Alloy Design - Solidification and · PDF fileAlloy Design - Solidification and Thermodynamics...

58
Alloy Design - Solidification and Thermodynamics 1 30 Solidification Solidification 0 2010 Montreal 1 30 Solidification 42 – 57 Thermodynamic Properties

Transcript of Alloy Design - Solidification and · PDF fileAlloy Design - Solidification and Thermodynamics...

Alloy Design

- Solidification and Thermodynamics

1 – 30 Solidification

Solidification 0 2010

Montreal

1 – 30 Solidification

42 – 57 Thermodynamic Properties

Solidification

Solidification 1 2010

Montreal

Solidification

Solidification 2 2010

Montreal

Equilibrium cooling path

0.7

0.8

0.9 0.1

0.2

0.3

Zn

T(min) = 340.89 oC, T(max) = 660.31 oCFour-Phase Intersection Points with Liquid

AlMgZn_Tau / FCC_A1#1 / Laves_C14#1AlMgZn_Tau / Beta_AlMg / GammaAlMgZn_Tau / Beta_AlMg / FCC_A1#1AlMgZn_Tau / Laves_C14#1 / Mg2Zn3AlMgZn_Tau / Gamma / PhiGamma / HCP_A3#1 / PhiFCC_A1#1 / Laves_C14#1 / Mg2Zn11AlMgZn_Tau / Mg2Zn3 / MgZnFCC_A1#1 / HCP_Zn / Mg2Zn11HCP_A3#1 / Mg51Zn20_<mg7zn3>_oi1 / MgZnAlMgZn_Tau / HCP_A3#1 / PhiAlMgZn_Tau / HCP_A3#1 / MgZn

1:2:3:4:5:6:7:8:9:

10:11:12:

7

9

HCP_Zn

Mg2Zn11

Crystallization path for

Equilibrium cooling

Al - Mg - ZnData from FTlite - FACT light alloy databases

Solidification 3 2010

Montreal

0.1

0.2

0.3

0.4

0.5

0.6

0.10.20.30.40.50.60.70.80.9

0.4

0.5

0.6

0.7

0.8

0.9

Mg Almole fraction

A = Zn, B = Mg, C = AlX(A) X(B) X(C) oC

0.35365 0.18471 0.46164 467.780.04094 0.37786 0.58120 447.570.04248 0.36009 0.59743 446.260.33110 0.60810 0.06080 428.120.16296 0.66052 0.17652 385.070.16267 0.69979 0.13755 364.350.80148 0.07683 0.12168 360.170.25899 0.69007 0.05094 353.590.85034 0.05789 0.09177 347.540.28328 0.71522 0.00150 345.230.23357 0.70211 0.06432 342.670.24168 0.70263 0.05570 340.89

1:2:3:4:5:6:7:8:9:

10:11:12:

1

2 3

4

56

810

1112

Laves_C14

AlMgZn_Tau FCC_A1

GammaBeta_AlMg

HCP_A3

Phi

Mg2Zn3

MgZn

Alloy composition:

80 mol % Mg

15 mol % Al

5 mol % Zn

Select all solids and solutions

Solidification 4 2010

Montreal

Solidification 5 2010

Montreal

Solidification 6 2010

Montreal

Solidification 7 2010

Montreal

Selection of axes

Solidification 8 2010

Montreal

Selection of species to be plotted

(choose all solids and elements for which Gram(Max)>0)

Solidification 9 2010

Montreal

Amounts of Phases during Equilibrium CoolingLiquidus at about 500 οC

Univariant at about 400 οC

??? reaction at about 300 οC

Solidification 10 2010

Montreal

Using the “solidification software”

Solidification 11 2010

Montreal

Select equilibrium solidification from liquid

(click on “include molar volumes” – See Manual Advanced Equilib 8)

Solidification 12 2010

Montreal

Select starting temperature

Solidification 13 2010

Montreal

Output for Equilibrium Solidification

Note calculation of ∆H, ∆V (for ∆V be sure to click on “include molar volumes”)

Calculation ends at temperature of final disappearance of liquid

Solidification 14 2010

Montreal

Scheil-Gulliver cooling path

6

0.7

0.8

0.9 0.1

0.2

0.3

0

Zn

T(min) = 340.89 oC, T(max) = 660.31 oCFour-Phase Intersection Points with Liquid

AlMgZn_Tau / FCC_A1#1 / Laves_C14#1AlMgZn_Tau / Beta_AlMg / GammaAlMgZn_Tau / Beta_AlMg / FCC_A1#1AlMgZn_Tau / Laves_C14#1 / Mg2Zn3AlMgZn_Tau / Gamma / PhiGamma / HCP_A3#1 / PhiFCC_A1#1 / Laves_C14#1 / Mg2Zn11AlMgZn_Tau / Mg2Zn3 / MgZnFCC_A1#1 / HCP_Zn / Mg2Zn11HCP_A3#1 / Mg51Zn20_<mg7zn3>_oi1 / MgZnAlMgZn_Tau / HCP_A3#1 / PhiAlMgZn_Tau / HCP_A3#1 / MgZn

