dix. The obtained equations have been solved by standard approaches (see, for example, [27,28])

    with account boundary and initial conditions. The solutions are presented in the Appendix.We calculate spatio-temporal distribution of dopant concentration by using the same approach,which have been used for calculation spatio-temporal distribution of concentrations of radiationdefects. In this situation we transform approximation of dopant diffusion coefficient to the fol-

    lowing form:DL(x,y,z,T)=D0L[1+LgL(x,y,z,T)], whereD0Lis the average value of dopant diffusioncoefficient, 0L< 1, |gL(x,y,z,T)|1. Farther we determine solution of Eq.(1) in the following form

    ( ) ( ) =

    =

    =0 1

    ,,,,,,i j

    ij

    ji

    L tzyxCtzyxC .

    Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equation for

    initial-order approximation of the concentration of dopant C00(x,y,z,t) and corrections for them

    Cij(x,y,z,t) (i 1,j 1) and boundary and initial conditions for them. The equations and conditionsare presented in the Appendix. The solutions have been calculated by standard approaches (see,for example, [27,28]). The solutions are presented in the Appendix.

    Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects havebeen done analytically by using the second-order approximations on all parameters, which are

    used in appropriate series. The approximation is usually enough good approximation to make qu-

    alitative analysis and to obtain some quantitative results. Results of analytical calculations havebeen checked with comparison with numerical one.

    3.Discussion

    In this section we analyzed redistribution of dopant and radiation defects by using relations, cal-culated in the previous section. Typical distributions of concentrations of dopant near interface

    between materials of hetero structure are presented on Figs. 2 and 3 for diffusion and ion types ofdoping, respectively. The distributions have been calculated for the case, when value of dopant

    diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearestareas. The figures show, that presents of interface between materials gives us possibility to in-

    crease sharpness ofp-n-junctions, which included into the considered heterobipolar transistor. Atthe same time homogeneity of distribution of concentration of dopant increases. Increasing of

    sharpness ofp-n-junctions gives us possibility to decrease their switching time. Increasing of ho-

    mogeneity of distribution of concentration of dopant gives us possibility to decrease value of lo-cal overheats during functioning of the p-n-junctions or to decrease dimensions of p-n-junctions

    with fixed maximal value of the overheats. To accelerate transport of charge carriers it is attracted

    an interest inhomogenous distribution of dopant in base. In this case it is electrical field has been

    generated in the base. This electrical field gives us possibility to accelerate transport of chargecarriers in base of transistors. To manufacture in homogenous distribution of dopant in base it is

    practicably to dope required area (section) of the first (nearest to the substrate) epitaxial layer.After that it is practicably to anneal dopant and/or radiation defects. Farther they are attracted an

    interest the following steps: (i) manufacturing of the second epitaxial layer with section, manufac-

    tured by using another materials; (ii) doping the section of the second epitaxial layer by diffusion

    or ion implantation; (iii) manufacturing of the third epitaxial layer with section, manufactured byusing another materials; (iv) doping the section of the third epitaxial layer by diffusion or ion im-

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    8/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    34

    plantation. After that we consider microwave annealing of dopant and/or radiation defects. Ad-

    vantage of the approach of annealing is formation of inhomogenous distribution of temperature.

    In this situation it is practicably to choose parameters of annealing so, that thickness of scin-layer

    became larger, than thickness of the third (external) epitaxial layer and smaller, than total ofthickness of the third and the second epitaxial layers. In this case dopant diffusion in nearest to

    the substrate side became slower, than in farther side. This is a reason to inhomogeneity of distri-bution of concentration of dopant in depth of hetero structure. After finishing of manufacturing ofbipolar transistor the section of the average epitaxial layer with inhomogenous distribution of

    concentration of dopant assumes function of base.

    Fig. 2. Distributions of concentrations of infused dopant in hetero structure from Fig. 1 in direc-

    tion, which is perpendicular to interface between layers of heterostructure. Increasing of number

    of curves corresponds to increasing of difference between values of dopant diffusion coefficientin layers of heterostructure. The curves have been calculated under condition, when dopant diffu-sion coefficient in doped layer is larger, than in nearest layer.

    x0.0

    0.5

    1.0

    1.5

    2.0

    C(x,

    )

    23

    4

    1

    0 L/4 L/2 3L/4 L

    Epitaxial layer Substrate

    Fig. 3. Spatial distributions of implanted dopant concentration after annealing with continuous = 0.0048(Lx

    2+Ly

    2+Lz

    2)/D0 (curves 1 and 3) and = 0.0057(Lx

    2+Ly

    2+Lz

    2)/ D0 (curves 2 and 4).

    Curves 1 and 2 are calculated distributions of dopant concentration in homogenous structure.

    Curves 3 and 4 are calculated distributions of dopant concentration in hetero structure under con-dition, when dopant diffusion coefficient in doped layer is larger, than in nearest layer.

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    9/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    35

    Using of the considered approach to manufacture of transistors leads to necessity of optimization

    of annealing time. To optimize the annealing time we used recently introduced criterion

    [24,26,29-33]. Framework the approach we approximate real distributions of concentration of

    dopant by step-wise function. Farther we determine the required optimal values of annealing timeby minimization of the following mean- squared error

    ( ) ( )[ ] =x y zL L L

    zyx

    xdydzdzyxzyxCLLL

    U0 0 0

    ,,,,,1

    , (15)

    where (x) is the approximation function,is the required value of annealing time.

    0.0 0.1 0.2 0.3 0.4 0.5

    a/L, , ,

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    D0

    L-2

    3

    2

    4

    1

    Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which havebeen obtained by minimization of mean-squared error, on several parameters. Curve 1 is the de-

    pendence of dimensionless optimal annealing time on the relation a/Land = = 0 for equal toeach other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 is the

    dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and =

    = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and = = 0. Curve 4 is the dependence of dimensionless optimal annealing time onvalue of parameter for a/L=1/2 and = = 0

    0.0 0.1 0.2 0.3 0.4 0.5

    a/L, , ,

    0.00

    0.04

    0.08

    0.12

    D0

    L-2

    3

    2

    4

    1

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    10/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    36

    Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation,

    which have been obtained by minimization of mean-squared error, on several parameters. Curve 1

    is the dependence of dimensionless optimal annealing time on the relation a/Land = = 0 forequal to each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2

    is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2

    and = = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value ofparameter for a/L=1/2 and = = 0. Curve 4 is the dependence of dimensionless optimal an-nealing time on value of parameter for a/L=1/2 and = = 0

    Dependences of optimal values of annealing time are presented in Fig. 4 for diffusion type ofdoping. Using ion implantation leads to necessity of annealing of radiation defects. In the ideal

    case after finishing of annealing of radiation defects dopant achieves interface between materials

    of hetero structure. If the dopant did not achieves the interface during the annealing, it is practica-bly to use additional annealing of dopant. Dependences of optimal values of additional annealingtime are presented in Fig. 5. Optimal value of time of additional annealing of implanted dopant is

    smaller, than in optimal value of infused dopant. Reason of this difference is necessity of anneal-ing of radiation defects.

    4.CONCLUSIONS

    In this paper we introduce an approach to manufacture a heterobipolar transistor with inhomo-

    genous doping of base. At the same time the introduced approach to manufacture of bipolar tran-sistors gives us possibility to increase their compactness and to increase sharpness of p-n-

    junctions, which included into the transistor. The approach based on manufacturing of a hetero-

    structure with special construction, doping of special areas of the hetero structure and optimiza-tion of annealing of dopant and/or radiation defects.

