An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the...

download An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the Generating Body Force

of 8

Transcript of An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the...

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    1/18

    REPORT 1111

    AN ANALYSIS OF LAMINAR FREE-CONVECTION FLOW AND HEAT TRANSFER

    ABOUT A FLAT PLATE PARALLEL TO

    OF THE GENERATING BODY

    B y SIMON @rBACH

    SUMMARY

    The

    jree-conuedion

    j low and hed

    tianajer

    g9n.eraiedby a

    dyf or ce) abou t a j kt pki% pard?el t o t hed i r ect i on of t hebody

    r ce ar ejor dy anal yzed and the type of @w h found to be

    pend en t on w Gnw hof nu mbw al on e. F or l ur ge @z& f

    um ber s (wh i ch ar e of i nter est i n aem nut i ), thej fow b of

    boundary-luyer t ype and theproblem ix reduced in a jorma l

    n ner , w hi ch b an ul ogow t o Pr an dt l’s j or ced -- bou nd .ar y-

    yer t heor y, to i l w t im ui kzn eow sol ut i on of t wo or +~~

    ren i iu l equa.t t i 8ubjeei t o theproper boundarycondt iaons.

    v el oci t y an d t em p er a tu r e d i& i .bu i ti j or P r an d .t l n u m ber s

    j 0 .01, 0 .72, 0 .7%?, 1 , $ ’, 10, 100 , and 1000 are computed ,and

    i s shown t hai vel oci .t i a and Nussei ?tmu .i ber s oj t he order of

    oj those encountered in forced-convect t i $ows may

    e obt ai n ed i n j r e++ eon veet ion @w e. T h e t heor et ical an d

    xperi mental velocity and temperatw xedM ri ln& m

    a r e i n good

    A$ow and a hea i -t r ana j erparamet er ,j r om wh i ch t he impor -

    physica l guunt i t i .a such as shear st re+18nd hea$t rana jw

    t e can be cm npu kxi ,ar e o%i oed m j un ct i om oj Pr a& n um -

    r aki n . Compar i son oj t heorei%xd l yeompded vul ueaoj t he

    abt ran-sjerparanwter w& $ values ob i%ind j rom an approx i -

    e calculat ion and exper im ents yiefded good agreem-en$over a

    zr ge r an ge oj Pr an dt i n um ber . Agr een wn i btd wetm th e

    eor et i ad va i ?u a a nd i %m e obt i i m zi + om a j r egu en i l y u ed

    em iem p& k al hea& t r an & r bw w as good on ly i n r at r i .eted

    Prandti numbmr angm (depend ing on an arb i t ra rycandmv t).

    .

    INTRODUCTION

    Two impor t an t t ypes of f lu id f low prob lems involving heq t

    t ra nsfer a re t hose of forced a nd t hose of free convect ion.

    f or ced

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    2/18

    64

    RJ 3PORT1111—NATIONALADVISORYCOMMJ 2TEEFOR m0NAuTIc6

    Va rious t erm s a re om it ted from t he eq ua tions a t t he st ar t

    on t he ba sis of eit her int uit ive ~ gument s or no a rgument s

    a t a ll. Alt hough a t heor et ica l d evelopm en t m ad e in such a

    ma nner led t o good fina l result s, t he sigdca ace of a ll t he

    impor t a n t f a ct or s a s socia t ed w i th t h e f kee-con vect ion f low

    phenomenon i s n ot ob ta i ned fr om such an an a ly sis .

    The p rob lem of f ree-convect ion f low as produced by a body

    for ce a bout a fla t pla t e in t he d ir ect ion of t he body for ce w a s

    st udied a t t he NACA Lew is la bora tory during 1951 a nd is

    t rea ted in a for ma l a nd more genera l ma nner herein . The

    met hod u sed is somewh a t s im ila r t o t ha t u sed in r efer en ce 4

    wherein cons ider a t i on was g iv en t o t he f ree-convect ion f low

    a t ,h ig h G r a s hof number s in a h or iz on t a l cy lin der wh ich h ad a

    v a r iab le sur fa c e-t empera t u re d is t ri bu t ion . The appl ica t i on

    of t h is met h od t o t h e pr es en t pr ob lem lea d s t o a d ev elopmen t

    t vh ich i s ~ n a l og ou s t o P r a n dt l’s t r ea tmen t of h ig h Reynold s

    n umber for ced -con vect ion flo~ s . lt hoiq gh t he fin a l eq ua -

    t ions obt a ined by t his method a re the sa me a s t hose of

    S&mid t a n d Beckmanu, t h is mor e g en er a l a ppr oa ch not on ly

    clea r ly dem on st ra t es t he sign iika nce of a ll t he im por ta nt

    pa ra metem a nd a ssumpt ions a nd hence lea ds to a bet ter

    underst a nding of t his t ype of flow but a lso iq dica tes the

    qua nt it a tive limit at ions of the theory. In a ddit ion , t he

    numer ica l s olut i on s of r ef erences 2 and 3 a re herein er t ended

    tw cover a more complet i ra nge of pa ra meters. The new

    ca lcu la t ions f i-e ld in format ion on the f ree-convect ion f low for

    P r a ndt l n umbem cor respon din g t o t hose of liq uid m et a ls,

    ga ses, liquids, a nd very viscous fluids. .,

    ANALYSIS

    STATEMENT OF PROBLEM AND BASIC EQUATIONS

    The s t eady -s t a t e equa t ion s expres sing t he conse rv a t ion of

    ma ss , momen t um , a n d en er gg for a compr es si ble,- vis cou s,

    rmd h ea t -con duct in g flu id s ubject t o a bod y for ce t og et her

    w ith a n equa tion of st a te govern t he flow a nd a ssocia ted

    temper@w;

    in C a r t es ia n

    d is tr ibu tion a b;~ t t he pla t e. Th es e eq ua t ion s

    tensor not a t ion are (see ref . 5), respect ive ly ,

    &(Puj)=o

    (1)

    -+( + )1-~+(’ )-

    =

    Pf f+ & &

    p ‘j

    bxj

    (2)

    a p a

    ~ aT

    X.= U j q+axl

    Pcn Uj ax,

    –( )

    —+

    axj

      ( + )-:( )1

    ‘3)

    P= PV’,TI

    (4)

    (A complete lis t of the symbols used herein is given in

    appendix A.) For t h e t “wo-d imen sion a l ca s e, eq ua t ion s (1)

    t o (4) r ep resen t a s y st em of f iv e equa t ion s in t he f iv e depend-

    ent var iab les CL,Zh, P, P, a nd T. F or kt or use, eq u~ t ion (4)

    ca n be w r it t en

    d p=p(K d P–@ d T)

    (4a)

    where K a n d ~ a r e t h e coef ficien t s of i sot h erma l compr

    b il it y and volumet r ic expans ion , r espect iv el y (s ee re f. 6).

    a ddit ion t o a genera l st a te equa tion, such a s is give

    eq ua t ions (4) or (4a ), it w ill be convenient a t t im es in

    d is cumion t o r efer t o s ome specific st a t e eq ua t ion . To

    en d, t he-eq ua t ion of s ta t e for a n id ea l g a s

    .P=PRT

    w i ll b e u sed .

    P a r t icu la r con sid er a tion is h er e given t o t he t w o-d im

    s ion a l fr ee-con vect ion flow a bou t a s em i-t it e ver tica l

    pla @ The X,-a xis of t he coordina te syst em is t aken a

    t he, p la te a nd t he X2-a xis, norm al t o it . No dist inct io

    m a de a s t o t he s pec c t ype of bod y for ce a ct in g, for exam

    gr avit a tion al or cen tr ifuga l, but t he for ce is w sum ed t

    a ct in g in t he ver tica l d ir ect ion only (t ha t is, pa r allel t o

    pla t e). C en t rifu ga l a n d Cor ioli s for ces wh ich a r e conne

    w ith flow s on curved pa ths a nd w ith rot a ting syst

    genera lly va ry w it h posit ion a nd velocit y . H ow ever

    or der n ot t o make t h e an a ly sis u nduly compl ica t ed , t h e b

    for ce is t a ken t o be con st a nt .

    I n or der t o d efin e t he pr oblem clea r ly , a ch oice must

    be m a de of t he posit ion of t he or igin of t he coor din at e

    t em . B efor e m a kin g a defin it e d ecision on t his poin t,

    t ha t for con st a nt pla t e t emper a tu res t her e m -e fou r pcm

    t a t ion s of t h e body-for ce d ir ect ion (ei th er upwa r d or clo

    w ard) a nd the pla te t herma l condit ion (either hea ted

    cooled ) wh ich w ill lea d t o fr ee-con vect ion flow s. On ce

    posit ion of the edge of the pla te, w hich is CLlsoo be

    origin of t he coor dina te syst em , is decided, t here m e

    combin a t ion s of t h e body-for ce d ir ect ion and pla t e t h eu

    con dit ion t ha t w ill y ield flow s wh ich pr oceed aw a y fr om

    edge. I t is t his t ype of flow tha t is a ma na ble t o the typ

    a n a ly sis t o be ma de h er e. Th is poin t w ill be mor e fully

    cussed subsequent ly .

    I f t he edge of t he pla te (reca ll t h

    s em i-in fin it e pla t e h a s but on e edge) is t a ken a t t h e bot t om

    t he pla te (t ha t . is , t he pla te ext ends t o + ~ in t he Xl-dir

    t ion ), t he t w o combin at ion s lea din g t o flow s in t he pr o

    d ir ect ion (upw a r d in t his ca s e) a r e, r es pect ively , t he b

    force a ct ing dow pw ard w it h a hea ted pla te a nd the b

    force a ct ing upw ard w ith a cooled pla te. The equa t

    d evel oped for on e of t h e ca a e s reduce d ir ect ly t o t h os e f or

    ot her . Th e r ema in in g t w o permu ta t ion s, n amely , t he b

    f or ce a ct in g downwa r d w i th a cool ed pla t e a n d t h e body f

    a ct in g u pw a r d w it h a h ea t ed pla t e, w ou ld y ield flow s wh

    proceed dow nw ard or t ow ard the edge of the pla te if

    edge w ere t a ken a t the bot t om of the pla te. This t ype

    now wou ld v iola t e a ph ys iw l condit ion of t h e pr ob lem wh

    3tates

    t ha t the flow st a rt s a t the pla te edge. The la

    combina t i on s hence w i ll not be cons idered fur t her .

    Becau se t he two accep tab le con fi gu r a t ion s can be redu

    w en tia lly t o one, for t he developm en t t o be given h er e,

    X@ of t he coordina te syst em w ill be t aken a t the bot t

    >f a hea ted pla te, w ith t he body force a ct ing dow nw a

    l?h e a ss umpt ion is n ow ma de t ha t t he vis cosi~ a n d t herm

    :on duct ivi@ coeflicien ta a r e fu nct ion s of t he t emper a t

    d on e a n d obey t he follow in g la w s:

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    3/18

    FREE-CONVECTION F LOW

    AND

    HEAT

    TRANSFER ABOUT

    A FLAT

    P LATE

    6

    (5)

    ch oice of t he b od y-for ce d ir ect ion t og et her w it h eq ua -

    on s (5) a l ter s eq ua t ion s (2) a n d (3) s o t ha t t hey become

    (6)

    ot e t ha t t he only nonzero com ponent of t he body force is

    Xl-component.

    BOUNDARY CONDITIONS

    The bound a ry condit ion s a s soci a t ed w i th t h e g iv en pr ob -

    m a r e t ha t :

    (a ) Th e fluid must a dher e t o t he pla t e (t he n o4ip con di-

    on of viscous flow s) a nd the pla te must be a st rea mline,

    mathemat ica l ly ,

    U,(x,,O)=,(x,,o)=o

    (8)

    (b) Th e t emper a tu re of t he flu id a t t he pla t e mus t be eq u~

    t he pla t e t emper a tu re, t ha t is ,

    T(X1,O)=TO

    (9)

    (c) Th e velocit y U , a t la r ge d is ta n ces fr om t he pla t e mus t

    undi st u rbed , or

    u,(x,,~)=o (lo)

    (d) The tempera ture a t la rge dist a ncea from the pla te

    s t be eq ua l t o t he u nd is tu rbed flu id t emper a t ur e, or

    T (XI ,= )= T .

