Amide bond formation and peptide coupling

13
Amide bond formation and peptide coupling Mgr. Juraj Dobiaš KOCH PRIF UK Ch. A. G. N., Montalbetti; V., Falque Tetrahedron 2005, 61, 10827–10852.

description

Amide bond formation and peptide coupling. Mgr. Juraj Dobia š KOCH PRIF UK. Ch. A. G. N . , Montalbetti ; V ., Falque Tetrahedron 2005 , 61 , 10827–10852 . Comparison to esterification. Activation methods. non-classical conditions : - microwave iradiation - enzymatic catalysis - PowerPoint PPT Presentation

Transcript of Amide bond formation and peptide coupling

Page 1: Amide  bond formation and peptide coupling

Amide bond formation and peptide coupling

Mgr. Juraj DobiašKOCH PRIF UK

Ch. A. G. N., Montalbetti; V., Falque Tetrahedron 2005, 61, 10827–10852.

Page 2: Amide  bond formation and peptide coupling

Comparison to esterification

R OH

OHO

R'R O

OR'

H+,

R OH

OH2N

R'R O

O

H3NR' R N

H

OR'

high temperatures - need acid activationmore basic

Page 3: Amide  bond formation and peptide coupling

Activation methods

R LG

O

electrophilicity increase

better leaving group

R X

O

X = F, Cl, Bracid halides

R N3

O

acid azides

R

O

N N

acid imidazoles

R

O

O

O

R R

O

O

O

R'acid anhydrides

R O

OR'

OR'

good leaving group

acid esters

non-classical conditions:

- microwave iradiation- enzymatic catalysis- solid phase synthesis

Page 4: Amide  bond formation and peptide coupling

Acid chloridesPreparation:

Coupling:

R

O

ClH2N

R'R N

H

OR' HCl

- amine protonization - base needed- moisture sensitive - too reactive

R

O

OH R

O

ClSO2 HCl

SOCl2

R

O

OH R

O

ClCO2 HCl

(COCl)2CO

cat. DMF

R

O

OH R

O

Cl

N NN ClCl

Cl

0.33 mol ekv

N N

N ClCl

Cl

problems with acid-labile protecting groups

OR

O

N N

N Cl

Cl

O

R O

Cl N N

N Cl

Cl

HO

Page 5: Amide  bond formation and peptide coupling

Acid fluoridesPreparation:

Advantages over acid chlorides in coupling: - no base needed- less water sensitive- more electrophilic- less steric hindrance

R

O

OH R

O

F

N NN FF

F

R

O

OH R

O

F

N

NF

PF6

N

NO

stable urea formation

similar to cyanouric chloride

increased reactivity - izolated ion pair

Page 6: Amide  bond formation and peptide coupling

Acid azidesPreparation:

Coupling:

R O

O NH2-NH2

R NH

ONH2

HNO2

R N3

O

R OH

O

R

O

R N3

OPPhOOPh

ON3

POPh

OOPh

N3

PPhOOPh

OOH

R N3

O NH2-R'

R NH

O

-N2R'

Side reaction: Curtius rearangement

R

O

NN

N -N2

R

O

Nnitrene

R

NC

ONu

mess

Page 7: Amide  bond formation and peptide coupling

Acylimidazoles

N

O

N NN

R OH

O

N

O

N NHN

R O

O

O

N NOR

O

NHN

R N

O

N

CDI

Preparation:

Coupling:

- compatible also with amine salts – no additional base needed- one-pot synthesis

R N

O

NNH2-R'

R NH

OR'

NHN

free base generated as waste

N

O

N NN

2 TfO

more reactive coupling agent

Page 8: Amide  bond formation and peptide coupling

Symetrical acid anhydrides

R OH

O CN

N

CHN

O N

O

R

R OH

O

R

O

O

O

R

NH

O

NH

DCC

Preparation:

Coupling:

R

O

O

O

R

H2NR'

R NH

OR'

R OH

O

- no base required- few commerialy acid anhydrides available- one equivalent of acid is wasted

Page 9: Amide  bond formation and peptide coupling

Mixed acid anhydrides- cheap second carboxylic moiety – reduced waste but selectivity problem, solutions:Steric effect:

Electronic effect:

Other synthetic approach:

R O

O

OEt

O

Cl OEt

O

R OH

O

stabilized by resonance

R O

O O

bulky groupCl

O

R OH

O

R OH

ON O

EtO O

Et

R O

ON O

HEtO O

Et

N

EtO Oaromatization

R O

OR O

O

OEt

O

no HClN

good leaving group

Page 10: Amide  bond formation and peptide coupling

Broadened concept of mixed anhydrides

ethoxyacetylene:

R OH

O

OEt

HR O

O

OEtmasked anhydride

H2NR' R N

H

OR'

OH

O

carbodiimines:

- HOBt overcomes problems with N-acylureas

R OH

O CN

N

CN

O NH

O

R

N

NH

R

O

O stable

slow

HOBt

fast R OBt

O H2NR'

R NH

OR'

HOBt

NN

N

HODIC

N C N N HCl

EDC - resulting in water soluble urea

Page 11: Amide  bond formation and peptide coupling

Active esters

R

O

OR''

R'NH2

R

O

NR'

R''OH:

NO2HO

PNP

N

NN

N

HO

HOAt

NN

N

HO

HOBt

N

O

O

HO

HOSu

anion stabilization = electron acceptors, aromatic konjungation

NNN

N

O

RO N R'

H

H

aditional chelatation

examples:

- some available activated aminoacids- often not stable = in situ formation from other high-energy acid derivatives

Page 12: Amide  bond formation and peptide coupling

Active esters – one-pot solutionsphosphonium salts:

R

O

OH

POBt

NNN

PF6

R

O

OPN

N

N

OBt

R

O

OBt

PO

NNN

uronium salts:

R

O

OH

R

O

OAt

NNN

N

ON

N PF6

HATU

R

O

O

N

N

NNN

N

O

N

O

N

Page 13: Amide  bond formation and peptide coupling

Summarycommon mechanism of activation:- suppressing acidic properties- first step is nucleophilic attack of carboxylate- oxygen is taken to form low energy side productdesired reaction realization:- one-pot synthesis- easy separable, non-toxic and non-corrosive side products- water tolerant- no additional base needed- room temperature, high yields