    ACKNOWLEDGEMENTS

    This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,grant of Scientific School of Russia, the agreement of August 27, 2013 02..49.21.0003 be-

    tween The Ministry of education and science of the Russian Federation and Lobachevsky StateUniversity of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-

    gorod State University of Architecture and Civil Engineering.

    APPENDIX

    Equations for the functions Tij(x,y,z,t) (i0,j0) have been obtained by substitution the power se-ries (10) in the equation (8) and equating terms with equal powers of parameters Tand . Theequations could be written as

    ( ) ( ) ( ) ( ) ( )ass

    asstzyxp

    ztzyxT

    ytzyxT

    xtzyxT

    ttzyxT

    ,,,,,,,,,,,,,,,

    2

    00

    2

    2

    00

    2

    2

    00

    2

    0

    00 +

    +

    +

    =

    ( ) ( ) ( ) ( )+

    +

    +

    =

    ass

    iii

    ass

    i

    z

    tzyxT

    y

    tzyxT

    x

    tzyxT

    t

    tzyxT02

    0

    2

    2

    0

    2

    2

    0

    2

    0

    0,,,,,,,,,,,,

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    11/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    37

    ( ) ( )

    ( ) ( )

    +

    +

    2

    10

    2

    2

    10

    2 ,,,,,,

    ,,,,,,

    y

    tzyxTTzyxg

    x

    tzyxTTzyxg i

    T

    i

    T

    ( ) ( )

    +

    z

    tzyxTTzyxg

    z

    i

    T

    ,,,,,, 10 , i1

    ( ) ( ) ( ) ( )( )

    +

    +

    +

    =

    tzyxT

    T

    z

    tzyxT

    y

    tzyxT

    x

    tzyxT

    t

    tzyxTdass

    ass,,,

    ,,,,,,,,,,,,

    00

    0

    2

    01

    2

    2

    01

    2

    2

    01

    2

    0

    01

    ( ) ( ) ( )( )

    ( )

    +

    +

    +

    +

    2

    00

    1

    00

    0

    2

    00

    2

    2

    00

    2

    2

    00

    2 ,,,

    ,,,

    ,,,,,,,,,

    x

    tzyxT

    tzyxT

    T

    z

    tzyxT

    y

    tzyxT

    x

    tzyxTdass

    ( ) ( )

    +

    +

    2

    00

    2

    00,,,,,,

    z

    tzyxT

    y

    tzyxT

    ( ) ( ) ( ) ( )

    ( )+

    +

    +

    =

    tzyxT

    T

    z

    tzyxT

    y

    tzyxT

    x

    tzyxT

    t

    tzyxTdass

    ass

    ,,,

    ,,,,,,,,,,,,

    00

    0

    2

    02

    2

    2

    02

    2

    2

    02

    2

    0

    02

    ( ) ( ) ( )

    ( )

    ( ) ( )

    +

    +

    +

    + x

    tzyxT

    x

    tzyxT

    tzyxT

    T

    z

    tzyxT

    y

    tzyxT

    x

    tzyxTdass

    ,,,,,,

    ,,,

    ,,,,,,,,,0100

    1

    00

    0

    2

    01

    2

    2

    01

    2

    2

    01

    2

    ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxT

    z

    tzyxT

    y

    tzyxT

    y

    tzyxT ,,,,,,,,,,,,01000100

    ( ) ( ) ( )

    ( ) ( )

    ( ) ( )

    +

    +

    =

    2

    00

    2

    2

    00

    2

    00

    01

    02

    11

    2

    0

    11,,,,,,

    ,,,,,,

    ,,,,,,,,,

    y

    tzyxT

    x

    tzyxTTzyxg

    tzyxT

    tzyxT

    x

    tzyxT

    t

    tzyxTTassass

    ( ) ( ) ( )

    ( ) ( )

    +

    +

    +

    x

    tzyxTTzyxg

    xz

    tzyxTTzyxg

    z

    TzyxgTassTT

    ,,,,,,

    ,,,,,,,,, 01

    0

    00

    ( )( )[ ]

    ( )( )[ ]

    ( )+

    ++

    ++

    +

    2

    01

    2

    2

    01

    2

    2

    01

    2 ,,,,,,1

    ,,,,,,1

    ,,,

    z

    tzyxTTzyxg

    y

    tzyxTTzyxg

    x

    tzyxTTT

    ( )

    ( )

    ( ) ( )

    ( )

    ( ) ( )

    ( )

    +

    +

    +

    +++ tzyxT

    tzyxT

    y

    tzyxT

    tzyxT

    tzyxT

    x

    tzyxT

    tzyxT

    tzyxTT

    dass,,,

    ,,,,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,1

    00

    10

    2

    00

    2

    1

    00

    10

    2

    00

    2

    1

    00

    10

    0

    ( )

    ( )

    ( ) ( ) ( )+

    +

    +

    +

    2

    10

    2

    2

    10

    2

    2

    10

    2

    00

    0

    2

    00

    2 ,,,,,,,,,

    ,,,

    ,,,

    z

    tzyxT

    y

    tzyxT

    x

    tzyxT

    tzyxT

    T

    z

    tzyxTdass

    ( ) ( )

    ( ) ( )

    ( )

    +

    +

    + Tzyxg

    z

    tzyxTTzyxg

    zx

    tzyxTTzyxg

    TTT,,,

    ,,,,,,

    ,,,,,, 00

    2

    10

    2

    ( )( ) ( ) ( ) ( )

    +

    y

    tzyxT

    x

    tzyxT

    x

    tzyxT

    y

    tzyxT

    tzyxT

    Tdass

    ,,,,,,,,,,,,

    ,,,

    100010

    2

    10

    2

    00

    0

    ( ) ( ) ( )

    ( )( )( )

    +

    ++tzyxT

    TzyxgT

    tzyxT

    T

    z

    tzyxT

    z

    tzyxT

    y

    tzyxTT

    dass

    dass

    ,,,

    ,,,

    ,,,

    ,,,,,,,,,1

    00

    01

    00

    0001000

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    12/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    38

    ( ) ( ) ( )

    +

    +

    2

    00

    2

    00

    2

    00,,,,,,,,,

    z

    tzyxT

    y

    tzyxT

    x

    tzyxT.

    Conditions for the functions Tij(x,y,z,t) (i0, j0) have been obtained by the same procedure asappropriate equations and could be written as

    ( )0

    ,,,

    0

    =

    =x

    ij

    x

    tzyxT,

    ( )0

    ,,,=

    = xLx

    ij

    x

    tzyxT,

    ( )0

    ,,,

    0

    =

    =y

    ij

    y

    tzyxT,

    ( )0

    ,,,=

    = yLx

    ij

    y

    tzyxT,

    ( )0

    ,,,

    0

    =

    =z

    ij

    z

    tzyxT,

    ( )0

    ,,,=

    = zLx

    ij

    z

    tzyxT, T00(x,y,z,0)=fT(x,y,z),Tij(x,y,z,0)=0, i1,j1.