    (11)

    SIMPLIFICATION OF EQUATIONS

    Let a sma ll qua nt it y e now be defied a s

    c=/ ?(TO-Tm)

    (12)

    ch is a mea sur e of t h e magn it u de of t emper a t ur e v a ria t ion

    t he flow field . Th e coefficien t of volumet ric expa n sion B

    gen er a lly of t h e or d er of magn it ud e between 10-Z and 10-

    ee t a ble 15 of r ef. 7, for emun ple) a nd for ga ses, p= l /T.

    hus , for g a ses , i f P i s t a k en t o be con st a n t ,

    C =(T o– T m )/ T .;

    is , c is t he rela tive t empera ture difference.) The

    efficient /? w ill be a ssum ecl const ant . B eca use in t he

    a dy st a te flow ensues only w hen t here is a t em pw a ture

    ,va ria t ion in t he fluid, t he freea nvect ion velocit y shou

    t hen d epen d d ir ect ly on C ,a n d t he

    var ia t ions in

    pressure an

    d en sit y (fr om t he s ta t ic, 6= 0, ca s e) d ue. t o t he t emper a t u

    d iffer en ces s hou ld a ls o d epen d on ~ . Th us

    (1

    P= P* +Pm W

    (1

    P= Pa+P. ~Q

    (1

    z’=T=(l+d)

    (1

    where

    —fx

    denot es t h e Xl-componen t of t h e body f or ce p

    unit m aw , ut , u, p, a nd o denot e dim ensionless funct ion

    (wh ich , in gener a l , can be funct ion s of c), 1 is some cha r a ct e

    ist ic len gt h (for example, t he disia nce fr om t he ed ge of t

    pla t e t o t he po” tit of in ter es t), P , a n d p, a r e t h e pr es su re a n

    the densi~ , respect ively , for t he st a t ic ca se (Z7i= O

    c= O), a nd

    Pm

    a nd

    pm

    denot e con st a n t v a lu es of t h e pr es su

    a nd the densit y (t ha t is, t he va lue5 if no force field w e

    pr esen t) defin ed by t he st a te eq ua t ion (in t he ca se of

    a ga

    in

    part icular ,

    P- =p~RT~ ):

    B eca um t her e is n o ch a ra ct e

    ist ic velocit y a ssocia ted w it h t he type of flow under co

    sidera t ion , t he velocit y is dimensiona lized by t he fa ct

    g iv en in pa r en t hes es on t h e r ig ht s id e of equa t ion (13).

    I n or der t o det ermin e t he st a t ic q ua n tit ies, it w ill a t fir

    be con ven ien t t o con sid er t he pa r ticula r ca se of a ga s. Th

    pr oblem is t hen con sid er ed w it h t he t emper a tu re un ifor

    t hroughout t he flow field a t t he va lue T - (therefore the

    w ill be no flow a nd U ~ = O). For th is sit ua tion, equa tio

    (4b) and (6) become

    P,= P,R T.

    (1

    a nd

    (1

    (I t sh ou ld be n ot ed t ha t eq . (18) expr es ses t he ph ys ica l fa

    previously st a ted tha t t he body force a nd hydrost a t

    pr es su re a r e in equ ili br ium for t h e s t a t ic cn se.) Subs t it u ti

    of eq ua t ion (17) in t o equa t ion (18) lea d s t o

    ‘~=p++7&x)

    a nd equa tion (19) t ogether w ith equa tion

    equa t ion deb .ing

    P.

    a n d p- y ield s

    (1

    (17) a nd t

    P.=Pm em

    (

    -Ikix’)=’’-e+ )’) ’20

    If the

    exponen t ia l i n equa t ion (20) i s expr es sed in t erms

    i t s s er ie s expans ion , t h a t equa t ion becomes

    P*=P.

    (

    1—*X,+. ..

    m )

    (2

    321a9D-G~

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    4/18

    66

    RE PORT1111—NATIONALADVISORY

    ,

    cO~ FOR MJ RONAUMCS

    A computa t ion of t he second t erm in the pa rentheses of

    equa tion (21) for t he ca se of a ir under norm al condit ions

    w ith jx= g a nd the fa ct tha t Xl is of the order of ma gnit ude

    1 show t ha t

    p .gl / P~ -

    10-’l/oot . l’or t he t ype of problem

    under considerat ion ,

    1 wi ll shays be

    of u nit or der of m a gn i-

    tude so tha t even if the body force ~ x represent s a cen-

    t rifuga l force ma ny t imes t ha t of gra vi~ , the inequa lib

    PJxX/~.

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    5/18

    l?RIZIE-CONVECTIONLOWAND 1311AT

    .

    TUNSEDR ABOUTA EMT PLATEl

    6

    r th er simplifim tion of t he eq ua t ion s w ou ld be d esir a ble.

    st a s in the ca se of forced-convect ion flow s w here the

    y nold s n umber d et ermin es t he t ype of flow or , in m a th e-

    ica l t erms, t he t ype of solut ion , t he G ra shof n umber is

    e pr ime fa ct or for fr ee-con vect ion flow s. F or t he ca se of

    m a ll G ra shof number, it ca n be seen h or n eq ua tion s (32)

    (34) t ha t a pert urba tion in t he sm all pa ra met er @ w ill

    ield a syst em of linea r eq ua tions. F or G ra shof numbers

    f u nit or der of magn it ud e, n o fu rt her impor t a nt s implif ica -

    on can be made and t h e s olu tion swould h a ve t o be ob ta in ed

    umerica lly . For the other limit ing ca se, tha t of la rge

    a sh of number s (w hich is t he ca se un der consider at ion

    r ein ), it w ould , a t fir st t hough t, a ppea r t ha t s ome simpli-

    ca t ion cou ld be obt a in ed by per formin g a per tu rba t ion in

    he sma ~ pa ra meter 1/(3.

    How ever , t his w ould then

    ply t h a t t he t erm con t a in ing t he h ighes t -order der iv a t iv es

    t he l ef t t erm in equa t ion s (32) t o (34)) cou ld , among ot her s,

    e neglect ed. (This a rgument w ould a lso imply t ha t t he

    ody-force t er m q in equa tion (32), w hich is essent ia lly.

    pusin g t he flow , could a lso be n eglect ed.) The om ission

    f the h ighes t .ader der iva t ives f rom cons idera t ion , however,

    uld lea d t o solut ions w hich w ould not sa tisfy a ll t he

    undary condit ions .

    P roblems of t his t ype a re referred

    a s singula r perturba tion problems. For further dis-

    u ss ion s of s in gu la r per t ur ba t ion pr ob lems, s ee r ef er en ces

    a nd 9.

    E qua tions in w hich a sma ll pa ra meter mult iplies the

    gh est -or der t erms a re sa id t o be of t he bounda ry-la yer

    pe, beca use in order for solut ions w hich sa t isfy a ll t he

    unda ry cond it ion s t o be ob ta ined , t he h ighes t -order t erms

    st be con sider ed nea r t he bouhda ry. Th is fa ct im plies

    e exist ence of a t hin region, ca lled t he bounda ry la yer ,

    vherein the funct ions va ry ra pidly t im the va lue a t the

    ounda ry t o t ha t in the flow out side this la yer . The con-

    lusion t o be dr aw n fr om t he pr eceding discussion is t ha t

    or la rge G ra shof numbers t he flow is of t he bounda ry-

    yer t ype. Schmidt a nd B eckmann (ref. 2) a lso ma de

    boundary-layer assumpt ions in thei r theoret ica l develop-

    n t, a nd t hes e a s sumpt ion s w er e ju st ified on t he ba sis of

    ir exper imen t a l ob ser va t ion s. The G r a sh of number s f or

    i r exper imen t s we re of t he order of 8X106.

    I n view of t he fa ct , pr eviously discussed, t ha t @gh&-

    r der der iva t ives of ea ch depen den t va ria ble a s w ell a s of

    ose t erm s of physica l import ance (a s, for exa m le, t he

    F

    od y-for ce t erm) mus t be r et a in ed in t he boun da r y a y er , it

    s convenient t o ma ke bot h sides of ea ch of t he eq ua tiods

    f the sa me order in G r. In t his w ay, a s w ill be show n, the

    q ua tion s w ill be fur ther sim p%ed. I t is t hus convenient

    o ma ke the follow ing t ra nsforma tions in the syst em of

    q ua tions (32) t o (34) a nd (26) a nd t hen b ret ain only t he

    omina nt pa rt s (t ha t is, t hose mult iplied by & to the

    ghes t power) of ea ch -ind iv idua l t erm .

    Let V= f3r ’y, +=GW$, u=WZ, P=?, a nd 8= e. Then

    (38)

    (39)

    d~=K P=& ’dZ–~T.d~

    (41

    I t now ca n be seen tha t by proper choice of r , s, a nd t n

    t ra nsforma tion of the t ype given providw a mea ns for

    makin g t h e impor t a nt t erms in t h e d if fer en tia l eq ua t ion s o

    the same order in t% Thus if r =%, s= —%, a nd t =—1,

    equa t ion s (38) t o (41) become

    (42

    (44

    dG+@Tm d~=O

    (45

    Mor e gen er a lly , if N is ver y much d iffer en t fr om un it or de

    of m a gn it ud e, a va lue of tcan a lway s be chosen (depending

    on iV) such t ha t eq ua t ion s (42) t o (45) a re obt a in ed. @’or

    a ny n ega t ive

    t less

    t ha n —1, the la st t erm of eq . (42

    w ill a lso d isa ppea r .) -

    Th er e a re now sever al im por ta nt poin ts t o be discusse

    con cer nin g t he t ra n sforma t ion ju st m a de a n d t he rw dt in g

    simplified equa tions. F irst , it should be not ed t ha t th

    t r a ns forma t ion i s mer ely a f orma l expr es sion of t he bound

    a ry-I ayer wmunpt ion s fir st m ade by P ra ndt l a nd h eme t h

    solut ions w ill be a symptot ic for la rge G% Second, th

    secon d eq ua t ion of m ot ion her e a lso r ed uces t o st a te t ha

    t he pr wure a cr oss t hq bounda ry la yer is con st a nt . Thir d

    t he pressure t er ms in t he energy a nd st a t e eq ua tions a r

    here found to be negligible. This fa ct veriiies a prior

    a s sumpt ion s made by ot hem f rom the physi cs of t he prob lem

    F in a lly , n ot e t ha t in teg ra t ion of t he gen er a l st a t e eq ua t io

    (independen t of pr essur e) a a now given by eq ua tion (45

    lea d s t o

    ,

    g+ fl Tm i i=O (46

    w here t he const ant of int egra tion ha s been t aken a s zer

    w it hout a ny loss of genera lit y. F or t he pa rt icula r ca se o

    a ga s, /3= 1/T. s o t ha t eq ua t ion (46) becomes

    ~ + ~ = o

    Th e boun da ry con dit ion s (eq s. (35) t o (37)

    wri t ten

    ~(z,o)=~=(z,o)=o

    i(z,o)=&-

    m

    z(z,0)=7( m)=o

    now ca n b

    (47

    (48

    (49

    If now it is a ssumed t ha t ~ s= O in equa tion (42) since con

    sidera tion is here being given t o a fla t pla te, a nd if ~ i

    elimina ted from equa tion (42) by use of equa tion (46)

    t h er e r es ult s t he s ys tem of equa t ion s

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    6/18

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    7/18

    FREE-CONVE~ IONFLOWAND HEAT

    ysis on t h is t y pe of f low , t h is limit in g v a lu e i s t a ken t o be

    0° , a s in di cm t ed in r ef er en ce 10. Con sid er a t ion of t h is lim-

    t ion t hen .im pliw (see eq . (60)) t ha t for la rge la mina r

    l ocit ies eit h er v. m ,y st b e la r ge or X mus t b e sma l l.

    COMPARISON WITH

    EXYERIMENT9

    Care fu l exper iment s of f ree-convect ion f lows (as genera ted

    y g rw it a t igma l for ces ) a bou t ver tica l fla t pla t es w er ema d e

    Schm id t a n d Be ckmwm (r ef. 2) in wh ich v el ocit y mea sur e-

    n ts a t va r iou s poin ts a lon g t he pla t e w er e ma de by mea n s

    f r Lq um tz -illamen t a n emomet er a n d t he t emper a te mea s -

    men t s we re ob t a ined by means of manganese-const an t an

    E cker t (r ef. 1) per formed sim ila r exper i-

    n ts in w hich t he m en sur sm en ts w er e m ad e by m ea ns of a

    n

    \,

    3

     

    I

    4

    ~

    “2

    \

    N

    L

    “’

    .

    ~-

    .

    .1

    h

    _e

    0.01

    -k

    06 8

    IO121416182022ZW

    I

    r)’

    =7$

    .7

    .6

    R- -

    0 .01

    .5

    / \

      / \

    i

    \

    .3

    /

    .2 –

    .1

    0 I

    2

    3

    4 5 6

    7

    ~,

    (z&++

    FmuRE 1.—Dlmenskmlemvelwlty dlstxJ bntlonaor various

    Pi-mill

    numbers.