1:2:3:4:5:6:7:8:9:

10:11:12:

7

9

HCP_Zn

Mg2Zn11

Crystallization path for

Scheil cooling

Al - Mg - ZnData from FTlite - FACT light alloy databases

Solidification 15 2010

Montreal

0.1

0.2

0.3

0.4

0.5

0.6

0.10.20.30.40.50.60.70.80.9

0.4

0.5

0.6

0.7

0.8

0.9

Mg Almole fraction

A = Zn, B = Mg, C = AlX(A) X(B) X(C) oC

0.35365 0.18471 0.46164 467.780.04094 0.37786 0.58120 447.570.04248 0.36009 0.59743 446.260.33110 0.60810 0.06080 428.120.16296 0.66052 0.17652 385.070.16267 0.69979 0.13755 364.350.80148 0.07683 0.12168 360.170.25899 0.69007 0.05094 353.590.85034 0.05789 0.09177 347.540.28328 0.71522 0.00150 345.230.23357 0.70211 0.06432 342.670.24168 0.70263 0.05570 340.89

1:2:3:4:5:6:7:8:9:

10:11:12:

1

2 3

4

56

810

1112

Laves_C14

AlMgZn_Tau FCC_A1

GammaBeta_AlMg

HCP_A3

Phi

Mg2Zn3

MgZn

Alloy composition:

80 mol % Mg

15 mol % Al

5 mol % Zn

>

Scheil-Gulliver Target for liquid

(Set starting temperature at 600 οC)

(See Manual Equilib Advanced 2.3)

Solidification 16 2010

Montreal

Graphical output of Scheil target calculation

- Calculation ends at temperature of final disappearance of liquid

- Graph shows phase distribution

Solidification 17 2010

Montreal

“Solidification” calculation for Scheil-Gulliver cooling

Solidification 18 2010

Montreal

Solidification 19 2010

Montreal

Output for Scheil-Gulliver Solidification

Solidification 20 2010

Montreal

• Solidification software

(extended Scheil cooling)

– Scheil cooling + post equilibration of Scheil microstructure

• AZ91 alloy + 0.25 wt.% Mn

Tracking

microstructure

constituents

CONS. PHASE TOTAL AMT/gram1 1 ‘Al8Mn5’ 5.2241E-04

2 1 HCP 6.4599E+012 2 ‘Al8Mn5’ 2.8231E-01

3 1 HCP 1.5644E+013 2 Al11Mn4 1.4638E-01

4 1 HCP 1.7084E+004 2 ‘Al4Mn’ 1.7892E - 02

Constituent 1 594.16 to 594.06 CLiq. -> ‘Al8Mn5’

Constituent 2 594.06 to 524.15 CLiq. -> HCP + ‘Al8Mn5’

Constituent 3 524.15 to 447.46 CLiq. -> HCP + Al11Mn4

Constituent 4 447.46 to 431.74 C

Solidification 21 2010

Montreal

Output :

Solidification

temperature of

340.89°C

4 2 ‘Al4Mn’ 1.7892E - 02

5 1 HCP 4.9213E+005 2 ‘Al12Mg17’ 1.1878E+015 3 ‘Al4Mn’ 2.6558E-02

6 1 HCP 1.9669E-016 2 Phi 4.0423E-016 3 ‘Al4Mn’ 1.7904E-056 4 Al11Mn4 3.8196E-05

7 1 HCP 2.4177E-027 2 Tau 3.5706E-027 3 Al11Mn4 1.4894E-06

8 1 HCP 4.2084E-028 2 MgZn 5.1501E-028 3 Tau 2.1364E-028 4 Al11Mn4 2.3786E-06

Liq. -> HCP + ‘Al4Mn’

Constituent 5 431.74 to 364.34 CLiq. -> HCP + ‘Al12Mg17’ + ‘Al4Mn’

Constituent 6 364.34 to 342.66 CLiq. -> HCP + Phi + ‘Al4Mn’ + Al11Mn4

Constituent 7 342.66 to 340.89 CLiq. -> HCP + Tau + Al11Mn4

Constituent 8 340.89 C (isothermal)Liq. -> HCP + MgZn + Tau + Al11Mn4

Input for Scheil Solidification AZ91 + 0.25% Mn

Solidification 22 2010

Montreal

• Solidification software (extended Scheil cooling)