    Solutions of the equations for the functions Tij(x,y,z,t) (i0,j0) with account boundary and initialconditions have been obtained by standard Fourier approach. By using the approach one can ob-

    tain the functions Tij(x,y,z,t) in the following form

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) + =

    =1 00 0 000

    2,,

    1,,,

    n

    L

    nnTnnn

    zyx

    L L L

    T

    zyx

    xx y z

    uctezcycxcLLL

    udvdwdwvufLLL

    tzyxT

    ( ) ( ) ( ) ( )

    + + zyx

    tL L L

    asszyx

    L L

    TnnLLL

    dudvdwdwvup

    LLLudvdwdwvufwcvc

    x y zy z 2,,,1,,

    0 0 0 00 0

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 0

    ,,,

    n

    t L L L

    ass

    nnnnTnTnnn

    x y z

    dudvdwdwvup

    wcvcucetezcycxc

    ,

    where cn()=cos(n/L), ( )

    ++=

    2220

    22 111expzyx

    assnTLLL

    tnte ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 02

    0

    0,,,2,,,

    n

    t L L L

    TnnnnTnTnnn

    zyx

    ass

    i

    x y z

    TwvugwcvcusetezcycxcnLLL

    tzyxT

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =

    1 0 0 02

    010 2,,,

    n

    t L L

    nnnTnTnnn

    zyx

    assix y

    vsucetezcycxcnLLL

    dudvdwdu

    wvuT

    ( ) ( ) ( )

    ( ) ( ) ( )+

    =

    12

    0

    0

    10 2,,,

    ,,,n

    nnn

    zyx

    assL

    i

    Tn zcycxcnLLL

    dudvdwdv

    wvuTTwvugwc

    z

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    t L L Li

    TnnnnTnT

    x y z

    dudvdwdw

    wvuTTwvugwsvcucete

    0 0 0 0

    10 ,,,,,,

    , i1,

    where sn() = sin( n/L);

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 02001

    2,,,

    n

    t L L L

    nnnnTnTnnn

    zyx

    d

    ass

    x y z

    wcvcusetezcycxcnLLL

    TtzyxT

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 020

    00

    2

    00

    2 2

    ,,,

    ,,,

    n

    t L

    nnTnTnnn

    zyx

    d

    ass

    x

    ucetezcycxcLLL

    T

    wvuT

    dudvdwd

    u

    wvuT

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    13/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    39

    ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )+

    =120

    0 0 00

    2

    00

    2 2

    ,,,

    ,,,

    nnTnnn

    zyx

    d

    ass

    L L

    nn tezcycxcLLL

    T

    wvuT

    dudvdwd

    v

    wvuTwcvsn

    y z

    ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    =1

    0

    0 0 0 0 00

    2

    00

    2

    2,,,

    ,,,

    nn

    zyx

    ass

    d

    t L L L

    nnnnT xc

    LLLT

    wvuT

    dudvdwd

    u

    wvuTwsvcucen

    x y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    +

    t L L L

    nnnnTnTnn

    x y z

    wvuT

    dudvdwd

    u

    wvuTwcvcucetezcyc

    0 0 0 01

    00

    2

    00

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 0

    2

    000,,,

    2n

    t L L L

    nnnnTnTnnn

    zyx

    assx y z

    v

    wvuTwcvcucetezcycxc

    LLL

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =+

    1 0 0 0

    0

    1

    00

    2,,, n

    t L L

    nnnTnTnnn

    zyx

    ass

    dd

    x y

    vcucetezcycxcLLL

    TwvuT

    dudvdwdT

    ( ) ( )

    ( )

    +

    zL

    nwvuT

    dudvdwd

    w

    wvuTwc

    01

    00

    2

    00

    ,,,

    ,,,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 02002

    2,,,

    n

    t L L L

    nnnnTnTnnn

    zyx

    d

    ass

    x y z

    wcvcusetezcycxcnLLL

    TtzyxT

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 020

    00

    2

    01

    2 2

    ,,,

    ,,,

    n

    t L

    nnTnTnnn

    zyx

    d

    ass

    x

    ucetezcycxcnLLL

    T

    wvuT

    dudvdwd

    u

    wvuT

    ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )+

    =120

    0 0 00

    2

    01

    2 2

    ,,,

    ,,,

    nnTnnn

    zyx

    d

    ass

    L L

    nn tezcycxcnLLL

    T

    wvuT

    dudvdwd

    v

    wvuTwcvs

    y z

    ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    =12

    0

    0 0 0 0 00

    2

    01

    2

    2,,,

    ,,,

    nn

    zyx

    ass

    d

    t L L L

    nnnnT xcLLL

    TwvuT

    dudvdwd

    w

    wvuTwsvcuce

    x y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

    +

    t L L

    L

    nnnnTn

    x y z

    wvuTdudvdwd

    uwvuT

    uwvuTwcvcuceyc

    0 0 0 01

    00

    0100

    ,,,,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 02

    02n

    t L L L

    nnnnTnTnnn

    zyx

    ass

    dnTn

    x y z

    wcvcucetezcycxcLLL

    Ttezc

    ( ) ( )( )

    ( ) ( ) ( ) ( )

    =+

    12

    0

    1

    00

    0100 2,,,

    ,,,,,,

    nnTnnn

    zyx

    ass tezcycxcLLLwvuT

    dudvdwd

    v

    wvuT

    v

    wvuT

    ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    +

    t L L L

    nnnnTd

    x y z

    wvuT

    dudvdwd

    w

    wvuT

    w

    wvuTwcvcuceT

    0 0 0 01

    00

    0100

    ,,,

    ,,,,,,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ =

    =1 0 0 0 0

    0

    11,,,

    2,,,

    n

    t L L L

    TnnnTnTnnn

    zyx

    assx y z

    Twvugvcucetezcycxc

    LLL

    tzyxT

    ( )( )

    ( )( )

    ( )( )

    +

    +

    wc

    w

    wvuTwg

    wv

    wvuTTwvug

    w

    wvuTnTT

    ,,,,,,,,,

    ,,, 002

    00

    2

    2

    00

    2

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 0

    0

    00

    012

    ,,,

    ,,,

    n

    t L L

    nnnTnTnnn

    zyx

    assx y

    vcucetezcycxcLLL

    dudvdwdwvuT

    wvuT

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    14/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    40

    ( )( )[ ]

    ( )( )[ ]

    ( )

    +

    ++

    ++

    zL

    TTv

    wvuTTwvug

    u

    wvuTTwvug

    u

    wvuT

    02

    01

    2

    2

    01

    2

    2

    01

    2,,,

    ,,,1,,,

    ,,,1,,,

    ( ) ( )

    ( ) ( ) ( ) ( )+

    +

    =1

    001 2,,,

    ,,,n

    nnn

    zyx

    dass

    nT zcycxc

    LLL

    Tdudvdwdwc

    w

    wvuTTwvug

    w

    ( ) ( ) ( ) ( ) ( ) ( )

    ( )( ) ( )

    ( )

    +

    ++

    t L L L

    nnnnTnT

    x y z

    wvuT

    wvuT

    u

    wvuT

    wvuT

    wvuTwcvcucete

    0 0 0 01

    00

    10

    2

    00

    2

    1

    00

    10

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ( ) ( )( )

    ( )( ) ( ) ( )+

    +

    =+

    12

    00

    2

    1

    00

    10

    2

    00

    2

    2,,,

    ,,,

    ,,,,,,

    nnnn zcycxcdudvdwd

    w

    wvuT

    wvuT

    wvuT

    v

    wvuT

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    t L L L

    nnnnT

    x y z

    w

    wvuT

    v

    wvuT

    u

    wvuTwcvcuce

    0 0 0 02

    10

    2

    2

    10

    2

    2

    10

    2,,,,,,,,,

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    =1 0 0 0

    0

    00

    0 2,,, n

    t L L

    nnnTnTnnn

    zyx

    dass

    zyx

    dass

    nT

    x y

    vcucetezcycxcLLL

    T

    wvuT

    dudvdwd

    LLL

    Tte

    ( ) ( ) ( )

    ( ) ( )

    ( )

    +

    +

    zL

    TTTn Twvug

    w

    wvuTTwvug

    wu

    wvuTTwvugwc

    0

    00

    2

    00

    2

    ,,,,,,

    ,,,,,,

    ,,,

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0

    0

    00

    2

    00

    2

    2,,,

    ,,,

    n

    t L

    nnTnTnnn

    zyx

    dassx

    ucetezcycxcLLL

    T

    wvuT

    dudvdwd

    v

    wvuT

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    y zL L

    nw

    wvuT

    v

    wvuT

    v

    wvuT

    u

    wvuT

    u

    wvuTvc

    0 0

    1000100010 ,,,,,,,,,,,,,,,

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =+

    1 0 0

    0

    1

    00

    00 2,,,

    ,,,

    n

    t L

    nnTnTnnn

    zyx

    dass

    n

    x

    ucetezcycxcLLL

    T

    wvuT

    dudvdwdwc

    w

    wvuT

    ( ) ( ) ( ) ( ) ( )( )

    +

    +

    +

    y zL L

    nnwvuT

    dudvdwd

    w

    wvuT

    v

    wvuT

    u

    wvuTwcvc

    0 01

    00

    200

    200

    200

    ,,,

    ,,,,,,,,,

    .