    TRANSFERABOUTA FLATPMTE

    6

    Zeh nd er -Ma ch in ter fer omet er . Th e r es ult s of bot h s et s

    exper im en ts a re in good a ~ eem en t, but sin ce t he da t a pr

    sent ed in reference 2 by S chmidt a nd B ecknwm a ppea r

    mor e d et a il, t hes e d a ta w ill be u sed for compa r is on w it h t

    t heor y. ,

    Th e exper im en ts of r efer en ce 2 w er e per formed on t w

    d .i il er en t (in t h a t t h e edges wer e smoot h ed ei th er s ymmet

    ca lly or n ot ) 12- by 25-cen timet er pla t es a n d on on e 50-b

    50-cen timet er pla t e. I t s hou ld h er e be poin ted ou t t ha t t

    r es ult s for t he t w o sma ller pla t es w er e a h nost id en tica l a

    t ha t the flow w as ent irely la mina r

    except nea r t he out

    edge of t he bounda ry la yer w her e t he sligh t t ur bulen ce

    t h e r oom a i r d is t ur bed t h e mea sur emen t s s omewh a t .

    m

    eilect w a s a ls o obs er ved by E cker t.) L a rg e per iod ic os ciU

    t iom of t he flow n ea r t he d own st ream ed ge of t he la r ger pla

    w er e obser ved in a dd it ion t o t he sigh t t ur bulen ce n ea r t

    1.0

    .8

    I .p~e

    :6

    k

    :0

    .

    ~F

    2

    .4

    .2

    0 I

    2 3

    rx ~ 4 5

    f)

    4~

    l?mwrm2.—DimmrsbJ rd=tempafhrm dlstrkmtlonsforvarlonsPrandtl nmnbma.

    ,

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    8/18

    7

    RDPORT 1 11 l—NATIONAL ADVTSORY

    COMMT iT E1 3 FOR AJ 3RONAUT ICS

    outer edge of t he bounda ry la yer . H ence t he da ta from t he

    la r ger pla t e s hou ld n ot be expeobd t o y ield complet ely s a t is -

    fa ct ory a greement w it h t he la mina r

    t heor y a s pr esen ted

    here.

    S it e t he ph ya ioa l q ua n tit ies ca n be expr ess ed in t erms of

    a sin gle va ria ble a s in eq ua t ions (60) a nd (61), it is t o be ex-

    pect ed t ha t t he da ta t aken a t t he va rious point s a long t he

    pla t es sh ou ld a ll lie on a sin gle lin e if t he d a ta a r e cor rela t ed

    a ccor din g t o eq ua t ion s (60) a nd (61). Th us for t he sma ller

    pla t es wher e (To-T_ )= 95.22° R a nd Tm= 518.68° R , eq ua -

    t ions (60) to (62) become

    u

    =F’(q)

    4.862-@

    (63)

    ‘;:~268=H (T)

    (64)

    .

    q=88.26+

    (65)

    The veloci ii y and t empera t u re d is t ri bu t ion s t i e so plot t ed in

    figur es 3 a nd. 4, r espect ively , a s a re t he cur ves comput ed

    t h eor et ica l ly for .P r =O .72. I t ca n be s een t h a t t h e a g reemen t

    is in genera l very good for .m@l va lues of q a nd somew ha t

    l es s s a t is fa ct or y t hou gh s tiI I r a t her g ood f or t h e ]@er va l ues

    of q . The-sca tt er in the ra nge of t he la rger va lues of q is

    believed t o be ca used by t he previously discussed room

    3 .2

    n

    u

    I

    o= o

    I I I

    I

    O.:

    2 .8

    (i’L

    v

    o

    0 . 394

    8

    n

    . 787

    0

    I . 575

    /

    1

    Experimental

    2.756

    (ret 2)

    a

    2.4

    D

    4.33 I

    4

    — Theoretical

    or R=O.72

    z ‘

    o

    2 .0

    4

    \ .~

    u

    o

    1.6

    r

    J

    3

    e

    >

    I .2 —G

    \ b

    n

    6

    .8

    y

    o 0

    >

    .4- 0“

    I

    1

    0 Lo

    2.0

    50 4.0 5.0

    6.0

    /

    %

    q=(8 8 .2 6 ) Y X

    ~awws 3.-Oomparfwn ofsmall plataeqwrfmenkl end theorotkal

    velwity dbtribrrtlmM

    for

    Pmndtl nnmberofoil.

    I .2

    I

    Jx

    I

    I

    I

    1.

    (in.)

    o 0.394

    0

    ,

    0

    t P

    1

     ~~~

    x~;~tm;;fal

    4

    2:756

    .8 D

    4.33 I

    -e

    — Theoretlccrlfor ‘ * 0.72

    ;

    .

    a

    .6

    q ru

    a) Cy

    \: ~

    ,.

    s In

    , m

    a

    k

    .4

      .

    a

    2

    ,

    b

    ~

    I IY

    ).

    I

    o

    LO

    2 .0 3 0

    . , 40

    5 .0

    /“

    =(88.26) Y X7

    FrGIJBE4.-Campd.mn of mnell plateeqxdraenbl andthwetlml tomporntumd

    tfonsforPmndtl namborof0.71.

    turbulence.

    I t s hou ld a ko be n ot ed t ha t t he poin ts fa r

    a wa y from the t heoret ica l a re those mea sured nea

    l ead ing edge. These point s shou ld not , of cou r se, be oxQ

    t o a gr ee t oo w ell w it h t he t heor y sin ce t he bou nd ar y-

    a s sumpt ion s made in t he t heoret i ca l developmen t imply

    t he dist ance a long t he pla te is la rge a s com pa red w it

    bounda ry-l a yer t h iclmess . Hence, t h is a s sumpt ion i s in

    nea r t he lea din g edge.

    S chmid t a n d B ecknmnn obt a

    closer ag reemen t between the t heory and t he mTer imen

    t h e t emper a t ur e d a t a a n d poor er a g reemen t for t h e vel

    d a t a by ba sing t he k inema t i c v is cos it y coef fi ci en t in oqu

    (62) on the pl a t e t empera t u re r a t her t h an on ”t he undi st u

    st ream t emper a tu re a s w a s don e h er e.

    F or t h e la r ger pla t e, (TO– T .) =83 .7°R and T . = 627

    R , s o t h a t eq ua t ion s (60) t o (62) become

    u

    =F’(q)

    4.622@

    ‘–8~;.1 4=H (q)

    q=83.93~

     

    The v elocit y a n d t emper a t ur e d is tr ibut ion s for t h is ex

    men t a r e plot t ed in figu res 6 a n d 6, r espect ively ,

    a nd

    t he t heor et ica l ct ies for Pr=O.72 a r e i nclu ded . I n fig ur

    ca n be seen tha t for la rge q the a greement is ra ther

    pa r t icu la r ly for t h e d a t a for bot h sma l l a n d la r ge v a lu es

    The poor a greem ent for snd va lues of X is a ga in due t

    t heory limit at ion nea r t he edge of t he pla te rm d for

    va lu es of X, t o t he fa ct t ha t t he flow w a s becom in g t ur b

    there.

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    9/18

    F RJ 3 E-CONV3WI’ION F LOW AND E EAT

    FLOW AND HEAT-TRANSFER PARAMETERS

    In a d dit ion t o t h e v elocit y a nd t emper a t ur e d is t rib ut ion s,

    t is oft en d esir a ble t o compu te ot h er ph ysica lly im por ta n t

    t it ies (s uch M shea r s t res s, d ra g , h ea t -t r amfer r a t >, a nd

    trrmsfer coeff ic ient) associa ted with the free-convect ion

    low . To t his end, t wo pa ra met ers, a flow pa ra met er a nd a

    a t -t r a ns fer pa r amet er , m e d er iv ed in a ppendixes C a nd D ,

    The f low pa r ameter

    i-

    =F’’(o)

    (4(3r=~$(vmw/ X)

    s present ed a a a funct ion of P ra ndt l number in figure 7.

    hus , t h e v a riou s flow q ua n t it ies for a g iv en s et of ect n dit ion s

    a n ea sily be compu ted by a pplica t ion of fig ur e 7.

    The loca l hea t-t r ans fer pa ramete r

    Nu

    =

    –H’(o)

    (Qr x/4)+

    s d et ermin ed h er e is given a s a fu nct ion of P r a nd ti n umber

    in figu re 8. A ca lcu la t ion of t he loca l N uss elt n umber h or n

    t h is eq ua t ion for

    Pr=O.72

    a nd Qr= = 10g y ields a va lue of

    63.6,

    which indica te s tha t l a rge hea t-t r ama fe rcoe ff icien ts ean

    a l so be ob t a ined w i th f ree-convect ion f low s .

    3,2

    2.8

    2.4

    2.0

    ~P

    -:

    r

    1.6

    a:

    q

    w 1.2

    .8

    .4

    c

    I

    I

    1

    I I

    o D

    (i’L

    o

     

    1.969

    0

    3.939

    @

    4

    1’

    I~78xwgfm ~tal

    D

    8:817

    V 15.756

    VD

    — Theoretkol for R“ 0.72

    0

    7

    v.

    D

    b

     

    ,4

     

    u

    7

    \

    b

    4

    r

    ‘v,

    v

    \

    >

    D

    ?

    \

    v

    c

    -

    c.

    o

    v

    v

    o

    ,,

    n

    \

    v

    Q

    D 4

    D 8

    d

    3

    \

    D

    8

    b

    \

    Lo

    2 .0 3 .0

    , 4 .0

    5 .0

    6 13

    /’ .

    =(83.93) Y X7 ‘

    FIOVBES.-corn-n

    Offwo P~@ W T@II I~ ~d

    Owreifd VowaY dfstrfbltloru

    forProndtlmunbmof0.72.

    TRANSFER ABOUT A FLAT PLATE

    7

    On the ba sis of a simplified theory (tha t iej by use o

    in tegr at ed m omen tum a nd en er gy eq ua t ion s a nd a ssum ed

    veloci~ a n d t emper a tu re d ist r ibu tion s), E ek er t (see p. 162

    of r ef. 7) obt a in ed t h e a ppr oxim a t e r ela t ion

    N u ~ 0.718(P

    (w x/ 4)i (0.962+P

    I .2

    x

    4--

    .8

    Y.L I

    I

    I I

    V 15.756 ]

    .

    F

    -t-l

    Theoretical for /?= 0.7?

     

    I I

     

    I

      I

    .2

    \ -v

    P

     

    De

    v

    q

    Q

    v

    ~

    o

    0

    1.0

    .20 3.0

    , 40 5.0. 60

    ,—

    I

    From 7.—Dtm8ml0IIlm f low fmrameti u fnmtkm of Prandtf number.

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    10/18

    72

    REPORT 1 11 l—NATIONAL ADVISORY COMMTMIEO

    FOR AERONAUTICS

    Th e cur ve r epr esen tin g t his eq ua t ion is a lso pr esen ted in

    figure S , a nd it closely a pproxima tes (to w ith in a bout 10

    per cen t ) t h e cu rv e det erm in ed by t h e mor e exa ct Con sid er x

    t ion s of t his r epor t over t he en tir e P r a n dt l n umber r a ng e. A

    s em iempi ri ca l eq ua t ion a s g iv en in r ef er en ce 11 r ela t i ng t h e

    a ver age (over t he len gt h X) NuAelt n umber t o t he P r a ndt l

    a nd G ra shof numbers w hich ha s been used in t he hea t-

    t r a n sf er ca l cu la t ion s up t o t h e pr es en t i s

    Num= o.54s [(B-)(%]*

    The const ant 0.54S pert a ins spec.ilica lly t o a ir ; for oil it

    s hou ld be 0.555 (see ref . 12) and for mercu ry, approt i a t el y

    0.33 (see ref. 13). In order t o obt a in loca l va lues fim the

    a , ver ageones g iv en by t he l a s t equa t ion , i t i s merel y necemry

    t o mul tiply t h e a v er a ge va l ues b y 0.75. (The det erm in a t ion

    of t h is r ed uct ion fa ct or of 0.75 is d is cumed in a ppen dix D .)