– Scheil cooling + post equilibration (annealing) of Scheil microstructure

• AZ91 alloy + 0.25 wt.% Mn

Tracking

microstructure

constituents

Output :

Solidification

wt. % Mg Al Zn Mn

2 64.599 96.19 3.67 0.125 195 ppm

3 15.644 92.25 7.45 0.298 14.7 ppm

CONS. PHASE TOTAL AMT/gram1 1 ‘Al8Mn5’ 5.2241E-04

2 1 HCP 6.4599E+012 2 ‘Al8Mn5’ 2.8231E-01

3 1 HCP 1.5644E+013 2 Al11Mn4 1.4638E-01

4 1 HCP 1.7084E+004 2 ‘Al4Mn’ 1.7892E-02

Amount & Average Composition of the HCP phase

Solidification 23 2010

Montreal

Solidification

temperature of

340.89°C

3 15.644 92.25 7.45 0.298 14.7 ppm

4 1.708 89.22 10.34 0.440 1.2 ppm

5 4.921 88.95 10.03 1.021 0.7 ppm

6 0.197 89.77 5.14 5.086 0.1 ppm

7 0.024 90.55 2.93 6.519 0.2 ppm

8 0.042 90.57 2.90 6.538 0.2 ppm

5 1 HCP 4.9213E+005 2 ‘Al12Mg17’ 1.1878E+015 3 ‘Al4Mn’ 2.6558E-02

6 1 HCP 1.9669E-016 2 Phi 4.0423E-016 3 ‘Al4Mn’ 1.7904E-056 4 Al11Mn4 3.8196E-05

7 1 HCP 2.4177E-027 2 Tau 3.5706E-027 3 Al11Mn4 1.4894E-06

8 1 HCP 4.2084E-028 2 MgZn 5.1501E-028 3 Tau 2.1364E-028 4 Al11Mn4 2.3786E-06

Selecting HCP phase of constituent 2 for subsequent annealing

Solidification 24 2010

Montreal

Imported automatically into Equilib (change mass to 100 g)

Solidification 25 2010

Montreal

Anneal at 150 to 500 οC

Solidification 26 2010

Montreal

Plot equilibrium products in HCP phase of constituent 2 after

annealing

Solidification 27 2010

Montreal

- Select axes

Solidification 28 2010

Montreal

Equilibrium phase distribution in HCP phase of

constituent 2 after annealing (HCP + precipitates)

Solidification 29 2010

Montreal

• Solidification software

(extended Scheil cooling)

– Scheil cooling + post equilibration of Scheil microstructure

• AZ91 alloy + 0.25 wt.% Mn

Tracking microstructure constituents

Annealing

Phases vs T for HCP in the different

microstructural constituents

Amount & Average Composition of the HCP phase

HCP

'Al8Mn5'

Al11Mn4Al4Mn

'Al12Mg17'

'Al99Mn23'

log 1

0(w

t.%

)

-4

-3

-2

-1

0

1

2

Annealing of HCP in ‘2’

Solidification 30 2010

Montreal

wt. % Mg Al Zn Mn

2 64.599 96.19 3.67 0.125 195 ppm

3 15.644 92.25 7.45 0.298 14.7 ppm

4 1.708 89.22 10.34 0.440 1.2 ppm

5 4.921 88.95 10.03 1.021 0.7 ppm

6 0.197 89.77 5.14 5.086 0.1 ppm

7 0.024 90.55 2.93 6.519 0.2 ppm

8 0.042 90.57 2.90 6.538 0.2 ppm

Amount & Average Composition of the HCP phase

at 340.89oC Temperature (oC)

150 200 250 300 350 400 450 500-4

HCP

'Al12Mg17'

Al11Mn4

Al4Mn'Al99Mn23'

Temperature (oC)

log 1

0(w

t.%

)

150 200 250 300 350 400 450 500-4

-3.5

-3

-2.5

-2

-1.5

-1

-.5

0

.5

1

1.5

2

Annealing of HCP in ‘3’