    Equations for the functions ( ) ,,,~

    ijkI and ( ) ,,,

    ~ijk

    V , i0, j0, k0 and conditions for

    them have been obtain by the same procedure as for the functions Tij(x,y,z,t)

    ( ) ( ) ( ) ( )2

    000

    2

    0

    0

    2

    000

    2

    0

    0

    2

    000

    2

    0

    0000,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    +

    +

    =

    I

    D

    DI

    D

    DI

    D

    DI

    V

    I

    V

    I

    V

    I

    ( ) ( ) ( ) ( )2

    000

    2

    0

    0

    2

    000

    2

    0

    0

    2

    000

    2

    0

    0000,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    +

    +

    =

    V

    D

    DV

    D

    DV

    D

    DV

    I

    V

    I

    V

    I

    V ;

    ( ) ( ) ( ) ( ) +

    +

    +

    =

    2

    00

    2

    2

    00

    2

    2

    00

    2

    0

    000 ,,,~

    ,,,~

    ,,,~

    ,~

    iii

    V

    Ii IIIDDI

    ( ) ( )

    ( ) ( )

    +

    +

    +

    ,,,~

    ,,,,,,

    ~

    ,,, 100

    0

    0100

    0

    0 i

    I

    V

    Ii

    I

    V

    I I

    TgD

    DITg

    D

    D

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    15/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    41

    ( ) ( )

    +

    ,,,~

    ,,, 100

    0

    0 i

    I

    V

    I ITg

    D

    D, i 1,

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    00

    2

    2

    00

    2

    2

    00

    2

    0

    000 ,,,~

    ,,,~

    ,,,~

    ,~

    iii

    I

    Vi VVV

    D

    DV

    ( ) ( )

    ( ) ( )

    +

    +

    +

    ,,,~

    ,,,,,,

    ~

    ,,, 100

    0

    0100

    0

    0 i

    V

    I

    Vi

    V

    I

    V VTgD

    DVTg

    D

    D

    ( ) ( )

    +

    ,,,~

    ,,, 100

    0

    0 i

    V

    I

    V VTgD

    D, i 1;

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    010

    2

    2

    010

    2

    2

    010

    2

    0

    0010,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

    ( )[ ] ( ) ( ) ,,,~,,,~,,,1000000,,

    VITgVIVI

    +

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    0102

    2

    0102

    2

    0102

    0

    0010 ,,,~,,,~,,,~,,,~

    VVV

    D

    DV

    I

    V

    ( )[ ] ( ) ( ) ,,,~,,,~,,,1000000,,

    VITgVIVI

    + ;

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    020

    2

    2

    020

    2

    2

    020

    2

    0

    0020,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

    ( )[ ] ( ) ( ) ( ) ( ) ,,,~,,,~,,,~,,,~,,,1010000000010,,

    VIVITgVIVI

    ++

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    020

    2

    2

    020

    2

    2

    020

    2

    0

    0020,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    VVV

    D

    DV

    V

    I

    ( )[ ] ( ) ( ) ( ) ( ) ,,,~,,,~,,,~,,,~,,,1010000000010,,

    VIVITgVIVI

    ++ ;

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    001

    2

    2

    001

    2

    2

    001

    2

    0

    0001,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

    ( )[ ] ( ) ,,,~,,,1 2000,,

    ITgIIII

    +

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    001

    2

    2

    001

    2

    2

    001

    2

    0

    0001,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    VVV

    D

    DV

    I

    V

    ( )[ ] ( ) ,,,~,,,1 2000,,

    VTgIIII

    + ;

    ( ) ( ) ( ) ( ) +

    +

    +

    =

    2

    110

    2

    2

    110

    2

    2

    110

    2

    0

    0110 ,,,

    ~

    ,,,

    ~

    ,,,

    ~

    ,,,

    ~

    III

    DDI

    V

    I

    ( ) ( )

    ( ) ( )

    +

    +

    +

    ,,,~

    ,,,,,,

    ~

    ,,, 010010

    0

    0 I

    TgI

    TgD

    DII

    V

    I

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    16/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    42

    ( ) ( )

    ( )[ ] ( ) ( )[ ++

    +

    ,,,

    ~,,,

    ~,,,1

    ,,,~

    ,,,000100,,

    010 VITgI

    TgIIIII

    ( ) ( ) ,,,~

    ,,,~

    100000 VI+

    ( ) ( ) ( ) ( ) +

    +

    +

    =

    2

    1102

    2

    1102

    2

    1102

    0

    0110 ,,,~,,,~,,,~,,,~

    VVV

    D

    DV

    I

    V

    ( ) ( )

    ( ) ( )

    +

    +

    +

    ,,,~

    ,,,,,,

    ~

    ,,, 010010

    0

    0 V

    TgV

    TgD

    DVV

    I

    V

    ( ) ( )

    ( )[ ] ( )[ +

    +

    ,,,

    ~,,,1

    ,,,~

    ,,,100,,

    010 VTgV

    Tg VVVVV

    ( ) ( ) ( ) ,,,~

    ,,,~

    ,,,~

    100000000 IVI + ;

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    002

    2

    2

    002

    2

    2

    002

    2

    0

    0002,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

    ( )[ ] ( ) ( ) ,,,~,,,~,,,1000001,,

    IITgIIII

    +

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    002

    2

    2

    002

    2

    2

    002

    2

    0

    0002,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    VVV

    D

    DV

    I

    V

    ( )[ ] ( ) ( ) ,,,~,,,~,,,1000001,,

    VVgVVVV

    + ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    101

    2

    2

    101

    2

    2

    101

    2

    0

    0101,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

    ( ) ( ) ( ) ( ) +

    +

    +

    ,,,

    ~

    ,,,,,,

    ~

    ,,, 001001

    0

    0 ITgITgDD

    II

    V

    I

    ( ) ( )

    ( )[ ] ( ) ( )

    ,,,

    ~,,,

    ~,,,1

    ,,,~

    ,,,000100

    001 VITgI

    TgIII

    +

    +

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    101

    2

    2

    101

    2

    2

    101

    2

    0

    0101 ,,,~

    ,,,~

    ,,,~

    ,,,~

    VVV

    D

    DV

    I

    V

    ( ) ( )

    ( ) ( )

    +

    +

    +

    ,,,~

    ,,,,,,

    ~

    ,,, 001001

    0

    0 V

    TgV

    TgD

    DVV

    I

    V

    ( ) ( ) ( )[ ] ( ) ( )

    ,,,

    ~,,,

    ~,,,1

    ,,,~,,, 100000

    001 VITgV

    TgVVV

    +

    + ;

    ( ) ( ) ( ) ( )