    Thus in t erm s “of t he loca l q ua nt it ies t he sem iem pir ica l

    rela t ion becomes

    NU= O.411 [(Pr) t7rx]*

    or

    Nu

    =0.5s1(R-)*

    (Qrx / 4)+

    The cu rve g iven by t his eq ua t ion is a ls o pr es en tid in fig ur e

    S a n d t he a g reemen t w it h t he t heor et ica l cu rve is ver y good

    for P r a n dt J n umber s n ea r unit y , n ot s o g ood for la r ge P r a n d tl

    num bem, a nd very poor for t he sm all P ra ndt l num bers. Of

    course, changes of the cons t an t s in the semiempir ica l re la t ion

    a s p rev iou sl y d is cu ssed for t he l a r ge or sma ll P r and t l number

    ca ses (oil a nd m er cu ry , r espect ively , for example) w ould

    cause the semiempir ica l curve to apprtmimate the theore t ica l

    curve more closely . The v a lu es of t h e h ea tAr an sf er pa r am-

    et er obt a in ed exper im en ta lly for m er cur y (P r = O.03), a ir

    (P r =O.72), w a t er (P r = 7), a n d oil (P r = 75.5, 115:190,224,

    275, 31S , 368, a nd 442) a re h er e r educed by t he fa ct or 0.75

    from t he a vera ge va lue report ed. The va lue for m er cury

    is a n a ver age t a ken of four r ea din gs fr om a cur ve, sin ce t his

    exper im en t w a s t he on ly on e n ot r epor ted in t a bula r form.

    F rom iigure S it ca n be seen t ha t a ll of the exper iment a l

    va lu es except t hos e for t he oil exper imen ts a r e in ver y g ood

    a gr eem en t w it h t he t heor et ica lly comput ed va lues.. Th e

    da ta from t he oil experiment s, though not so good,

    r ea son able a gr eem en t (m tium er ror of a ppr oxim a t

    per cen t) w it h t he t heor et ica l cu rve rmd g ood a g reeme

    is t o be expect ed , w it h t he s em iempir ica l cu rve. Th e d

    en ce bet w een t he t heor et ica l va lu es a n d t he oil exper

    result s ca n possibly be due t o t he fa ct t ha t t he visc

    changes in oi l a r e l a r ge even for sma l l t empera t u re d if fe r

    or d ue t o t he en d effect s in t he mea s ur emen ts .

    CON~USIONS

    An analyaia was

    made of t he fr ee-con vect ion flow a b

    fla t pla te orient ed in a direct ion pa ra llel t o tha t o

    gen er a tin g bod y for ce u nd er t he pr ime a s sumpt ion t ha

    r ela t ive t emper a tu re d ifler on ce is sm a ll. I t w a s foun d

    t he G r as&of n umber w a s t he pr in cipa l fa ct or d et wm

    t he t ype of flow a nd t ha t for la r ge G ra sh of n umber s t he

    w a s of t he bound ar y-la yer t ype. Th e t heor et ica l dev

    m en t w a s t hen con tin ued t o con sid er on ly t he ca a ea of

    G ra shof number beca use t hese a re of m ost im port an

    amonaut ics .

    Velocit y a n d t emper a t ur e pr dles for P r a n dt l n umbe

    0.01, 0.72, 0.733, 1, 2, 10, 100, a n d 1000 wer e compu te

    the ba sis of a const ant body force a nd pla te t emper

    a nd a greement w ith experiment s w here the fluid w b

    (P ra ndt l number of 0.72) -w a s g ood. I t vm .s a lso de

    st ra t ed t ha t velocit ies a nd Nuss elt n umber s of t he or d

    magnit u de of t h os e ob ta i ned in for ced -con vect ion cou

    obt a ined in f ree-convect ion f lows .

    A flow pa r amet er a n d a h ea t -t ra n sfer pa r amet er wh ic

    fu nct ion s of t he P r a nd tl n umber a lon e w er e d er ived . C

    la t ion s of t he im por ta n t ph ysica l q ua n tit ies such a s

    s t res s, h ea t -t r a ns fer r a t e, a n d t h e l ik e ca n be compukd

    t hese pa r am et er s. Va lues of t he h ea t -t ra n sfer pa r a

    ob ta i ned f rom an appr oxima t e t h eor et ica l d ev elopmen

    f rom exper imen t s compa r ed w i th va l uea compu t ed f rom

    pr esen t d evelopm en t sh ow ed good a gr eem en t, over a

    ra nge of P ra ndt l number (0.01 t o 1000). I t is show n

    t he common ly u sed sem iempir ica l r ela t ion ’ for t he

    t r a ns fer coeff icien t w i ll y iel d g ood r es ul ts on ly in r es t

    P r a n d tl n umber r a n ges .

    Lmvrs

    FLIGRT

    PROPULSION LABORATORY

    NATIONAL ADVI SORY COZJM IT PE E FOR AERONAUT ICS

    CLEVELAND, OHIO, October3, 1961

    APPENDIX

    A

    SYMBOLS

    The f ollow i ng not a t ion i s u sed in t h is r epor t :’

    Atj(n), B j(a ),

    coef fi ci en t s in numer ica l d ifb ren t ia t ion -a n d

    @), D i(fll

    in t egra t ion formulas

    Cp

    speci fi c hea t a t con s t an t p res su re

    F

    dimensionless velocity function

    ff

    componen t s of body form per unit ma ss,

    i= l, 2, 3

    .f x

    n eg a tive of X-compon en t of bod y ~ f or ce per

    u nit m a ss

    G

    G .

    g

    H

    h

    K

    G ~ of number EMz~

    G ra sh of n umber ba s~ ~ on X

    g ra v it a t ion a l f or ce per unit ma s s (or a cce

    t ion d ue t o gr i@y )

    d imens ioi lew tempera ture funct ion

    heat -tra nsfer coeflicie~t

    isothermal compressibi li ty coeff icient ,

    _p

    a(l / p I

    [1

    ap =

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    11/18

    FRJ J E -CONVECTION FLOW AND H33AT

    TRANSFER ABOUT A FLAT PLATE

    , n

    u

    , s, t

    i

    f

    therma l-conductivity coeiiicient

    character is t ic length

    arb i t r a ry esponent s

    a n umber , d efied follow in g eq ua t ion (26)

    Nussel t number,

    hX/ k

    aver age Nussel t number

    pressure

    P r a n d tl n umber

    ga a cons t rmt

    arb i t r a ry esponent s

    absolute tempera ture

    velocit y compon en ts , i= 1, 2, 3

    d imen sior d eiwv elocit y componen t s, ;= 1 , 2, 3

    d imens ion les s veloci t y componen t in zd ir ec-

    tion

    d ime.n s ion lw veloci t y componen t in y -d ir eb

    tion

    Cm%e.s iancoord ina tes , ~ = 1, 2, 3

    d imens ion lessC ar t e9ian coord ina tes , i = 1,2,3

    dimensionless Ca rtes ian coordinate

    Car t es ian coord ina te

    dimensionless Ca rtes ian coordinate

    B

    ‘r

    A

    E

    v’

    e

    K

    P

    v

    P

    u

    7-

    ;

    Subscripts:

    ~ Jj

    8

    0

    w

    coefl?icientof volumetric expansion,

    r a t io of s pecif ic h ea t s

    La pla cia n opera t or ‘

    rela t ive temperat ure difference, f?(Z’O—

    T.)

    s im i la r i t y variable

    d im en sion lem t em per a t ur e fu n ct ion

    s t ep s ize

    used in nwmer ica l ca lcu la t ions

    a b sohh v is cos it y

    kinema t ic v iscosi ty

    d~ i t y

    dimemiordws pressure funct ion

    shea r s t r es s

    d imens ionkas dens it y funct ion

    st ream funct ion

    Carte . s iaq

    t e n sor an d sum ma t ion su bs cr ip t s

    d en ot e s eva lu a t ion a t s t a t ic con d it ion s (c=O

    den ot es eva lu a t ion a t p la t e su r fa ce

    d en o t e s eva lu a t ion a t u n d is t u rbed con d it ion

    Subs cr ipt n ot a t ion i s u sed t o d enot e pa r t ia l d if fer en t ia t i

    Superscripts:

    P r imes denote ord inary d i fferent i a t ion .

    B a r s (a s ; or ~ d enot e t r a ns formed d imen si on les s q u ant it

    APPENDIX B

    NUMERI CALSOLU TIONOF SIMP U l?IED BOUNDARY-VALURROBLEM

    By

    LYNN U. Armms

    The met hod is pr es en ted h er ein by wh ich s olu tion s t o t he

    undary-value problem

    obt a ined

    , 2, 10,100,

    ~ “’+ 3FF’’-22+ H= 0=0

    (B1)

    H “+3PTFH ’=0 (B2)

    F (0) =F ’(0) =0 H (0) =1

    F’(=)=H(0)=’o

    for t he ca ses of

    Pr

    equa l t o 0.01, 0. 72, 0. 733,

    a nd 1000. This discussion w ill ena ble t he

    sult s t o be clea rly eva lua ted a nd w ill perha ps ser ve a a a

    ide in t he numer ica l s olut i on of s im i la r p rob lems .

    Ea ch of the ca ses of the problem ha s a solut ion for a

    a rt icula r set of va lues for

    F “ (0)

    a nd

    H’(0),

    hereinafter

    ed eigenvalues.

    Th e ba s ic a ppr oa ch t o t he pr oblem wa s

    est im a te t he eigen va lues a nd t o in tegr a te out fr om zer o,

    bt a in in g fu nct ion s wh ich s a tis fied eq ua t ion s @l) a n d (B 2)

    ea ch s tep. Th e in teg ra t ion w a s con tin ued u nt il t he fun c-

    F ’

    a nd

    H

    beh aved in a fa sh ion in con sist en t w it h t he

    und a ry v a lu es a t in ii nit y ; f or exampl e, wh en t h ey became

    ega t ive or d iverged t o in 6 n it y.

    igen va lu es we re t h en m ade on

    re c ed in g ru n s an d t h e p roce s s

    n t il a s olu t ion was obt ain ed .

    Improv ed es t ima t es of t h e

    the ba sis of the result s of

    wa s repea t ed succes si ve ly

    Modh ica t i on s requ ir ed t o over come speci fi c obst a c le s w

    be d is cu ss ed a ft er s ufficien t d et a ils of t he ba s ic pr oced

    h ave been given. Th en a n eva lua t ion of t he a ccur acy of

    numer ica l r es ult s w i ll b e made.

    Th e in teg ra t ion pr oce9s con sis ts of t w o pa r t s,

    a

    s t a r t

    pha se a nd a n ext ension pha se. The st ar ting pha se beg

    w it h a n eMr na t e of t he eigen va lues

    F“(0)

    a nd

    H’(0)

    a n

    decision on t he st ep size K to be used. I t cont inues w it h

    i ter a t iv e pr oces s of a l ter na t ely compu t in g F ’” a nd H “

    t he t it four point s a nd integra ting t hem by five-po

    formula s. This process a nd t ha t in the extension pha

    a r e s o. a r ra n ged t ha t t he d iffer en tia l eq ua t ion s a r e s a tis

    a t ea ch in teg ra l mult iple of t he s tep s iz e.

    The ext en sion ph a se u sed pr eced in g d a t a t o in t eg ra t e s

    by st ep beyond t he fourt h point . D ia gra ms of bot h pha

    w i ll b e g iv en a f ter a few pr elimina r y expla n a t ion s.

    All in teg ra t ion formu la s u sed a r e ba s ed on t he s ame id

    I f a funct ion , f or ex ample, F“’”, iskn own

    at five points, there

    a

    un iq ue four th degr ee poly nom ia l w hich a gr ees w it h it

    t hese five poin ts. Mor eover , if t he su ccessive a n tid er i

    t i ve s (i it eg r a ls ) F“, l “, a nd F of F ’t ’ ar e know n a t

    poin t, t her e a r e un iq ue fift h-, sixt h-, a nd seven&d egr

    poly nom ia ls w hich he successive, a nt id er iva t ives of t

    f ou rt h deg ree pol yn om ia l a h d wh ich a g ree w i th

    F“, F ’,

    a

    F,

    r espect ively , a t t he on e poin t. I t is t hen a sim ple a lgb

    pr oblem t o d ed uce fr om t he va lu es of

    F ’” a t five po in t s a

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    12/18

    74

    REPORT 1 11 l—NATIONAL D~ORY

    F , F ’, a nd F“ a t a single poin t the va lues of a ny of these

    four poly nom ia ls a t a ny poin t. Th ese r esult s w ill a ppr oxi-

    ma t e t he funct i on s

    F , F ’, F“,

    a nd

    F ’” ta a

    degree dependent

    on s tep s iz e, t he r ela t ive pos it ion s of t he poin ts in q ues tion ,

    a nd the ma gnitude of t he iift h der iva tive of

    F ’” i n the

    neighborhood of these poin t s .

    The pr eceding a lgebra pr oblem ca n be pr esolved in a ll

    s it ua t ion s t ha t a r is e in t he s ta r t in g a n d ext en sion ph a ses of

    t he pr es en t pr oblem a n d s pecific in teg ra t ion formu la s m a y

    be deduced. These formula s a re discussed in the next

    paragraph.

    Let

    F ’”

    be denoted a t five successive point s by

    Fe’”,

    F 1’”, F ~’”, F ~’”,

    a nd

    F.’”.

