Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and...

23
Ali Sadri, PhD Sr. Director Intel Corporation

Transcript of Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and...

Page 1: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

Ali Sadri, PhD

Sr. Director

Intel Corporation

Page 2: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 2

Past and Future Capacity Improvement

Air Interface

Available Spectrum

Small Cell

Air Interface

Available Spectrum

Small Cell

Interference Mitigation, Full DuplexNew Waveform, MU-MIMOBeamforming, etc

Licensed, Unlicensed, SharedmmWave

DensificationRelayEdge CloudMesh BackhaulFronthaul

3G-4G

4G-5G

Page 3: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 3

Search for Alternate Spectrum

10 20 30 40 50 70-80

NoMobile

AllocationIn Region

1 & 2

<1 GHz <4 GHz <4 GHz 7 GHz

Glo

ba

l MS

<3 GHz

Glo

ba

l MS

Glo

ba

l MS

Glo

ba

l MS

24

.25

25

.25

27

31

38

.6

42

.5

47

.2

50

.2

57

64

5+5 GHz

Glo

ba

l MS

60 GHz Band

Unlicensed

40 GHz Band

Licensed

LMDS Band

Licensed

24 GHz Band

Licensed

50 GHz Band

Licensed

70-80 GHz Bands

Minimal Licensed

3

CurrentIMT

bands

1

Page 4: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 4

Reuse mmWave Knowledge

Legacy Bands

< 3.8 GHz

New Bands

< 6 GHz

Bands > 6

GHz (+mmWAVE)

Licensed Unlicensed Licensed Unlicensed

28

GHz

39

GHz

45

GHz

70-90

GHz

60

GHzLAA

6-24

GHzWiFi

Licensed Unlicensed

WiFi

* Categorized based on channel models and path loss

** Potentially the same technology elements could be used across a range of frequencies

Page 5: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 5

mmWave Path-Loss Comparisons

2.3 GHz

28 GHz38 GHz

73 GHz

Oxygen

Absorbance

Page 6: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

eNBAggregation

6

HetNet with mmWave Capable Small Cells (MCSC)

eNB eNB

MCSC

MCSCMCSC

MCSC

MCSC

MCSC

28 ,39 or 60 GHz

Page 7: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 7

Network Densification Topology

Fiber Node

Distribution Node

Access Node

Page 8: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 8

High Frequency Beam Forming

Page 9: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 9

Challenges in mmWave Systems Design

•Higher Path Loss• To compensate with the high path loss higher gain antenna and/or

higher transmit power is required

• EIRP, TX power and RF exposure limit are regulated

•Massive MIMO is required for high gain antennas• Transmission becomes highly directional

• With Narrow beams, tracking of the UE becomes challenging

• Feed line loss• Diminishing return occurs as size of array increases

• Transmission loss increases as function of frequency

Page 10: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 10

Challenges in RF & Antenna

• Feed line loss: (8-by-8) elements

Antenna spacing: λ

2=

𝑐/𝑓

2=

5𝑚𝑚

2= 2.5mm

60 GHz

Antenna spacing: λ

2=

𝑐/𝑓

2=

7.69𝑚𝑚

2

@ 28 GHz is 5.36mm and @ 39 GHz is 3.85mm

From 60 GHz to 28 GHz (or 38 GHz),

• The required area getting bigger then feed line getting longer (roughly double).

• Feed loss is also a function of frequency (higher loss at 60 GHz)

28 or 39 GHz

Page 11: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Modular RFEM Configurations

Antenna Side Shield Side

60GHz Operation

16 Elements

25.2 mm x 9.8 mm

64 elements 128 elements32 elements16 elements 128 elements

Page 12: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 12

MAA POC Evolution

G3SIndoor

G3Indoor

G3MIndoor

G1Indoor

G2Indoor

• Discrete• MAA 128 (2x4)• Maple-M & R• EIRP ~ 43 dBm• 300 x 220 x 150

• Partial PCB• MAA 128 (1x8)• Maple-M & R• EIRP ~ 43 dBm• 160 x 140 x 110

• Stack up PCB• MAA 128 (1x8)• Maple-M & R• EIRP ~ 43 dBm• 160 x 140 x 110

• Stack up PCB• MAA 128 (2x4)• Maple-M & R• EIRP ~ 43 dBm• Reduce Side lobe

• Stack up PCB• MAA 128 (2x4)• Maple-M • MAA-RFEM• EIRP ~ 48 dBm• 160 x 140 x 110

G4Outdoor

• 190 x 170 x 140

Page 13: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Hardware Overview

• Indoor Design

• Easy access to ports

• Easy signal breakout for chamber tests

• Easy tabletop, tripod, post, ceiling installation

• Antenna Array

• 128 elements - 8x16 array - balanced feeds

• Tiled 8x RFEMs based on Intel WiGig product

• 1x Intel WiGig Baseband Modem Module

GEN3+ Evaluation Kit

13Intel Confidential

Page 14: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Link Budget Calculation

ITU Region N (1 Gbps threshold)

Assumptions• Noise figure + implementation loss: (10.5 + 3) dB• PER < 1%• AWGN channel (phase impairment considered)

Calculate SNR values and find supportable MCS in AWGN channels

LOS Backhaul Access

No rain 650 m 380 m

99.00% availability 600 m 360 m

99.90% availability 470 m 290 m

99.99% availability 350 m 230 m

Page 15: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Antenna Field Regions

D

Page 16: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

Anant Gupta, UCSB

Under the direction of:

Professor Madhow of UCSB and Professor Amin of Standard

Oct 31, 2016

Page 17: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Goal: Sparse array of subarrays for directive & steerable beams with:

• Sparse placement of subarrays (4x4 element arrays).• Optimal phase shifts for beamsteering.