    +

    +

    =

    2

    011

    2

    2

    011

    2

    2

    011

    2

    0

    0011,,,

    ~,,,

    ~,,,

    ~,,,

    ~

    III

    D

    DI

    V

    I

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    17/26

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    18/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    44

    ( ) ( ) ( ) ( ) ( ) ( )

    0

    1

    0

    1

    0

    1

    0

    100,

    ~

    ,,, dudvdwdw

    uVTwvugwsvcuce iVnnnnI , i 1,

    where sn() = sin(n);

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0010 2,,,

    ~n

    nnnnnnnn wcvcuceeccc

    ( )[ ] ( ) ( ) dudvdwdwvuVwvuITwvugVIVI

    ,,,~

    ,,,~

    ,,,1000000,,

    + ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    00

    0

    0202,,,~

    nnnnnnnnn

    V

    I wcvcuceecccD

    D

    ( ) ( ) ( ) ( ) + ,,,~

    ,,,~

    ,,,~

    ,,,~

    010000000010 wvuVwvuIwvuVwvuI

    ( ) dudvdwdTwvugVIVI

    ,,,1,,

    + ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0001

    2,,,~n

    nnnnnnnn wcvcuceeccc

    ( )[ ] ( ) dudvdwdwvuTwvug ,,,~,,,12

    000,,+ ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0002

    2,,,~n

    nnnnnnnn wcvcuceeccc

    ( ) ( ) ( ) dudvdwdwvuwvuTwvug ,,,~,,,~,,,1

    000001,,+ ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    00

    0

    1102,,,

    ~

    nnnnnInInnn

    V

    I ucvcuseecccnD

    DI

    ( ) ( )

    ( ) ( ) ( ) ( )

    =

    10

    0100 2,,,

    ~

    ,,,n

    nInnn

    V

    Ii

    I ecccnD

    Ddudvdwd

    u

    wvuITwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    V

    IiInnnnI

    D

    Ddudvdwd

    v

    wvuITwvugucvsuce

    0

    0

    0

    1

    0

    1

    0

    1

    0

    100 2,,,

    ~

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0

    1

    0

    1

    0

    1

    0

    100 ,,,~

    ,,,n

    i

    InnnnInI dudvdwd

    w

    wvuITwvugusvcuceen

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ +

    =1 0

    1

    0

    1

    0

    1

    0,

    12n

    VInnnnInnnInnnn vcvcuceccecccc

    ( )] ( ) ( ) ( ) ( ) dudvdwdwvuVwvuIwvuVwvuITwvugVI

    ,,,~

    ,,,~

    ,,,~

    ,,,~

    ,,,100000000100,

    +

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    00

    0

    1102,,,

    ~

    nnnnnVnVnnn

    I

    V ucvcuseecccnD

    DV

    ( ) ( ) ( ) ( ) ( ) ( )

    =

    10

    0100 2,,,~

    ,,,n

    nVnnn

    I

    Vi

    V ecccnD

    Ddudvdwd

    u

    wvuVTwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    I

    Vi

    VnnnnVD

    Ddudvdwd

    v

    wvuVTwvugucvsuce

    0

    0

    0

    1

    0

    1

    0

    1

    0

    100 2,,,

    ~

    ,,,

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    19/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    45

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0

    1

    0

    1

    0

    1

    0

    100,,,

    ~

    ,,,n

    i

    VnnnnVnV dudvdwdw

    wvuVTwvugusvcuceen

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ +

    =1 0

    1

    0

    1

    0

    1

    0,

    12n

    VInnnnVnnnInnnn vcvcuceccecccc

    ( )] ( ) ( ) ( ) ( ) dudvdwdwvuVwvuIwvuVwvuITwvugVI

    ,,,~,,,~,,,~,,,~,,,100000000100,

    + ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    00

    0

    1012,,,

    ~

    nnnnnInInnn

    V

    I wcvcuseecccnD

    DI

    ( ) ( )

    ( ) ( ) ( ) ( )

    =10

    0001 2,,,

    ~

    ,,,n

    nInnn

    V

    I

    I ecccnD

    Ddudvdwd

    u

    wvuITwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    V

    I

    InnnnID

    Ddudvdwd

    v

    wvuITwvugwcvsuce

    0

    0

    0

    1

    0

    1

    0

    1

    0

    001 2,,,

    ~

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    =1 0

    1

    0

    1

    0

    1

    0

    001,,,

    ~

    ,,,n InnnnInI dudvdwdw

    wvuI

    Twvugwsvcuceen

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] +

    =1 0

    1

    0,,

    ,,,12n

    VIVInInInnnnnn Twvugeecccccc

    ( ) ( ) ( ) dudvdwdwvuVwvuIucn ,,,~

    ,,,~

    000100

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    00

    0

    1012,,,

    ~

    nnnnnVnVnnn

    I

    V wcvcuseecccnD

    DV

    ( ) ( )

    ( ) ( ) ( ) ( )

    =10

    0001 2,,,

    ~

    ,,,n

    nVnnn

    I

    V

    V ecccnD

    Ddudvdwd

    u

    wvuVTwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    I

    V

    VnnnnVDDdudvdwd

    vwvuVTwvugwcvsuce

    0

    0

    0

    1

    0

    1

    0

    1

    0

    001 2,,,~

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0

    1

    0

    1

    0

    1

    0

    001,,,

    ~

    ,,,n

    VnnnnVnV dudvdwdw

    wvuVTwvugwsvcuceen

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ +

    =1 0

    1

    0

    1

    0

    1

    0,

    12n

    VInnnnVnVnnnnnn wcvcuceecccccc

    ( )] ( ) ( ) dudvdwdwvuVwvuITwvugVI

    ,,,~

    ,,,~

    ,,,100000,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0011

    2,,,~

    nnnnnInInnn

    wcvcuceecccI

    ( )[ ] ( ) ( ) ( )[ ]{ +++ TwvugwvuIwvuITwvug VIVIIIII ,,,1,,,~

    ,,,~

    ,,,1 ,,010000,,

    ( ) ( ) dudvdwdwvuVwvuI ,,,~

    ,,,~

    000001

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0011

    2,,,~

    nnnnnVnVnnn

    wcvcuceecccV

    ( )[ ] ( ) ( ) ( )[ ]{ +++ TwvugwvuVwvuVTwvugVIVIVVVV

    ,,,1,,,~

    ,,,~

    ,,,1,,010000,,

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    20/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    46

    ( ) ( ) dudvdwdwvuVwvuI ,,,~

    ,,,~

    001000 .

    Equations for initial-order approximations of distributions of concentrations of simplest complex-

    es of radiation defects 0(x,y,z,t) and corrections for them i(x,y, z,t), i1 and boundary and

    initial conditions for them have been obtained as the functions Tij(x,y,z,t) and takes the form

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    0

    2

    2

    0

    2

    2

    0

    2

    0

    0,,,,,,,,,,,,

    z

    tzyx

    y

    tzyx

    x

    tzyxD

    t

    tzyxIII

    I

    I

    ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkIII

    ,,,,,,,,,,,, 2,

    +

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    0

    2

    2

    0

    2

    2

    0

    2

    0

    0,,,,,,,,,,,,

    z

    tzyx

    y

    tzyx

    x

    tzyxD

    t

    tzyxVVV

    V

    V

    ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkVVV

    ,,,,,,,,,,,, 2,

    + ;

    ( ) ( ) ( ) ( )

    +

    +

    +

    =

    2

    2

    2

    2

    2

    2

    0

    ,,,,,,,,,,,,

    z

    tzyx

    y

    tzyx

    x

    tzyx

    Dt

    tzyxiIiIiI

    I

    iI

    ( ) ( )

    ( ) ( )