    I n the

    s ta r t in g ph a se, t hes e

    poin ts a re O,

    K, 2K, 3K,

    a n d 4K , a nd

    FO,FO’,

    a nd

    F O” a r e a l so

    known.

    Then t he five s et s of for .umk r eq uir ed in t he s ta r t -

    in g ph a se a r e.

    E i =Ho+ iKHo ’ +

    &

    A. i jmE; ’

    ;= 1, 2, 3, 4 (I36)

    Fi =Fo+W+~ Fo”+& ~ A,jm F i ” “

    i=l,,2, 3, 4 (B 7)

    wh er e t he s uper scr ipt s on t he

    A; ‘a)

    a nd

    D i @

    refer t o t he

    order of in tegra t ion .

    The cons t an t s

    A,j@)

    a nd

    Di @I )

    ma y be rea d from t he fol-

    10~ t a bles:

    For A~ j (l J and Di(l) :

    .

    COMMFFPEE FOR AERONAUTK

    For At i@)

    a nd

    D i @?

    Au($)

    1

    W?)

    ,J ~ ~ .2 ~ 4

    1

    1017 1070 -618 263

    -47 mm

    -m

    : lE 3% -480

    –19

    M -81

    lE

    4 744 n?o 93 334 -40

    316

    I t is n ow pos sib le t o d ia g ram t he s teps of t he s ta r t in g

    of t he int egra t ion . I f ea ch ba r a bove a funct ion denot

    im pr oved &im a te of it , a nd t he fir st estimates of F1 ’”,

    F3’”, a nd F4’” a re W equa l t o Fe’”, a nd sim ila rly fo

    H “,

    t hen t he s ta r t in g ph a se d ia gmms a r e

    (1) (F o, F e’, F O”, F e’”, F ,’”, F ,’”, F a’”, F 4’’’)+ F,, F 1

    (T hi s d i agr am mea ns t ha t the va lues in pa rent hese

    used w it h a ppropr ia te int egr at ion for mula s fr om @3

    (B7) t o ob ta in F , F ’, a nd F “ at q=z.)

    (2) (H o, H {, H o”, H ,”, H ,”, H ,”, H [’)dH ,, H I ’

    (3) (F ,; F ,’, F ,”, H ,, H ,’) -~,’”, ~1”

    (The preceding d iag r am means t h a t t he v a lues in pa ren t

    a re subst it ut ed in t he d iffer en tia l eq ua t ion s @l) a nd

    t o ob ta i n F ’” a nd H “ a t q= K .)

    (4)

    (F ,, F {, F ;’, F ,:, ~,’”, F ,’”, F s’”, F 4’’’)=3F ,, F ,

    (5) (H O,H ;, H o”, H I”, H ,”, H i’, H ,’ ’]* H ,, H ,’

    (6) (F ~, F~’, F s”, H ,, H ,’)~F ,’”, E ,”

    (7) (Fo, Fe’, F J ’, Fe’”, ~1’”,

    ~ ,’”, F ,’”, F4 ’’’+F~j~ j Fa

    (8) (H O,H o’, H o”, g,”, B ,”, H ,”, H 4’’)+7,, H 3’

    (9) (F a, F s’, F s”, H ,, H 2’)+7Y”, Z “

    (10) (FO,F,’, F, ’ ’, FO’’’,”, ’”,

    l?,’”, F3’’ ’,F)+F4,1F4,,’4 ’,

    (11) (H o, H o’, H o”, ~,”, E ,”, E ,”, H 4’’)~H 4, H 4’

    (12) (F ,, F ,’, F ,”, H ,, F4’)+,’”, ~,”

    I t ma y be not ed here tha t a ll four va lues of F ’” a n

    have

    been improv ed , a n d fu rt h er improv emen t w i ll r e

    it er a tion of s teps 1 t o 12. Th e s ta r t of t he s econ d it er

    isdi

    amamrned s s f ol lows :

    (13;

    (14)

    (15)

    (16)

    .

    .

    ,.

    .

    . .

    .

    .

    .

    Su cces si ve s et s of 12 s t eps a r e per formed unt il t h e v rd

    F,

    ‘“

    a n d E t ~ ” n o lon ger ch a ng a .

    On t he I IXM Ca r d-P r og rammed E lect ron ic C a lcu la

    deck of punched cwds 2 inches t h ick su. fi icedt o pe rf orm

    1 to 12. Three runs of t h is st a rt er deck a t 3 minut e

    r un a ccomplis hed complet e con ver gen ce in mos t ca s es

    t h e end of t h e s ta r t in g pr oces s t h er eh a v e been compu t e

    stored

    F Fd ’, F4 / ’,.Hh ,

    a n d H4f, a n d &ml es t ima t es of

    F S’”, F S’”, F d’”, H ,”, H ,”, H S”, a n d H4”.

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    13/18

    FREWCONVDCTION FLOW AND HEAT

    The ext ension pha se ha s now been rea ched. I t used a

    ffer en t s et of in teg ra t ion formu la s ba s ed on t he same gen -

    ra l idea a s equa tions (B 3) to (B 7). I f FO’”, F1’”, .F~ ’” ,

    s ’” , a nd F ,’” now designa te F“r

    a t a ny five succw sive

    oin ts , a n d t he su bs cr ipt 5 d en ot es t he n ext poin t,

    (B8)

    (B1O)

    (611)

    F5= ~4+ KF4’+; F;’+& , B,WF’”

    (3312)

    t he .B j@J a n d C@) a r e given in t he follow in g t a ble:

    l?+)

    c(=)

    j o 1

    2

    3 4

    a

    1 ml –la74

    W6 –2U4 1931 Tm

    -s92

    1446 -16%3 1427

      M –2116

    4478 -Ke4 M74

    4?%

    I

    1 1

    1 1 1 1

    (

    The &xt en sion ph a a e ma y t hen be d ia g ra rmn ed s imply a s

    (1)

    (F ,, F i , F :’, F {”, F ,’”, Pi ”, F :”, FJ ’’)~F,, FL , F ,”

    (2) (H i , H i , H i ’, H ~, H :;, H :;, H 4’’j~H ,, H ; “

    (3) (F ~, F(, F (’) H ,, H :)+F :”, H :’

    The v a lu es of t h e f un ct ion s a t t h e n ext poin t a r e compu t ed

    n simila r ma nner , w here the la test set s of five va lues of

    ’”

    a nd

    H “

    a re used. Th is pr ocess a dva nces st ep by st ep

    t owa rd int i it y .

    The ext ended deck of punched ca rds m a a bout 3 inches

    t hick a n d t ook a lit t le over 3m i nu tes per r un . F or P r =O.72,

    s t ep s iz e of 0,1 wa s u sed , t h e s t a r t in gph a se t ook 10minut es ,

    d the extension pha se, a bout 30 minutes. When it is

    a l iz ed t h a t a bou t 11,000 oper a t ion s wer e per formed in t h e

    0 minut es per run, it ma y be seen tha t solut ion of t he

    r es en t pr ob lem wou ld h a ve been pr oh ib it iv ely d if fi cu lt on

    sk-t ype cr i lcu la tom. S impl if ica t ions in method would have

    r if iced a ccu ra cy or r equir ed sma l ler s t ep s iz e.

    I n t wo-poin t bound a ry -va l ue pr ob lems wher e on e poi nt i s

    int l ni ty , s ome prob lems of judgmen t a re i ri volved a s t o where

    infin it y is, a nd a s t o w hen a sa t isfa ct or y a ppr oxim a tion t o a

    solut ion ha s been obt ained. h m ost w cs t his q uest ion w a s

    s et t led for t he pr es en t pr oblem by ca llin g a r un s a tisfa ct or y

    w hen it fell bet ween t wo runs for w hich

    F ’

    a nd

    H

    d id n ot

    d iffer a t im por ta nt poin ts in t he four th d ecim a l pla ce, a nd

    TRANS FE R ABOUT

    for w h ich

    F ’

    a nd

    dechmd places.

    A FLAT PLATE

    H fla t t ened out a t zero, corr ect t o fo

    Cert a in difE cuMes w ere met in the a tt empt t o use t

    b a si c pr ocedur e pr ev iou sly d is cu ss ed . Thes e n eces sit a t

    certa in modif icat ions .

    For P r= 2, 10, 100, a nd 1000,

    H

    -w ou ld s et t le d own

    zero a t a n ea rly st a ge; but w hile

    F ’ w as st i l l com in g

    dow

    H “ wou ld beg in t o os ci ll a t e and t lmse osci ll a t ion s increa s

    a nd fed ba ck int o a ll other funct ions. This t rouble w

    a void ed by t he follow in g mod ifica t ion s: I t is a con seq uen

    of eq ua t ion (B 2) t ha t

    .

    ( IF@

    ’ (q)=H ’(O) exp –3PT

    =H ’ (q –

    K) exp

      -3p’c=F@4 ’13)

    The ex t en sion phase waa mod if ied t o requ ir e t he add it ion

    integrat ion formuhw

    5

    H ,=H ,+ ~ A i H :

    (B1

    (B

    where Al= –19, A~ = 106, A3= -264, A4= 646, a nd 4= 251

    Th ese formula s w er e used a lon g w it h eq ua t ion s (B 8)

    (B1O) a ccor d.ir g t o t h e fol low in g d ia g ram :

    (1) (F4,

    F i , F~’, F :”, F ,’”, F ,’”, FJ ”, FJ ’’)~F5, FJ , F

    (2) (FI , F ?, F ,, F A, F ,, H4 ’ )+H ’ by mea ns of

    (1314)

    a

    (B13)

    (3) (H I ’, H9’, H ;, H ;, H :, H&H~ by mea ns of @15)

    (4) (Fs , F s ’, F {’,

    H,)+F:”

    The va lue

    F.

    ‘“ i s

    discarded and

    F ’”

    a t t h e l a s t fiv e poin

    is used to repea t the whole process a ga in a nd a ga in

    infin it um . As long a s F s t ays pos it ive , H ’ i s gua r a n teed

    appr oa ch z er o an d H wi l l flatten out to some value a nd n

    oscillate.

    F or P r =O.01, 0.72, 0.733, Wd 1, t he

    F ’”

    began t o osci ll

    a t a n a d va n ced poin t a n d t hes e os cilla t ion s g r ew a n d fed in

    t h e ot h er fu nct ion s. F or a l l ca s es but .F%=O .01, t h e os ci

    ,t ions a ppea red very la te, nea r the end of the run, a nd

    su it a ble h a lvin g of s tep siz e when oscilla t ion w a s d et ec

    in t he fou rt h d iffer en ces of

    F ’” was

    .m fE cien t t o a void

    d iff icu lt y . Bu t for t h e 0.01 ca s e, os ci ll a t ion s o f

    F ’”

    appea

    ea rly in t he run, na mely , soon a ft er t he pea k in

    F.

    Th

    oscilla t ion s w er e found t o be st ep-size con nect ed , so t

    reduct ion of the st ep t o 0.02 a voided t hem. Even th

    osci l la t ions in

    Fr t l

    would begin t o a ppea r ever y 25 st eps

    s o, a n d t hese w er e smoot hed ou t r eg ula r ly by r epea t ed r u

    of a deck sim ila r t o t he st ar ter deck. E a ch run under t h

    con dit ion s t ook a bout 16 h ou rs, m a kin g t his t he mos t d

    cu lt ca s e t o s ol ve.

    .-

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    14/18

    76

    REPORT

    1 1 11—NATIONAIJ ADVISORY CO~El FOR AERONAUTICS

    APPENDIX c

    DERIVATIONOF FLOW PARAMETER

    I

    Subs tit u ti on of t h is expr es si on in t o equa t ion (C l) y ield

    B y d efin it ion t he s hea r s tr es s i s given by

    f low pa r amet er

    .(Cl)

    To exprq s @?7/bY), in t er ms of t he know n @ct ion F(7),

    use ca n be ma de of eq ua tions (60) a nd (62). Then

    T

    =F’’(o)

    (4Qrx~*(vmp0/ AV)

    Not e t ha t fr om t he gen er al d er iva t ion, t he flow pm am

    cont ains t he viscosit y eva lua ted a t t wo different po

    R eca ll, h ow ever , t ha t t he a na ly sis h as sh ow n t ha t t o a

    a ppr oxim a tion t he va r ia t ion of vis cos it y w it h t emper a

    &n be neglect ed.

    Thus the viscosit y cun be t a ke

    con st a nt in t he en tir e flow field .