Attribute:• Larger aperture Directivity ↑ and BW ↓• Sparse arrays with same/fewer elements

Challenge: • Sub-Nyquist generates aliasing and grating lobes• Problem different from traditional 2D placement (subarray

elements are fixed)

Approach: Non uniform configurations perform better in all metrics• Optimal placement of sub-arrays and phase processing• Algorithmic/application-level resiliency to aliasing (e.g. for

imaging)

Sparse Array of Sub-Arrays

Sparse array

conventional array

Intel MAA-RFEM4x4 Module

Page 18: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Early Insights

Trade-offs in different architectures:

Metrics:

BW, Grating/side lobes, Directivity

Directivity saturates beyond certain aperture size

0 2 4 6 8 10

Subarray seperation (6)

18

19

20

21

22

23

24

25

GD

(d

B)

Directivity v/s Subarray Seperation

plus

Square

Benchmark

Sparse Non-uniform

-60 -40 -20 0 20 40 60

-30

-25

-20

-15

-10

-5

0

No

rmali

ze

d G

ain

Gfinal

Horizontal ?=0°

SEP2

MRA

Uniform

Benchmark

Page 19: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Major Metrics & Approach

0 20 40 60 80 100 120 140

Elements

-9.2

-9

-8.8

-8.6

-8.4

MS

LL

Sequential Steering weight Optimization

Round 1

Round 2

Round 3

Round 4

Cost functions• MSLL: Maximum Side lobe level(relative to main lobe)• Directivity Gain-• 2D Beamwidth: (3 dB beam)Max* (3 dB beam)Min

• ASLL (Average Side Lobe Level)

Sub-Array Placement: Greedy search• Sequentially search for subarray positions on all possible

locations of grid (dx=0.5λ, dy=0.6λ).

Steering weight optimization: Sequential Optimization • Scan for best steering weight across all elements to

reduce MSLL.

Page 20: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Tradeoffs in Performance

Observations and tradeoffs

Tradeoff between beamwidth and sidelobe level as aperture size increases.

Beamwidth ∝ (Aperture area)-1

crc + lin B

Configs

-20

-15

-10

-5

dB

MSLL(rel. to mainlobe)

crc + lin B

Configs

22

24

26

28

dBi

Directivity Gain GD

crc + lin B

Configs

-25

-20

-15

dB

ASLL(rel. to mainlobe)

crc + lin B

Configs

101

102

103

deg2

Beamwidth(deg2)

Naive Seq-phase-Optimized Ideal

-10 0 10

x - 6 units

-10

-5

0

5

10

y - 6

un

its

Plus

-10 0 10

x - 6 units

-10

-5

0

5

10

y - 6

un

its

Circle

-10 0 10

x - 6 units

-10

-5

0

5

10

y - 6

un

its

Pseudo Linear

-10 0 10

x - 6 units

-10

-5

0

5

10

y - 6

un

its

Benchmark

Page 21: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Early Results; trade-offs in beam steering

Observations and tradeoffs

Phase optimization to ↓ MSLL causes ↓ Directivity.

Tradeoff between Directivity gain & sidelobe level with phase optimization

Beamwidth ∝ (Aperture area)-1

0 20 40 60

Steering Angle(El.)

22

24

26

28

GD

(dB

i)

Plus

0 20 40 60

Steering Angle(El.)

22

24

26

28

GD

(dB

i)

Circle

Theory

Ideal

Rounding

Phase-opt

0 20 40 60

Steering Angle(El.)

23

24

25

26

27

28

GD

(dB

i)

Linear

0 20 40 60

Steering Angle(El.)

23

24

25

26

27

GD

(dB

i)

Benchmark

Directivity v/s steering

-10 0 10

x - 6 units

-10

-5

0

5

10

y -

6 u

nit

s

Plus

-10 0 10

x - 6 units

-10

-5

0

5

10

y -

6 u

nit

s

Circle

-10 0 10

x - 6 units

-10

-5

0

5

10

y -

6 u

nit

s

Pseudo Linear

-10 0 10

x - 6 units

-10

-5

0

5

10

y -

6 u

nit

s

Benchmark

Page 22: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group

Beam width is roughly inverse of physical array aperture width

Beamwidth and Aperture

Page 23: Ali Sadri, PhD Sr. Director Intel Corporation · 3G-4G 4G-5G. iCDG - Intel Communication and Devices Group 3 Search for Alternate Spectrum 10 20 30 40 50 70-80 No ... Professor Madhow

iCDG - Intel Communication and Devices Group 23

Conclusion

• Substantial effort has been focused in the industry on the 5G access technology to improve capacity, latency, throughput, scalability and quality of service;

• Access technology alone cannot significantly improve network capacity;

• An end-to-end 5G system need be augmented by flexible and high throughput backhaul and fronthaul;

• mmWave technology is a great candidate for both access and backhauling to increase network throughput and capacity, and lower interference;

• Sparse array architecture provides additional feature to optimize array performance