    +

    +

    +

    y

    tzyxTzyxg

    yx

    tzyxTzyxg

    xD

    iI

    I

    iI

    II

    ,,,,,,

    ,,,,,,

    11

    0

    ( ) ( )

    +

    z

    tzyxTzyxg

    z

    iI

    I

    ,,,,,,

    1, i1,

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    2

    2

    2

    2

    2

    0

    ,,,,,,,,,,,,

    z

    tzyx

    y

    tzyx

    x

    tzyxD

    t

    tzyxiViViV

    V

    iV

    ( )

    ( )

    ( )

    ( )

    +

    +

    +

    y

    tzyx

    Tzyxgyx

    tzyx

    TzyxgxD iV

    V

    iV

    VV

    ,,,

    ,,,

    ,,,

    ,,,11

    0

    ( ) ( )

    +

    z

    tzyxTzyxg

    z

    iV

    V

    ,,,,,,

    1, i1;

    ( )0

    ,,,

    0

    =

    =x

    i

    x

    tzyx,

    ( )0

    ,,,=

    = xLx

    i

    x

    tzyx,

    ( )0

    ,,,

    0

    =

    =y

    i

    y

    tzyx,

    ( )0

    ,,,=

    = yLy

    i

    y

    tzyx,

    ( )0

    ,,,

    0

    =

    =z

    i

    z

    tzyx,

    ( )0

    ,,,=

    = zLz

    i

    z

    tzyx, i0;

    0(x,y,z,0)=f(x,y,z), i(x,y,z,0)=0, i1.

    Solutions of the above equations could be written as

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ++=

    =

    =

    110

    221,,,

    nnnn

    nnnnnn

    zyxzyx

    zcycxcnL

    tezcycxcFLLLLLL

    tzyx

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    21/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    47

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ t L L L

    IIInnnnn

    x y z

    TwvukwvuITwvukwcvcucete0 0 0 0

    2

    ,,,,,,,,,,

    ( )] dudvdwdwvuI ,,, ,

    where ( ) ( ) ( ) ( ) = x y zL L L

    nnnn udvdwdwvufwcvcucF0 0 0

    ,, , ( )

    ++= 222022 111exp

    zyx

    nLLL

    tDnte ,

    cn(x)=cos(nx/Lx);

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =

    1 0 0 0 02

    2,,,

    n

    t L L L

    nnnnnnnn

    zyx

    i

    x y z

    wcvcusetezcycxcnLLL

    tzyx

    ( ) ( )

    ( ) ( ) ( ) ( )

    =

    1

    2

    1 2,,,,,,

    nnnnn

    zyx

    iI

    tezcycxcnLLL

    dudvdwdu

    wvuTwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    yx

    t L L LiI

    nnnnLL

    dudvdwdv

    wvuTwvugwcvsuce

    x y z

    2,,,,,,

    0 0 0 0

    1

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0 0 0 0

    1

    2

    ,,,1

    n

    t L L L iI

    nnnnnnnn

    z

    x y z

    w

    wvuwsvcucetezcycxcnL

    ( )

    dudvdwdTwvug ,,, , i1,

    where sn(x)=sin(nx/Lx).Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for

    them Cij(x,y,z,t) (i1,j1) and boundary and initial conditions take the form

    ( ) ( ) ( ) ( )2

    00

    2

    02

    00

    2

    02

    00

    2

    0

    00,,,,,,,,,,,,

    z

    tzyxCD

    y

    tzyxCD

    x

    tzyxCD

    t

    tzyxCLLL

    +

    +

    =

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    0

    2

    02

    0

    2

    02

    0

    2

    0

    0,,,,,,,,,,,,

    z

    tzyxCDy

    tzyxCDx

    tzyxCDt

    tzyxCi

    L

    i

    L

    i

    L

    i

    ( ) ( )

    ( ) ( )

    +

    +

    +

    y

    tzyxCTzyxg

    yD

    x

    tzyxCTzyxg

    xD i

    LL

    i

    LL

    ,,,,,,

    ,,,,,, 10

    0

    10

    0

    ( ) ( )

    +

    z

    tzyxCTzyxg

    zD i

    LL

    ,,,,,, 10

    0, i 1;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    01

    2

    02

    01

    2

    02

    01

    2

    0

    01,,,,,,,,,,,,

    z

    tzyxCD

    y

    tzyxCD

    x

    tzyxCD

    t

    tzyxCLLL

    ( )

    ( )

    ( ) ( )

    ( )

    ( )+

    +

    +

    y

    tzyxC

    TzyxP

    tzyxC

    y

    D

    x

    tzyxC

    TzyxP

    tzyxC

    x

    DLL

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,0000

    0

    0000

    0

    ( )( )

    ( )

    +

    z

    tzyxC

    TzyxP

    tzyxC

    zD L

    ,,,

    ,,,

    ,,,0000

    0

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    02

    2

    02

    02

    2

    02

    02

    2

    0

    02,,,,,,,,,,,,

    z

    tzyxCD

    y

    tzyxCD

    x

    tzyxCD

    t

    tzyxCLLL

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    22/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    48

    ( ) ( )

    ( )( )

    ( ) ( )

    ( )

    +

    +

    TzyxP

    tzyxCtzyxC

    yx

    tzyxC

    TzyxP

    tzyxCtzyxC

    x ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,,,,

    1

    00

    01

    00

    1

    00

    01

    ( )( )

    ( )

    ( )

    ( )+

    +

    LD

    z

    tzyxC

    TzyxP

    tzyxCtzyxC

    zy

    tzyxC0

    00

    1

    00

    01

    00 ,,,

    ,,,

    ,,,,,,

    ,,,

    ( )( )

    ( ) ( )( )

    ( )

    +

    +

    +

    y

    tzyxC

    TzyxP

    tzyxC

    yx

    tzyxC

    TzyxP

    tzyxC

    xD

    L

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,01000100

    0

    ( )( )

    ( )

    +

    z

    tzyxC

    TzyxP

    tzyxC

    z

    ,,,

    ,,,

    ,,,0100

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    11

    2

    02

    11

    2

    02

    11

    2

    0

    11,,,,,,,,,,,,

    z

    tzyxCD

    y

    tzyxCD

    x

    tzyxCD

    t

    tzyxCLLL

    ( ) ( )

    ( )( )

    ( ) ( )

    ( )

    +

    +

    TzyxP

    tzyxCtzyxC

    yx

    tzyxC

    TzyxP

    tzyxCtzyxC

    x ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,,,,

    1

    00

    10

    00

    1

    00

    10

    ( )( )

    ( )( )

    ( )+

    +

    LD

    z

    tzyxC

    TzyxP

    tzyxCtzyxC

    zy

    tzyxC0

    00

    1

    00

    10

    00,,,

    ,,,

    ,,,,,,

    ,,,

    ( )( )

    ( ) ( )( )

    ( )

    +

    +

    +

    y

    tzyxC

    TzyxP

    tzyxC

    yx

    tzyxC

    TzyxP

    tzyxC

    xD

    L

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,10001000

    0

    ( )( )

    ( )( )

    ( )

    +

    +

    +

    x

    tzyxCTzyxg

    xD

    z

    tzyxC

    TzyxP

    tzyxC

    z LL

    ,,,,,,

    ,,,

    ,,,

    ,,,01

    0

    1000

    ( ) ( )

    ( ) ( )

    +

    +

    z

    tzyxCTzyxg

    zy

    tzyxCTzyxg

    y

    LL

    ,,,,,,

    ,,,,,, 0101 ;

    ( )0

    ,,,

    0

    ==x

    ij

    x

    tzyxC

    ,

    ( )0

    ,,,=

    = xLx

    ij

    x

    tzyxC

    ,

    ( )0

    ,,,

    0

    ==y

    ij

    y

    tzyxC

    ,

    ( )0

    ,,,=

    = yLy

    ij

    y

    tzyxC

    ,

    ( )0

    ,,,

    0

    ==z

    ij

    z

    tzyxC

    ,

    ( )0

    ,,,=

    = zLz

    ij

    z

    tzyxC

    , i0,j0;

    C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i1,j1.