    APPENDIX D

    DERIVATION OF HEAT-TR ANS FE R

    PARAMETER

    The l oca l Nus sel t n umber i s d efin ed a s

    ~u=hX_ –x a

    (+.(TO–T.)~,

    (D1)

    To es pr es s @T/3Y)0 in t erms of t he kn own fun ct ion

    H q ) ,

    use is ma de of eq ua tions (61) a nd (62). Thus

    The hea t-t ra nsfer pa ra met er a a given by eq ua tion

    is, a s w a s previously st a t ed, a loca l pa ra met er . I t is o

    d esir ed t o comput e t he a ver age (over ,t he lengt h X) v

    . of t his pa r am et er . To t his end, the Nusselt number

    given in equa t ion @l)) must be defined in terms o

    a ver a ge h ea t -t ra n sfer coefficien t a n d t he q ua n tit y t hu

    t a ined must then be int egra t ed over the length X

    d ivided by X. Th is p~ ocedur e y ield s t he r esult

    S ubst it ut ion of t his expr ession in to eq ua t ion (I II ) y ield s

    t he hea t -t ra nsfer pa rameter .

    Nu= : (Nu)m

    N I L

    =–H ’ (0)

    (D2)

    It iS from this last equation that th e

    (@=/ 4)4

    prev ious ly d iscussed wa s obt a ined .

    REFERENCESh

    ]. Eokert, E. R. G., and Soehngen, E. E .: S tudfea on H ea t Transfer

    7.

    in Laminar

    Free Convection with the Zebnder-Mach Interferom-

    eter. Tech. Rep. hTo. 5747, A. T. I. ATO. 44580, Air Materiel

    &

    03 rmn a n d

    (D a y t on , Ohio), D ec. 27, 1948.

    2. %hxrddt , E rnst , und B eckma q Wiielm: Da s Tempera tw und

    Ges chw ind fgke it ef dd vor e iner WWrmeabgebenden s enk re ch t er

    P la tt e bei n at tlr lich er K on vekt ion . Tech Mcch .

    U- The~@

    9.

    dyna rn& B d. 1, Nr. 10, Okt . 1930, pp. 341-349; cont ., B d. 1,

    N r. 11, Nov . 1930, pp. 391-406.

    3. S chuh, H .: B ounda ry Layers of Tempera tum. Reps. & Tmm.

    ~ (j

    1007,

    AVA Mon og ra ph s, B r it ish M . A. P ., Apr il 15, 1948.

    4. Ost ra ch S im on : A B ou nd ar y L ay er P roblem in t he Th eor y of F ree

    C on vect ion . D oct or a l Th esis , B r ow n U n iv., Au g. 1950.

    5. Lew is, J . A.: B ounda ry byer in Compressible Fluid. Mono-

    ll.

    gr aph V, Tech . R ep. N o. F –TR-1179-ND (G DAM A-9-h f V),

    Afr M at er iel C Omma n

    d (D FLyt mj Ohio), Feb. 1948. (Ana lysis 12.

    D iv ., I n tel lig en ce D ep t. C km t ra ct W’33-033-a e150M (16%51)

    t it h B row n U niv.)

    &  jkrnansky, Ma rk W.: H ed a nd Thprmodyna rnics. S econd d.,

    la .

    hlcGraw-Hilf

    Book Co., hlC.,

    1943, pp. 23-27.

    0.75 reduct ion fa

    E oker t , E . R. G .: I nt roduct ion t o t he Tra na fer of H ea t a nd M

    McG r aw -H fll B ook (2a , I ns ., 1950.

    L a ge rs t rom , P a ce, C ol e, J u lia n D ., a n d Tr illin g, L eon : P r ob lem

    t h e Theor y of Vis cou s C ompr em ib le F lu id s. G u gg enh eim

    La b., C . I . T., Ma rch 1949, pp. 38-40. (OfE ce of Na vnl

    Con t r a ot N60ru -Ta sk VI I I .)

    F riedr fch s, K . O., a nd lVa sow , W. R.: Singular P e rt u rb a tion

    N on -L in ea r Os cilla t ion s. D uk e Ma t h. J ou r., v ol. 13, 1946

    367–381.

    E ck er t, E . R . G ., a n d J a ck son , Th om a s W.: An a ly sis of Tu rbu

    F ree-C onvect ion B ounda ry La yer on Fla t P la te. NAC A

    1015, 1951. (S uper wdes NACA TN 2207.)

    McAd+ s , Willia m H .: H ea t Tr an sm ission . S econ d cd ., MoG

    ~

    B ook CO.,

    hlC.,

    1942, p. ~ .

    Loren .z, H ans H .: D ie Wiirmet lber t rsgun g von ein er eb

    sdzrech ten P la tt e a n, U 1 b ei n at tt rlioh er K on vekt ion . 2

    t eoh . Phy s ., N r . 9, He ft 16, 1934, pp. 362-366.

    S aundem , O. A.: Na tura l con vect ion in liquids. P roo. Roy

    (London ), s er . A, v ol . 172, no. 948. J u l y 19, 1939, pp. 56-’71.

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    15/18

    REE -CONVTlmON FLOW

    AND HEAT TRANSFER ABOUT A FLAT PLATE

    TABLE I .—FUNCTIONS F XND H AND DERIVATIVES FOR VARIOUS P RANDTL NUMB ERS

    (a)

    Przndtl nnmlxr, 0.01

    F

    F“ H F

    L 9319

    1.m

    LW

    L W40

    L8769

    1.ms7

    2 OU4

    2mm

    Low

    21037

    z 14U

    217$0

    2 a43

    2 ml

    22853

    232m

    ~g

    2617u

    2s787

    26s2.4

    21ma

    z 7624

    28037

    28m3

    2W4

    &mm

    a 1411

    &m

    &m

    3.371b

    :ij

    Z6E3

    3.6022

    X7M6

    3.7514

    x mu

    ;~

    $%

    4.0M4

    4.0591

    4.aw3

    4.Km

    4.1226

    4.13m

    4.1343

    F

    o.4m7

    .4024

    .4012

    .=

    .m

    .3939

    .3916

    . ml

    .s$2 2

    .3774

    .3n6

    .36M

    .2804

    .3348

    .3494

    :g

    :%%

    .3m5

    ; ~;

    .m

    .mn

    .X%3

    .2423

    .2%?II

    .X23

    . 1s34

    . 18M

    .1724

    . lm

    .1601

    . 13W

    .I m7

    .lxn

    .1114

    . Iml

    .M52

    .0877

    .0773

    .mm

    .M42

    .0513

    .0441

    .M36

    .M46

    .0171

    .Olm

    .M57

    .C4116

    1-’

    -a MM

    —.m14

    —.0612

    —.Oem

    —.mm

    —.m

    —.0.w9

    —.mm

    —.065-7

    —.mm

    —.0572

    —.C&4

    ~.

    —.W-41

    —.0s34

    —.06m

    —.m

    —.04m

    —.0479

    ;.

    —,0i42

    —.0434

    —.6419

    —.mm

    —.mm

    —.0366

    —.0?37

    —.0319

    —.mm

    —.0236

    —.0270

    —.0254

    —.0241

    —.02m

    —.0216

    —.am

    —.0192

    —.Olm

    ~ m)

    —.0133

    —.0126

    —.0114

    —.0m7

    —.CO u

    —.6m3

    —.mm

    —.0046

    –. 0m7

    H

    a6741

    %J

    .M54

    .& m

    .6697

    .m

    .6497.6427

    .m67

    :=

    .6149

    .Msl

    .m13

    .M78

    .5746

    .M16

    .mm

    .S3m

    .5236

    .6113

    .4m3

    .4n4

    .4643

    .44XI

    .4205

    .=

    .Wm

    .3m7

    .3423

    .3246

    .3WQ

    . 2916

    .27E3

    .Mlo

    .24m

    .2232

    .Lm2

    .mls

    .1847

    . lm-i

    . lm

    .13M

    . llwl

    .mm

    .mm

    .0694

    .Wa5

    .0452

    H ’

    -0.0723

    —.0722

    -. Om

    —.07m

    —.0n 8

    —.on6

    —.n4

    —.on3

    —.Oms

    —.0704

    —.mm

    —.0m5

    —.Omil

    —.06s6

    —. m

    —.0676

    —.0667

    —.m67

    —.m48

    —.Ms3

    —.mm

    —.mm

    —.w

    —.06m

    —.ms3

    —.w

    —.W7

    —.m27

    —.Oms

    —.64s9

    :. 04~

    ~.

    —.m

    —.mso

    —.M64

    —.0w3

    —.M92

    —.0317

    —.0m6

    —.0276

    —.m57

    —.OmJ

    —.0223

    —.0197

    —.0175

    —.0161

    —.0137

    —.Olx

    —.0107

    O.oml

    .W6

    . in’4

    . Zm

    .3164

    .37%

    .41s3

    .4M6

    .4919

    .Sl%

    .5379

    .6527

    .bml

    .M97

    .5731

    .6739

    ;=

    .M50

    .5693

    :%

    .m

    .6W

    .Ez53

    .6178

    .6164

    .W?3

    .4W

    .4m2

    .4810

    .4736

    .4e@

    .46m

    .4mo

    .4496

    .4462

    :$H

    .4?s2

    : %

    .4264

    :%%

    .41@a

    .4X36

    .4106

    .4074

    .4m4

    .4049

    amm

    .M69

    . ml

    .m42

    .M30

    . 61m

    .4349

    ;%

    .1734

    .Iz59

    .Ilm9

    .64s9

    .01s3

    —.0m9

    —.02m

    —.mm

    —.04%3

    —.m

    —.0641

    —.w

    —.on4

    —.m

    —.0742

    —.0746

    —.0745

    —.

    0741

    —.0733

    —.0728

    : o~~

    —.Oiol

    –. mm

    —.W.3

    —.W8

    —.mi4

    —.Cw6

    —.m84

    —.Oem

    —.065s

    —.0651

    —.0646

    —.m42

    —.0638

    —.Wa3

    —.0620

    —.0635

    —.mm

    —.m19

    —.ml?

    l.uoci)

    .6919

    .S3m

    .9756

    .9375

    .W4

    . Q513

    .9432

    .9351

    .mm

    .91m

    .91m

    .mia

    .8947

    .Wa

    .87%3

    .87M

    .362d

    .s$46

    .8466

    %%

    .8228

    .31EJI

    .mn

    .7M3

    .7916

    .7837

    .7760

    :X

    .74E3

    ;%

    .7227

    .7189

    .7162

    .7116

    .7078

    .7041

    .m

    .6m7

    .6930

    .6$33

    . m-57

    .M21

    .6784

    .6770

    .67&.5

    -o. m12

    —.as12

    —.Cw4

    —.mu

    —.mu

    —.mll

    —.am

    —.MI1

    —.mlo

    —.m

    —.am

    —. Ilwr3

    –. mm

    —.mm

    —.Cw4

    —.mQ3

    —.Cwl

    —.C@lo

    —.m

    —.Oms

    —.m

    —.0793

    —.mm

    –. 0m7

    —.07a4

    -.0782

    —.m

    —.0776

    —.0773

    —.0770

    —.07m

    —.07m

    —.07w

    —.Om3

    —.07E3

    —.0761

    —.0749

    —.0747

    —.0745

    —.0743

    —.07u

    —.0m9

    —.Oma

    –. m

    —.0m4

    —.0732

    —.0720

    ~~

    —.07”25

    —.0724

    4.16

    4.18

    4.m

    4.24

    4.s

    4.82

    4.36

    440

    4.50

    4.WJ

    4.70

    4.m

    4.W

    &w

    h 10

    h20

    &40

    2%

    &w

    am

    6.40

    $%’

    7.00

    7.40

    7.m

    &20

    am

    9.00

    9.40

    1:%1

    la WI

    lL 00

    lL 40

    1L80

    Ez

    1%m

    l&m

    14.m

    14.E?l

    16.40

    It w

    17.00

    la 60

    19.60

    20.00

    ZLoo

    220iI

    U&I

    .0184

    .mm

    .Ms4

    . mm

    .1426

    . 1M8

    .2342

    .2%48

    .M76

    .3922

    %J

    .6162

    .6765

    .73%3

    .7964

    :=

    i $7

    LOW

    L 1182

    L 17W

    L 2217

    L 2724

    L3223

    L 3716

    l.m

    L4677

    1.6148

    L mll

    L6JW

    1.m

    1.6517

    ?E

    L nm

    1.73M

    1.ml

    1.7826

    1.m

    L 8249

    1.8469

    1.8W35

    1.m

    1.mm

    1.9167

    1.w

    (b)

    Pmndtlnnrnber,0.72

    (c)