Enthalpy – Composition Phase Diagrams

- Mg-Al T-X diagram

Solidification 31 2010

Montreal

Solidification 32 2010

Montreal

Selecting variables for H-X diagram

Solidification 33 2010

Montreal

Calculated Mg-Al H-X diagram

Solidification 34 2010

Montreal

5

0.6

0.7

0.8

0.9 0.1

0.2

0.3

0.4

0

Zn

T(min) = 340.89 oC, T(max) = 660.31 oCFour-Phase Intersection Points with Liquid

AlMgZn_Tau / FCC_A1#1 / Laves_C14#1AlMgZn_Tau / Beta_AlMg / GammaAlMgZn_Tau / Beta_AlMg / FCC_A1#1AlMgZn_Tau / Laves_C14#1 / Mg2Zn3AlMgZn_Tau / Gamma / PhiGamma / HCP_A3#1 / PhiFCC_A1#1 / Laves_C14#1 / Mg2Zn11AlMgZn_Tau / Mg2Zn3 / MgZnFCC_A1#1 / HCP_Zn / Mg2Zn11HCP_A3#1 / Mg51Zn20_<mg7zn3>_oi1 / MgZnAlMgZn_Tau / HCP_A3#1 / PhiAlMgZn_Tau / HCP_A3#1 / MgZn

1:2:3:4:5:6:7:8:9:

10:11:12:

A = Zn, B = Mg, C = AlX(A) X(B) X(C) oC

0.35365 0.18471 0.46164 467.780.04094 0.37786 0.58120 447.570.04248 0.36009 0.59743 446.26

1:2:3:

7

9

Laves_C14

HCP_Zn

Mg2Zn11

Al - Mg - ZnData from FTlite - FACT light alloy databases

Solidification 35 2010

Montreal

0.1

0.2

0.3

0.4

0.5

0.10.20.30.40.50.60.70.80.9

0.5

0.6

0.7

0.8

0.9

Mg Almole fraction

0.04248 0.36009 0.59743 446.260.33110 0.60810 0.06080 428.120.16296 0.66052 0.17652 385.070.16267 0.69979 0.13755 364.350.80148 0.07683 0.12168 360.170.25899 0.69007 0.05094 353.590.85034 0.05789 0.09177 347.540.28328 0.71522 0.00150 345.230.23357 0.70211 0.06432 342.670.24168 0.70263 0.05570 340.89

3:4:5:6:7:8:9:

10:11:12:

1

2 3

4

56

810

1112 AlMgZn_Tau FCC_A1

GammaBeta_AlMg

HCP_A3

Phi

Mg2Zn3

MgZn10 mol % Zn

Mg-Al-Zn species selection for T-X diagram

(choose all solids and solutions)

Solidification 36 2010

Montreal

Mg-Al-Zn T-X diagram at XZn = 0.1

- Selection of variables

Solidification 37 2010

Montreal

Solidification 38 2010

Montreal

Selection of variable for H-X diagram

- In order to reduce calculation time, select only those species which

appear on T-X diagram and remove I-option where possible

Solidification 39 2010

Montreal

- Selection of variables for Mg-Al-Zn H-X diagram at XZn = 0.1

Solidification 40 2010

Montreal

Calculated Mg-Al-Zn H-X diagram at XZn = 0.1

Solidification 41 2010

Montreal

CALCULATING

THERMODYNAMIC

Solidification 42 2010

Montreal

PROPERTIES

Calculated enthalpy of mixing of liquid Mg and liquid Al at 800 οC

Solidification 43 2010

Montreal

- Select “initial conditions” as pure Al and Mg liquids at 800 οC

Solidification 44 2010

Montreal

Solidification 45 2010

Montreal

Plot results – selection of axes

Solidification 46 2010

Montreal

Solidification 47 2010

Montreal

Solution Properties (see Manual Equilib Advanced 4)

- Select compositions for calculation of solution properties of liquid at 800 οC

( do not select <A> = 0 or <A> = 1)

Solidification 48 2010

Montreal

Solution Properties

- After calculation, return to menu window and right click on

phase for which properties are to be calculated

Solidification 49 2010

Montreal

- Select properties to be calculated

Solidification 50 2010

Montreal

- Open spreadsheet

Solidification 51 2010

Montreal

- Spreadsheet showing calculated solution properties

Solidification 52 2010

Montreal

- Using COMPOUND module to create compound Mg2Si in a private database with

2Mg + Si = Mg2Si ∆H = -68000 J/mol ∆S = -13.0 J/mol-1

relative to Mg(s1) and Si(s1) from FS53 database

(see Manual COMPOUND, particularly section 14)

Solidification 53 2010

Montreal

- Drag and drop Mg(s1) and Si(s1) into reactants box

Solidification 54 2010

Montreal

- Click on “PRIVBASE” and then paste compound into PRIVBASE

Solidification 55 2010

Montreal

- Data for Mg2Si in PRIVBASE (∆H = 0, ∆S = 0)

Solidification 56 2010

Montreal

- Add ∆H = -68000, ∆S = -13.0

Solidification 57 2010

Montreal