    Solutions of the above equations with account boundary and initial conditions could be written as

    ( ) ( ) ( ) ( ) ( )+=

    =100

    21,,,

    nnCnnnnC

    zyxzyx

    tezcycxcFLLLLLL

    tzyxC ,

    where ( ) ( ) ( ) ( ) = x y zL L L

    nnnnC udvdwdwvufwcvcucF0 0 0

    ,,

    , ( )

    ++= 2220

    22 111expzyx

    nCLLL

    tDnte

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 020

    ,,,2

    ,,,n

    t L L L

    LnnnCnCnnnnC

    zyx

    i

    x y z

    TwvugvcusetezcycxcFnLLL

    tzyxC

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    23/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    49

    ( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0 02

    10 2,,,

    n

    t L

    nnCnCnnnnC

    zyx

    i

    n

    x

    ucetezcycxcFnLLL

    dudvdwdu

    wvuCvc

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    =

    12

    0 0

    10 2,,,,,,n

    nnnnC

    zyx

    L Li

    Lnn zcycxcFn

    LLLdudvdwd

    v

    wvuCTwvugvcvs

    y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    t L L Li

    LnnnnCnC

    x y z

    dudvdwdw

    wvuCTwvugvsvcucete

    0 0 0 0

    10 ,,,,,,

    , i 1;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) =

    =1 0 0 0 0

    00

    201 ,,,

    ,,,2,,,

    n

    t L L L

    nnnCnCnnnnC

    zyx

    x y z

    TwvuP

    wvuCvcusetezcycxcFn

    LLLtzyxC

    ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    =1 02

    00 2,,,

    n

    t

    nCnCnnnnC

    zyx

    n etezcycxcFnLLL

    dudvdwdu

    wvuCwc

    ( ) ( ) ( ) ( )

    ( )( )

    ( )

    =12

    0 0 0

    0000 2,,,

    ,,,

    ,,,

    nnCnC

    zyx

    L L L

    nnn teFn

    LLLdudvdwd

    v

    wvuC

    TwvuP

    wvuCwcvsuc

    x y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

    ( )

    t L

    L L

    nnnnCnnn

    x y z

    dudvdwdw

    wvuCTwvuP

    wvuCwsvcucezcycxc0 0 0 0

    0000 ,,,,,,,,,

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 0202

    2,,,

    n

    t L L L

    nnnnCnCnnnnC

    zyx

    x y z

    wcvcusetezcycxcFnLLL

    tzyxC

    ( ) ( )

    ( )( )

    ( ) ( )

    =

    12

    00

    1

    00

    01

    2,,,

    ,,,

    ,,,,,,

    nnnnC

    zyx

    ycxcFLLL

    dudvdwdu

    wvuC

    TwvuP

    wvuCwvuC

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )( )

    t L L L

    nnnCnCn

    x y z

    v

    wvuC

    TwvuP

    wvuCwvuCvsucetezcn

    0 0 0 0

    00

    1

    00

    01

    ,,,

    ,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 02

    2

    n

    t L L

    nnnCnCnnnnCzyx

    n

    x y

    vcucetezcycxcFnLLL

    dudvdwdwc

    ( ) ( ) ( )

    ( )( )

    ( )

    =

    12

    0

    00

    1

    00

    01

    2,,,

    ,,,

    ,,,,,,

    nn

    zyx

    L

    n xcn

    LLLdudvdwd

    w

    wvuC

    TwvuP

    wvuCwvuCws

    z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    t L L L

    nnnnCnCnnnC

    x y z

    u

    wvuCwvuCwcvcusetezcycF

    0 0 0 0

    00

    01

    ,,,,,,

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0 02

    1

    00 2

    ,,,

    ,,,

    n

    t L

    nnCnCnnnnC

    zyx

    x

    ucetezcycxcFnLLL

    dudvdwdTwvuP

    wvuC

    ( ) ( ) ( ) ( )

    ( )( )

    =

    12

    0 0

    00

    1

    00

    01

    2,,,

    ,,,

    ,,,,,,

    nzyx

    L L

    nn n

    LLLdudvdwd

    v

    wvuC

    TwvuP

    wvuCwvuCwcvs

    y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    t L L L

    nnnnCnCnnnnC

    x y z

    TwvuP

    wvuCwvuCwsvcucetezcycxcF

    0 0 0 0

    1

    00

    01,,,

    ,,,,,,

    ( )( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    00 2,,,

    n

    t L

    nnCnCnnnnC

    zyx

    x

    usetezcycxcFLLL

    dudvdwdw

    wvuC

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    24/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    50

    ( ) ( ) ( )

    ( )( )

    ( ) ( )

    =12

    0 0

    0100 2,,,

    ,,,

    ,,,

    nnCn

    zyx

    L L

    nn texcLLL

    dudvdwdu

    wvuC

    TwvuP

    wvuCwcvcn

    y z

    ( ) ( ) ( ) ( ) ( ) ( )

    ( )( )

    t L L L

    nnnnCnnC

    x y z

    dudvdwdv

    wvuC

    TwvuP

    wvuCwcvsuceycF

    0 0 0 0

    0100,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 02

    2

    n

    t L L L

    nnnnCnCnnnnC

    zyx

    n

    x y z

    wsvcucetezcycxcFnLLL

    zcn

    ( )( )

    ( )

    dudvdwdw

    wvuC

    TwvuP

    wvuC

    ,,,

    ,,,

    ,,,0100 ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0 0 0 0211

    2,,,

    n

    t L L L

    nnnnCnCnnnnC

    zyx

    x y z

    wcvcusetezcycxcFnLLL

    tzyxC

    ( ) ( )

    ( ) ( ) ( ) ( )

    =12

    01 2,,,,,,n

    nCnnnnC

    zyx

    L tezcycxcFn

    LLLdudvdwd

    u

    wvuCTwvug

    ( ) ( ) ( ) ( ) ( ) ( )

    2

    0 0 0 0

    01 2,,,,,,zyx

    t L L L

    LnnnnCLLL

    dudvdwdv

    wvuCTwvugwcvsucex y

    z

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 0

    01,,,

    ,,,n

    t L L L

    LnnnnCnC

    x y z

    dudvdwdw

    wvuCTwvugwsvcuceten

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 02

    2

    n

    t L L

    nnnCnCnnnnC

    zyx

    nnnnC

    x y

    vcusetezcycxcFLLL

    zcycxcF

    ( ) ( )

    ( )( )

    ( ) ( )

    =12

    0

    1000 2,,,

    ,,,

    ,,,

    nnnnC

    zyx

    L

    n ycxcFn

    LLLdudvdwd

    u

    wvuC

    TwvuP

    wvuCwcn

    z

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    ( )

    t L L L

    nnnnCnCn

    x y z

    dudvdwd

    v

    wvuC

    TwvuP

    wvuCwcvsucetezc

    0 0 0 0

    1000,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    =1 0 0 0 0

    00

    2 ,,,

    ,,,2

    n

    t L L L

    nnnnCnCnnnnC

    zyx

    x y z

    TwvuP

    wvuCwsvcucetezcycxcFn

    LLL

    ( )( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    10 2,,,

    n

    t L

    nnCnCnnnnC

    zyx

    x

    usetezcycxcFnLLL

    dudvdwdw

    wvuC

    ( ) ( ) ( ) ( )

    ( )( )

    =

    12

    0 0

    00

    1

    00

    10

    2,,,

    ,,,

    ,,,,,,

    nzyx

    L L

    nn n

    LLLdudvdwd

    u

    wvuC

    TwvuP

    wvuCwvuCwcvc

    y z

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )( )

    t L L L

    nnnnCnCnnnnC

    x y z

    v

    wvuC

    TwvuP

    wvuCwcvsucetezcycxcF

    0 0 0 0

    00

    1

    00,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0210

    2,,,

    n

    t L

    nnCnCnnnnC

    zyx

    x

    ucetezcycxcFnLLL

    dudvdwdwvuC

    ( ) ( ) ( ) ( )

    ( )( )

    y zL L

    nn dudvdwdw

    wvuC

    TwvuP

    wvuCwvuCwsvc

    0 0

    00

    1

    00

    10

    ,,,

    ,,,

    ,,,,,,

    .