    Prandtlnnmk, 0.733

    F

    I

    F

    F,

    H

    F

    H

    IT

    -o. m

    –. mm

    –. Km

    –. mm

    –. 5o12

    –. 4953

    –. 4s70

    –. 47B

    –. 4m2

    –. 4478

    –. 43(I3

    –. 4110

    –. 3m2

    –.28s4

    –. 3458

    –. mm

    –. m

    –. m

    –. 2549

    –. m36

    –. 2130

    –. 1837

    –. 1754

    –. lw

    –. 1427

    –. l al

    –. 1148

    –. mm

    –. 0916

    –. CC316

    –. 0725

    –. w

    –. 06n

    –. mm

    –. 0448

    –. mm

    –. 0272

    –. Call

    –. 0164

    –. 0127

    –. mm

    –. m

    –. Ms3

    –. m46

    -.0335

    –. m

    –. m21

    –. CW6

    –. m

    –.CU16

    –. mm

    -. m

    –. ml

    am

    .M25

    . m-s

    .1697

    . 1W5

    .22M

    .2451

    . ml

    .2m5

    .2741

    .2746

    .2n3

    . W3

    .m

    .24M

    .2348

    .2W4

    .26M

    .1664

    .1819,

    .1695

    .lsw

    .1429

    .K@O

    .1196

    .1693

    .Oma

    :%%

    .0729

    .Cm7

    .mm

    .Omo

    .6475

    .04m

    .Ms9

    .02m

    .m13

    ;j:g

    .ola5

    .CKK2

    .M65

    .mm

    .m40

    .m

    .M2A

    .COa

    .al14

    .CK60

    .Cm7

    .m

    .aw

    0.6741

    .6767

    .4849

    .3fw

    .3194

    .2465

    . 1M4

    . :%

    –: E

    –. 0473

    –. 0737

    –. w

    –. 1106

    –. m

    –. m

    –. 1342

    –. 1353

    –. mm

    –. 1324

    –. Km

    –. w

    –. llm

    –. Imi

    –. IM5

    –. 0m5

    –. mw

    –. am

    –. 0750

    –. mm

    –. 0635

    –. mm

    –. 0s24

    –. 0474

    –. CrB3

    –. 0312

    –. Ozm

    –. mm

    –. 0169

    –. 0K?5

    –. m

    –. m77

    –. mm

    –. m47

    –. m

    –. mm

    –. m

    –.um

    -. mm

    -. Cm4

    -. m

    -. ml

    1.mm

    .0422

    .8%34

    .8478

    .7076

    .7477

    .W

    .m

    .M33

    :%

    .4n 8

    .4317

    .3m 3

    .WB1

    .3246

    .2X35

    .%7

    .ml

    .m

    .1913

    .lno

    .1623

    .1359

    .l im

    .1073

    .6Q52

    .M43

    .0746

    .WdQ

    .Cw3

    .md4

    .0464

    :E

    .0273

    .O.ul

    .0163

    .Olm

    .Ma7

    .M74

    .m67

    .M44

    .m33

    .Cw5

    .0319

    .mm

    .mu

    .fxw

    .m

    .ml

    .m

    .OxQ

    o

    .1

    .2

    .3

    .4

    .6

    .6

    .7

    .8

    1::

    L1

    L2

    L3

    L4,

    1.5

    1.6

    L 7

    1.8

    k:

    21

    22

    Z3

    24

    26

    Z6

    Z7

    28

    29

    &o

    31

    %2

    3.3

    3.4

    3.6

    3.8

    4.0

    4.2

    4.4

    4.6

    4.8

    6.0

    5.2

    6.4

    6.8

    6.2

    6.8

    7.3

    0.m

    .Im2

    Al&

    .Wo

    .0651

    .mm

    .1141

    .1407

    . ml

    .1957

    .2231

    . ml

    .2784

    .3)17

    .3W

    .34BI

    .3707

    .3M0

    .41m

    .4277

    .4440

    .46m

    .4na

    %

    .5674

    .mm

    .6W

    .Sna

    .6401

    .5464

    .56m

    .65n

    . E816

    .5m2

    .6iw

    .mol

    .533s

    .5%3

    .mu

    .5CW

    .5922

    .5033

    .5941

    .6051

    .5667

    ;%

    am

    .W7

    .1169

    . lm2

    .1952

    .2246

    .24M

    . n312

    .2769

    .2764

    .2769

    .2ZB

    .W17

    .25$3

    .24M

    .23M

    .Zna

    .2m4

    .rw

    .1M2

    . lm7

    . 1M5

    .1440

    .1319

    .lm’

    . lm7

    .mw

    .6W2

    .Cr31s

    ;~

    .0694

    .0633

    .0477

    .0427

    .M3 3

    .Cf439

    .0212

    .0163

    .Olm

    .0101

    .0378

    .m

    .(046

    .0334

    .m19

    .Ixllo

    .WQ3

    .m

    o.mm

    .6786

    .48M

    .4M7

    .3210

    .2470

    .1817

    .sf24

    .07m

    .0246

    -.0143

    -. 04m

    –. 0734

    –. 6%5

    –. llM

    –. 1224

    -. 1s32

    –. 1M7

    –. 1383

    –. 1366

    –. 1331

    –. 12m

    –. 122a

    –. 1178

    –. 1113

    -. 16i4

    –. mm

    –. 0m3

    –. m

    -. om7

    –. 0703

    –.W3

    –. 0m6

    –. ml

    –. 0481

    –. m

    –. a317

    –. 0266

    -. m14

    –. 0162

    –. o128

    –. 0162

    –. mm

    –. mm

    -. w

    -. m.M

    –. M18

    –. m

    –. m

    LWOO

    .9.X5

    .8s91

    .84%

    .7’m9

    .74M

    .m

    .65%

    .6050

    .Jw6

    .5163

    .4749

    .4%9

    .M7’2

    .3615

    .3MI

    .2970

    .ml

    .2i16

    . 21m

    .1W5

    .1741

    .1666

    .lw

    . lm

    .Km

    .mm

    .aw

    .0767

    .mm

    .6801

    .ml

    .0469

    .6414

    .0305

    .0234

    .02m

    .olm

    .o13a

    .Olca

    .0378

    .Oml

    .M46

    .m35

    .m27

    .W16

    .mm

    .m

    .ml

    .0.M46

    -. M46

    -. m

    -. we

    -.497’9

    -.4921

    -.4840

    -.4735

    -. 4m7

    -. 4W

    -.4234

    -. 4m6

    -. mm

    -.2576

    -.34.53

    -.32.27

    -. m

    -.2773

    –. 2556

    -.2344

    -.2141

    –. 1’W

    -. 17M

    –. 16m

    –. 1441

    –. lzm

    –. 1153

    –. mll

    –.6WJI

    –. C@so

    –. 0739

    –.ms7

    –. w

    –. CL518

    –. 0459

    –. 0369

    -.0231

    –. oa19

    –. olm

    –. Om

    –. 0102

    –. W30

    –.msl

    –. m49

    –. m37

    –. m

    –. mu

    –. m

    –. m

    o

    .1

    .2

    .3

    .4

    .5

    .6

    .7

    .8

    1::

    L1

    L2

    1.3

    L4

    L5

    L6

    ?;

    1.9

    Zo

    21

    ::

    24

     L6

    26

    27

    Z8

    29

    3.0

    &1

    %2

    3.3

    3.4

    3.6

    3.8

    Lo

    4.2

    4.4

    4.6

    4.8

    &o

    6.2

    6.4

    &6

    h8

    &o

    6.4

    &8

    7.2

    ::

    am

    .M32

    .0122

    .02-&l

    .043s

    .W9

    .M84

    .1137

    .1402

    .1674

    . 18 9

    “:%

    .2762

    .Lw3

    .W44

    .3473

    :%%

    .4079

    .4254

    .4416

    .4m5

    .4m2

    .4s27

    .4941

    .M46

    .5139

    .5224

    .ml

    .m

    ;g

    .W

    .5723

    .6764

    .&w

    .6s37

    .5M0

    .s37’0

    .m

    .6m6

    .6914

    .M21

    .5827

    .6%2

    .6%?s

    .5043

    .6046

    .5819

    .5951

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    16/18

    78

    REPORT 1 11 l —NATIONAL ADVISORY COMMITTEE

    FOR AERONAUTICS

    TABLE I .—F~TCTIONS F AND H AND D ERIVATIVE S FOR VARIOU S P RANDTL NUMB EIW-C orit ixmed

     V

    o

    .1

    .2

    .3

    .4

    ::

    .7

    .8

    i:

    L1

    L2

    ?:

    L5

    L6

    L7

    L8

    ?:

    21

    i:

    24

    25

    26

    27

    28

    ::

    3.1

    X2

    H

    3.6

    3.8

    40

    4.2

    44

    4.6

    L8

    5.0

    5.2

    h5

    &o

    0.25

    F

    o.m

    .a@l

    .als

    .0246

    .0413

    .Cmo

    .W9

    .11334

    .K@3

    .1558

    .IW9

    .X&s

    :Hl

    .2761

    .ms

    :3177

    .82.s7

    .3543

    :=

    :E

    .4240

    .4346

    :%

    :%

    .4736

    .4791

    :E

    .4924

    .4Q.59

    .5016

    .ml

    .Bw3

    .5122

    .6143

    .5U.9

    .5169

    ..m7

    .51S3

    .Slm

    .5194

    .ma

    F

    Cm &

    .0071

    .0147

    .0241

    .0346

    .0459

    .0.573

    .Ow

    .0w6

    .00?a

    .1012

    .1111

    .m

    .12w

    .X376

    .1453

    .1625

    .Im3

    .16$5

    .1714

    . lm

    .Is?o

    .1869

    . rm

    : S1

    .alm

    .aloo

    .mfo

    .2119

    .2240

    .2170

    .m

    .2215

    .Zm

    .2%36

    .=14

    .2339

    .am

    .23m

    :%

    .2430

    ;=

    . 2~74

    .2484

    .24s3

    .2491

    (d) Prmdtl number, 1

    F

    am

    .0593

    .Km

    . lm

    .1=

    .X89

    :%

    :%

    :%

    .mm

    .Z3N

    .2189

    .m

    .1’WI

    :%

    . 157b

    . 14XI

    . lm

    . 121a

    .1104

    .10)1

    .@m4

    . aw

    .0733

    .W.57

    .C@s

    :%

    .Cwlii

    .a968

    .C@3

    .02s4

    .0197

    .Olsl

    . Ollel

    .0B7

    .Cu69

    .CW9

    .W35

    .Cm5

    .m14

    :%

    F ’

    a 6421

    : ’

    .3394

    .2J16

    .221B

    . lm

    .Ia@

    .Wd6

    -: 1%

    -.0557

    –. mm

    –. 0975

    -.1110

    –. Km3

    –. V&.0

    -.1287

    -. 12$N

    -. m

    -. Im3

    -.118s

    -.1127

    -. Km

    -. Cw7

    -. m

    -. C@39

    -. ml

    -.0725

    -. 0s62

    -. m

    -. @546

    -. 6Q3

    -.0444

    -. mw

    -. 03al

    -.0255

    -. CQo2

    -.0163

    -.0124

    -. m

    -. W75

    -. Ca57

    -. w

    -.mm

    -. al14

    -. mlo

    @

    Randtl nunhr, 10

    F

    O.moo

    .a3n

    :E

     

    11X13

    .1091

    .1137

    . I.lm

    .1137

    .llm

    .1606

    -1016

    .O’m3

    .0w3

    .C&53

    .07s9

    .0748

    .Ww

    : %

    .0.567

    .0523

    .6491

    .046s

    :%

    .Cw3

    .0343

    .0319

    .0 a7

    .0170

    :H

    :%

    .0178

    .0153

    .Olm

    .0114

    .Oow

    .0085

    .Cm3

    .Ocm

    .0047

    -W36

    .0026

    .0014

    :E

    .m

    (Ml&

    .2423

    . lm

    .1134

    .W53

    –: %

    –. 0221

    -.0267

    –. 0462

    ~0

    –. 0553

    –. w

    –. 0527

    –. a505

    –. 04&J

    -. 04E3

    –. 0427

    –. Owo

    –. 0375

    –. 0351

    –. 0323

    –. am%

    –. m

    –. 0267

    –. 0249

    –. 0232

    –. 6X6

    -. 02)1

    –. o187

    –. 0174

    -. Olm

    –. 0L51

    –. o131

    -.0113

    -. Oow

    -. cm%

    -. m

    -. W63

    -. w

    -. a147

    -. Cu35

    -. CKm

    -.0019

    -. mu

    -. @m.5

    -. m

    -. ml

    H

    LCOM

    .W

    .s%7

    .m

    .n w

    .n89

    :%

    .EaM

    .5109

    .45s3

    .41’32

    .m

    .WI

    .W8

    . mu

    .2370

    .2101

    .lWI

    . 1W4

    .1422

    :%

    .aall

    . cr317

    .07ca

    . cm3

    .Cts20

    .0457

    :=

    .0291

    .03m

    .0215

    .0135

    .Orz$

    %%

    , :E

    :M

    .0314

    .Cmo

    .m

    .m

    .COxl

    H ’

    –o.son

    – E & M

    –M m

    –m

    –5372

    ~.

