Alternating Current (AC) Circuits - users.wfu.eduusers.wfu.edu/ucerkb/Phy114/L11-AC_Circuits.pdf ·...

16
Alternating Current (AC) Circuits AC Voltages and Phasors Resistors, Inductors and Capacitors in AC Circuits RLC Circuits Power and Resonance Transformers

Transcript of Alternating Current (AC) Circuits - users.wfu.eduusers.wfu.edu/ucerkb/Phy114/L11-AC_Circuits.pdf ·...

Alternating Current (AC) Circuits

AC Voltages and PhasorsResistors, Inductors and Capacitors in AC CircuitsRLC CircuitsPower and ResonanceTransformers

AC SourcesAC sources have voltages and currents that vary sinusoidally.The current in a circuit driven by an AC source also oscillates at the same frequency.The standard AC frequency in the US is 60 Hz (337 rad/s).

)sin()( max tVtv ωΔ=Δ

ωπ21

==f

T

t

ΔVmax

−ΔVmax

Δv(t)

PhasorsConsider a sinusoidal voltage source: )sin()( max tVtv ωΔ=Δ

This source can be represented graphically as a vector called a phasor:

ωtT

ΔVmaxΔv(t)b

c

b

c

d

e

d

aa e

Resistors in AC Circuits

R

R

vtVvv

Δ=Δ=Δ−Δωsin

0

max

tItRV

Rvi R

R ωω sinsin maxmax =

Δ=

Δ=

RVI max

maxΔ

=

Since both have the same arguments in the sine term, iR and ΔvR are in line, they are in phase.

tRIvR ωsinmax=Δ

tIiR ωsinmax=

tRIRit R ω22max

2 sin)( ==P

tRIRit R ω22max

2 sin)( ==P

maxmax

22max

707.02

21

III

RIRI

rms

rmsav

==

=⎟⎠⎞

⎜⎝⎛=P

maxmax 707.02

VVVrms Δ=Δ

Root Mean Square (RMS) Current and Voltage

Inductors in AC Circuits

dtdiLtV

vv L

=Δ−Δ

ωsin

0

max

tdtL

Vdi ωsinmaxΔ=

tL

VdiiL ωω

cosmaxΔ−== ∫

⎟⎠⎞

⎜⎝⎛ −

Δ=

2sinmax πω

ωt

LViL

LXV

LVI maxmax

maxΔ

LX L ω=

tXIv LL ωsinmax−=Δ

Inductive Reactance

For a sinusoidal voltage, the current in the inductor always lags the voltage across it by 90°.

Capacitors in AC Circuits

tVvv C ωsinmaxΔ=Δ=Δ

tVCq ωsinmaxΔ=

⎟⎠⎞

⎜⎝⎛ +Δ=

Δ==

2sin

cos

max

max

πωω

ωω

tVCi

tVCdtdqi

C

C

CXVVCI max

maxmaxΔ

=Δ=ω

CXC ω

1= Capacitive

Reactance

tXIv CC ωsinmax=Δ

For a sinusoidal voltage, the current in the capacitor always leads the voltage across it by 90°.

RLC Series CircuittVv ωsinmaxΔ=Δ

( )φω −= tIi sinmax

tVtRIv RR ωω sinsinmax Δ==Δ

tVtXIv LLL ωπω cos2

sinmax Δ=⎟⎠⎞

⎜⎝⎛ +=Δ

tVtXIv CCC ωπω cos2

sinmax Δ−=⎟⎠⎞

⎜⎝⎛ −=Δ

CLR vvvv Δ+Δ+Δ=Δ

Using Phasors in a RLC Circuit( )

( ) ( )( )22

maxmax

2maxmax

2maxmax

22max

CL

CL

CLR

XXRIV

XIXIRIV

VVVV

−+=Δ

−+=Δ

Δ−Δ+Δ=Δ

( )22

maxmax

CL XXR

VI−+

Δ=

( )22CL XXRZ −+≡ Impedance

ZIV maxmax =Δ

⎟⎠⎞

⎜⎝⎛ −

= −

RXX CL1tanφ

R = 425 ΩL = 1.25 HC = 3.5 μFω

= 377 s-1

ΔVmax = 150 V

( )( ) Ω=== − 7585.3377

111 FsC

XC μω

( )( ) Ω=== − 47125.1377 1 HsLX L ω

( ) ( ) ( ) Ω=Ω−Ω+Ω=−+= 513758471425 2222CL XXRZ

AVZVI 292.0

513150max

max =Ω

=

°−=⎟⎠⎞

⎜⎝⎛

ΩΩ−Ω

=⎟⎠⎞

⎜⎝⎛ −

= −− 34425

758471tantan 11

RXX CLφ

( )( ) VARIVR 124425292.0max =Ω==Δ

( )( ) VAXIV LL 138471292.0max =Ω==Δ

( )( ) VAXIV CC 221758292.0max =Ω==Δ

( ) tVvC 377cos221−=Δ

( ) tVvL 377cos138=Δ

( ) tVvR 377sin124=Δ

Example 33.4

Power in an AC Circuit( ) tVtIvi ωφω sinsin maxmax Δ−=Δ=P

( )φωωφω

ωφωφω

sincossincossin

sinsincoscossin

maxmax2

maxmax

maxmax

ttVItVI

tttVI

Δ−Δ=

−Δ=

P

P

φcos21

maxmax VIav Δ=P

φcosrmsrmsav VI Δ=P

RIVvR maxmax cos =Δ=Δ φ

22max

max

maxmax RIIV

RIVI rmsrmsav =Δ

⎟⎠⎞

⎜⎝⎛ Δ=P

RIrmsav2=P

For a purely resistive load, φ=0

rmsrmsav VI Δ=P

No power loss occurs in an ideal capacitor or inductor.

Resonance in Series RLC Circuits

ZVI rms

rmsΔ

=( )22

CL

rmsrms

XXR

VI−+

Δ=

A circuit is in resonance when its current is maximum.

Irms =max when XL -XC =0

CL

XX CL

00

ω =

=

LC1

0 =ω Resonance Frequency

Power in Series RLC Circuits ( ) ( )

( )22

2

2

22

CL

rmsrmsrmsav XXR

RVRZVRI

−+Δ

==P

( ) ( )220

22

222 1 ωω

ωωω −=⎟

⎠⎞

⎜⎝⎛ −=−

LC

LXX CL

( )( )22

02222

22

ωωω

ω

−+

Δ=

LR

RVrmsavP

( )R

Vrmsav

2

max,Δ

=P ω=ω0

RL00 ω

ωω

=Q Quality Factor

Transformersdt

dNV BΦ−=Δ 11

dtdNV BΦ

−=Δ 22

11

22 V

NNV Δ=Δ

2211 VIVI Δ=Δ

LRVI 2

=eqRVI 1

=

Leq RNNR

2

2

1⎟⎟⎠

⎞⎜⎜⎝

⎛=

Power TransmissionPower is transmitted in high voltage over long distances and then gradually stepped down to 240V by the time it gets to a house.

22 kV 230 kV 240 V

P

g = 20 MWCost = 10¢/kWh

AV

WV

I g 8710230

10203

6

=××

=P

( ) ( ) kWARI 15287 22 =Ω==P

( )( )( ) 36$1.0$2415 == hkWTotalCost

For 22kV transmission:

Total Cost = $4100

For Next ClassMidterm 2 Review on MondayMidterm 2 on TuesdayReading Assignment for Wednesday

Chapter 34 – Electromagnetic Waves

WebAssign: Assignment 11 (due Monday, 5 PM)