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    25/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    51

    REFERENCES

    [1] I.P. Stepanenko (1980). Basis of Microelectronics, Soviet Radio, Moscow.

    [2] A.G. Alexenko, I.I. Shagurin (1990). Microcircuitry, Radio and communication, Moscow.

    [3] Z.Yu. Gotra (1991). Technology of microelectronic devices, Radio and communication, Moscow.

    [4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin (1991). Basis of microelectronics, Radio and communica-

    tion, Moscow.

    [5] V.I. Lachin, N.S. Savelov (2001). Electronics, Phoenix, Rostov-na-Donu.

    [6] A. Polishscuk (2004), Ultrashallow p+n junctions in silicon: electron-beam diagnostics of sub-

    surface region. Modern Electronics. 12, P. 8-11.

    [7] G. Volovich, Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantumdots for high-throughput testing (2006). Modern Electronics. 2, P. 10-17.

    [8] A. Kerentsev, V. Lanin, Design and technological features of MOSFETs (2008). Power Electronics.

    Issue 1. P. 34.

    [9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin,

    V.V. Milenin, A.V. Sachenko, AuTiBxn-6H-SiC Schottky barrier diodes: the features of current

    flow in rectifying and nonrectifying contacts (2009). Semiconductors. Vol. 43 (7). P. 897-903.

    [10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo, High-performance InGaP/GaAs

    pnp -doped heterojunction bipolar transistor (2009). Semiconductors. Vol. 43 (7). P. 971-974.

    [11] E.I. Goldman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva, The manifestation of excessive

    centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and their

    subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with the

    ultrathin oxide (2011). Semiconductors. Vol. 45 (7). P. 974-979.

    [12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao, Impedance behavior

    of spin-valve transistor (2006). J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712.

    [13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto, Modeling of threshold voltage

    in pentacene organic field-effect transistors (2010). J. Appl. Phys. Vol. 107 (12). P. 124506-124510.

    [14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen, Christen,An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop

    origin of InGaN based light-emitting diodes (2012). J. Appl. Phys. Vol. 112 (2). P. 023107-023112.

    [15] O.V. Alexandrov, A.O. Zakharin, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin, Forma-

    tion of donor centers after annealing of dysprosium and holmium implanted silicon (1998). Semicon-

    ductors. Vol. 32 (9). P. 1029-1032.

    [16] I.B. Ermolovich, V.V. Milenin, R.A. Redko, S.M. Redko, Features of recombination processes in

    CdTe films, preparing at different temperature conditions and further annealing (2009). Semiconduc-

    tors. Vol. 43 (8). . 1016-1020.

    [17] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,

    R.G. Gordon, Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-

    sulfide buffer layer (2013). Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905.

    [18] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes, Shal-

    low acceptor complexes in p-type ZnO (2013). Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118.

    [19] A.E. Zhukov, L.V. Asryan, Yu.M. Shernyakov, M.V. Maksimov, F.I. Zubov, N.V. Kryzhanovskay, K.

    Yvind, E.S. Semenova, Effect of asymmetric barrier layers in the waveguide region on the temperature

    characteristics of quantum-well lasers (2012). Semiconductors. Vol. 46 (8). P. 1049-1053.

  • 8/10/2019 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS

    26/26

    International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

    52

    [20] V.P. Konyaev, A.A. Marmalyuk, M.A. Ladugin, T.A. Bagaev, M.V. Zverkov, V.V. Krichevsky, A.A.

    Padalitsa, S.M. Sapozhnikov, V.A. Simakov, Laser diodes arrays based on epitaxial integrated hetero-

    structures with increased power and pulsed emission bright (2014). Semiconductors. Vol. 48 (1). P.

    104-108.

    [21] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors (1979). "Naukova Dumka",

    Kiev.

    [22] P.M. Fahey, P.B. Griffin, J.D. Plummer, point defects and dopant diffusion in silicon (1989). Rev.

    Mod. Phys. Vol. 61. 2. P. 289-388.

    [23] K.V. Shalimova, Physics of semiconductors (1985). Energoatomizdat, Moscow.

    [24] E.L. Pankratov, Dopant Diffusion Dynamics and Optimal Diffusion Time as Influenced by Diffusion-

    Coefficient Nonuniformity. Russian Microelectronics (2007). V.36 (1). P. 33-39.

    [25] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction

    rectifiers by using overlayers, Int. J. Micro-Nano Scale Transp (2012). Vol. 3 (3). P. 119-130.

    [26] E.L. Pankratov, E.A. Bulaeva, Doping of materials during manufacture p-n-junctions and bipolar tran-

    sistors. Analytical approaches to model technological approaches and ways of optimization of distribu-

    tions of dopants. Rev. Theor. Sci. Vol. 1 (1). P. 58-82 (2013).

    [27] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (1972). Moscow, Nauka (in Rus-sian).

    [28] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (1964). Oxford University Press.

    [29] E.L. Pankratov, Redistribution of dopant during microwave annealing of a multilayer structure for

    production p-n-junction (2008). J. Appl. Phys. Vol. 103 (6). P. 064320-064330.

    [30] E.L. Pankratov, Redistribution of dopant during annealing of radiative defects in a multilayer structure

    by laser scans for production an implanted-junction rectifiers (2008). Int. J. Nanoscience. Vol. 7 (4-5).

    P. 187197.

    [31] E.L. Pankratov, Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure

    by optimized laser annealing. J. Comp. Theor. Nanoscience (2010). Vol. 7 (1). P. 289-295.

    [32] E.L. Pankratov, E.A. Bulaeva, Application of native inhomogeneities to increase compactness of ver-

    tical field-effect transistors. J. Comp. Theor. Nanoscience (2013). Vol. 10 (4). P. 888-893.

    [33] E.L. Pankratov, E.A. Bulaeva, Optimization of doping of heterostructure during manufacturing of p-i-

    n-diodes. Nanoscience and Nanoengineering (2013). Vol. 1 (1). P. 7-14.

    Authors

    Pankratov Evgeny Leonidovichwas born at 1977. From 1985 to 1995 he was educated in a secondary

    school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:

    from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-

    diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-

    physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-

    structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-

    rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor

    course in Radiophysical Department of Nizhny Novgorod State University. He has 102 published papers in

    area of his researches.

    Bulaeva Elena Alexeevnawas born at 1991. From 1997 to 2007 she was educated in secondary school of

    village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school

    Center for gifted children. From 2009 she is a student of Nizhny Novgorod State University of Architec-

    ture and Civil Engineering (spatiality Assessment and management of real estate). At the same time she

    is a student of courses Translator in the field of professional communication and Design (interior art) in

    the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant_ MK-548.2010.2).

    She has 50 published papers in area of her researches.