    –5211

    – m

    –4823

    –m

    –m

    –m

    –3772

    –3484

    –3187

    – 2915

    –. 2648

    –. 2232

    –. 2134

    –. 1937

    –. 1605

    -. Km

    –. 1331

    –. 1164

    –. ma)

    –. Wn

    –. 0777

    –. 6376

    –. 0587

    –. w

    –. 0441

    –. am

    –. mm

    –. 0z3

    –. 0210

    –. 0153

    –. o115

    –. aLs4

    –. m

    –. w

    –. W34

    –. am

    –. mls

    –. ml

    –. m

    –. am

    H

    L’(W3

    .m

    .mm

    .0s34

    .W48

    .4437

    :%%

    .2164

    .1519

    .low

    .07m

    :E

    .OzB

    .0146

    .00s2

    :%%

    .0021

    .0012

    .alo7

    .0c04

    .0m3

    .Wol

    .ml

    :%

    .COoo

    :E

    :=

    .O o

    .m

    .Woo

    :E

    .Ocm

    .m

    .mm

    .Cwxl

    .m

    :%%

    -m

    .m

    .Wm

    H ’

    -L lW

    –L 1671

    -L lS21

    -L 1155

    -L 0S26

    –. 9640

    –.8s45

    –. ima

    –. ml

    –. 4840

    –.37m

    –. Z413

    –. aM

    –. 1445

    –. 0w3

    –. 0663

    –. 0423

    –. m

    –. 0174

    –. o1o7

    –. W3.5

    –. m

    –. Uo22

    –. lxm

    –. 0o07

    –. Ow

    –. 0o02

    -. ml

    –. ml

    .CKca

    .WQo

    :%%

    .Oom

    :%

    :E

    :%%

    .m

    .Oooo

    .m

    .Wm

    :%

    .Oom

    .Oom

    .Oolxl

    .00@3

    f

    (e) Ppndtl nmnk, 2

    v

    F F F ’

    H H ’

    o 6.m 0..

    0.

    5n3

    I.Clg

    __ ~ :1

    .1 :g .4749

    .2

    .3

    .Wd ..WPJ

    –. n36

    .m15

    :E .3)49 .7859

    -. m

    .4

    .Cw3

    . lm

    .2318 .n57 -. 6W9

    .5

    .0.525

    .17W

    .Iwl

    .64m -. 07a

    . 1’W1 . IOJ5 .bsos

    : :E

    -.6523

    . 1W3 .C l

    .6169

    –. 6215

    .8 . UO-I .m4 .0185 .4564

    -. W2

    .1307 .m -.0161

    -.5443

    i; ..IK8

    . leal –. 0440

    :%

    .170s

    –. m

    . Km –W59 .29W

    ?;

    -.4543

    .Isw .1864 –. w . X. N

    –. 4077

    L3 . 1%’5 –. w

    .2163

    L4

    :%x .1677

    –. 3619

    –. ma .1844

    -.3176

    L5 .Hll .1572 -. 10I?3 . 1E47

    -.2763

    L6 .Xa4

    .1465 –. 1078 .l m

    –. m

    L?

    .’27(6 .1367

    –. lon . 10 39

    -. m3 4

    . is36 .1253 –. 1046 .aw -.1721

    k: .2Q56

    .1140 –. mm .0724

    –. 1446

    20 .mo

    . mm

    –. W .W&2 –. Em

    21 .3166 .als7 -. m .0482

    -. Km

    22 .2267 .@@ –. m49

    28

    .ml

    .0787

    –. m

    –. 0789

    .0316

    :E

    -. m

    .0711 –. 07m .0254

    ;:

    -.0653

    .34&3 .C841 –. w

    26

    –. 04m

    .3543 .a577 –. 0314 :%

    -. w

    27 .35W .W18 –. W30 .0131

    –. Ozw

    28 .3647 –. Cw9

    .010.5

    .WI :E

    -.0237

    –. C461 .m

    ;;

    -. Olw

    .m .Ct3i3 –. 0416 –. 0152

    &l .37W .0333 –. 0375 :%% -.0121

    3.2 .37W .02m

    –. mm ;O -. w

    .m .OaO –. a303

    H –. W77.3s51 –. 0272 .03a3

    3.6

    –. ml

    .33%3 :E -.0216 .a317

    -. mm

    X8 .0149 –. 0174 .a)lo

    Lo

    -. W24

    :% . W18

    –. 01s3 .Ix07

    –.0315

    .3974 .IxrJ4 –. Olm .aa4

    2:

    -. CrOJ

    .ml .m74 -. ma .m

    -. m

    4.6

    .cm9

    –. ma :%

    4.8

    –. w

    %’J .cn47 –. w

    -. m

    &o .0337 –. ma .C031 –. ml

    .4m5 –. 0326 . ml

    k: .*

    –. ml

    :% –. m16 .(KOo

    .CmO

    &4

    .4m9 .Ixn3

    –. C 3 .Cwm

    .W31

    –. Cw4 .m

    :: :% ;~ –. ml

    .40m

    :E

    .m :%%

    1:: .4059

    .Cnm

    .ml

    .Olw

    ILo .m ..ml :E .COm

    :E

    (E).Pmndtl number, 100

    q

    F F

    ~t

    H H

    0:g M & 0:W 0.2517

    –2 191

    .2.274 :~

    .Om ~ .Wo3

    –2 191

    .0114 .m44 –2 189

    .075 .Ocm .0163 .mm . e369

    . ml .Km

    :~

    -2 IW

    .10.20

    . 7m6 –2 lea

    .U017

    . 142J3

    .7276

    %

    -2144

    .lza .6744 –2 113

    .175 :%%

    :%x

    .1101 . 62al

    -1071

    .mo .m .0332 .57C4

    .225

    -2018

    .0347 :Z .5213 –L W

    :8% ;=

    :E %%’ .KB9

    .4733

    –L8S0

    .4%73

    .?00 .0076 :%

    -L 786

    .047U .3W -L 704

    .32s .0683

    .03m :%

    –L W

    .Wa6 .0422 :%

    :E

    –L 4W3

    .0107 . ‘m74

    :m

    –LLW

    .Oils :% .0176 .2341 –L 270

    . Ora .6$38 .0123 . 2)36

    :E

    -L 163

    .0140

    .0440 .rw6

    . 17m

    –L 052

    .475 . Olsl .0442 .0as6 .1510

    –. 0430

    .54) .0162 .Hm

    .52d .0173

    –. 63@3

    :% ~: ~

    . 16s9

    –. 7404

    .5.W

    .0184

    .6916

    .575

    -.6478

    .Olw

    :% –. mm –. ml

    .m .0w6 .6137 –. m :% –.4s37

    .es

    .02.27 .0433

    –. 0111 .0417 -.3496

    .70 .0240 .04m –. Olm :=

    .75. :~

    .0420

    –. 1440

    –. o135 –. 1657

    .m

    .65

    –. 0140 .0111 –. lm

    .0311

    :26

    .Q3

    –. 0142 . mm

    -. mm

    .ml .03$9 –. 0142 .C039

    .ml :%

    -. 04m

    i:

    –. o141 ;~

    –. 6256

    .a3n –. 0140

    L 10

    .04u9 .03n

    -,0149

    –. 0136

    :~

    –. 0046

    L20 .6445 :% –. 0132

    .04wl

    –. 0013

    –. 0W3 .Oom

    k%l

    .0514 ;=

    -. m

    –. o124 :=

    .W6

    -. ml

    –. o119

    ;: .0578 :~ –.0116 .0600

    Lm

    :M

    L80

    -.0112 .COoo .KQo

    :s –. 0108

    .0665

    .0a30

    :%% -.0104

    ;$’

    %$’ .Ixm

    .02?3

    –. 0101 .Ooca

    21 :%% .0255

    .CKm

    –. 0097

    22

    .0743

    .Cwo

    -. m

    23

    :E .COou

    .0767 :=6

    24

    –. owl .Woo

    . Om ;g –. W@ .mo

    26 .W4

    :%%

    –. 06s2 .Cmo .mo

    .as74 .Olos –. Oom .Cwa

    H

    .0912

    .mo

    .Olm –. Oon .Wm .@wl

  • 8/19/2019 An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the …

    17/18

    FR1313-CONVEUMON

    FLOW AND HE&T TRANSFER ABOUT A FIAT PIMI? E

    TABLE I .—FUNCTIONS F AND H AND DE RIVATIVE S FOR VARIOU S P RANDTL NU iU BE RS-Ca na luded

    (g) Prandtl nnmk, lW-Ckndud6d

    F

    :&7

    .11X6

    . lm6

    .lml

    .1106

    .1143

    .1176

    .Kx 3

    . lm

    . 126

    ;&fi

    .1315

    .1326

    .1332

    . Iw

    .1336

    .

    F+

    :

    m3

    .0142

    . Olzl

    . mm

    . moz

    .Cw@

    [email protected]

    .m63

    .Cm3

    .mu

    .mm

    .Cm2.2

    . m14

    .m

    .W

    .m

    .m

    ~: g

    –.

    mm

    –. ma

    –. m49

    –. mn

    –. m

    -,. ml

    –.

    W.M

    –.

    mm

    –. mls

    –. 0314

    –. Cnlo

    –. mo7

    –. W

    –. m

    –. m

    -. m

    ,.

    E h“

    am

    .axll

    .Cml

    .mxl

    .Cml

    .a m

    .Cm3

    .a m

    .m

    .aml

    .lwm

    .m

    .C o

    .a m

    .a m

    .a m

    awl

    .m o

    o.

    .0?3

    .m o

    .075

    . lm

    .126

    . 1E41

    .176

    .m

    .226

    .2W

    .276

    .W1

    .X26

    .W

    .375

    .4m

    .426

    .460

    .476

    .ml

    .&%

    .m

    .676

    .m)

    .626

    ;: g

    1:m

    22.73

    2@l

    &o

    2.64.2

    &o

    &8

    7.0

    $;

    no

    14.0

    16.0

    18.0

    Zao

     2z0

    m.6

    F

    (h) Przndtl nwnkr, lCKkl

    :Cs

    .m’

    .a m

    .Cm+

    .m

    .

    Cm2

    .

    am

    .@18

    .m

    .Ur26

    .ME9

    .Ixt32

    .K137

    ,:%6

    .w3

    .W

    .mm

    .wu

    .wa

    .m

    .mn

    .C075

    .m?s

    .m

    .0107

    .0135

    . m87

    .0236

    .m79

    .C@m

    .02m

    . [email protected]

    .&w

    .0649

    .Om

    .-

    . cknl

    .0727

    .07m

    .0771

    .on36

    .07wl

    : ~6

    O.m

    .Cm2

    .mm

    .a m

    .0102

    . m16

    .0127

    .0136

    .0142

    .0146

    .0149

    . mm

    .0162

    . 01s3

    .(OS

    .m62

    . m62

    .0162

    .mm

    .mm

    .mm

    . m49

    .m4s

    . m47

    . m47

    . m46

    .m41

    .0136

    . :E

    . mm

    .m

    .Cw3

    .m.Wo

    .m

    .mm

    .aml

    .m

    .Can

    .am

    . mu

    .m

    .m)7

    .aw

    .C015

    .a06

    0.1460

    .

    lmz

    .0s99

    .mll

    . m47

    :$%

    .am

    .02m

    . m40

    .ma6

    .mm

    .m

    .alla

    –. m

    –. m

    –. 0019

    –. m

    –. m26

    –. m

    –. m

    –. m

    –. WL9

    –. cum

    –. m

    –. mm

    -. mm

    –. m27

    –. m

    –. Ooia

    –. cum

    —. m

    –. m19

    –. m17–. m15

    –. M12

    –. 0011

    –. m

    ~.

    -. m

    –. m

    –. ml

    .axa

    .mxl

    .m

    .axo

    H

    E’

    Lam

    .Wc3

    .Etrzl

    .7’W6

    .mm

    .61$3

    .433

    .3649

    .m7

    .2?2.6

    .1717

    .lzm

    .W

    .0675

    . w

    .C@l

    . 021s

    .0134

    .W

    .mm

    .m

    .mra

    . mu

    :M

    .m

    .m

    .mm

    .COm

    .m

    .Cmxl

    .m

    .m

    .CBwl.m

    .CK03

    .m

    .mxl

    .m

    .m

    .m

    :R

    .COm

    .CIxm

    .m

    .m

    ,

    0