Alexander Kusenko (UCLA) Q2C Discovering dark matter in space · Alexander Kusenko (UCLA) Q2C...

72
Alexander Kusenko (UCLA) Q2C Discovering dark matter in space The evidence for dark matter The candidates, and the detection strategies The opportunities in space Sterile neutrinos as dark matter: 1

Transcript of Alexander Kusenko (UCLA) Q2C Discovering dark matter in space · Alexander Kusenko (UCLA) Q2C...

  • Alexander Kusenko (UCLA) Q2C

    Discovering dark matter in space

    • The evidence for dark matter

    • The candidates, and the detection strategies

    • The opportunities in space

    • Sterile neutrinos as dark matter:

    1

  • Alexander Kusenko (UCLA) Q2C

    Dark matter

    The evidence for dark matter is very strong:

    • galactic rotation curves cannot be explained by the disk alone

    • cosmic microwave background radiation

    • gravitational lensing of background galaxies by clusters is so strong thatit requires a significant dark matter component.

    • clusters are filled with hot X-ray emitting intergalactic gas; some(merging) clusters show displacement of dark and baryonic matter

    2

  • Alexander Kusenko (UCLA) Q2C

    Galactic rotation curves

    3

  • Alexander Kusenko (UCLA) Q2C

    Cosmic microwave background radiation (CMBR)

    At redshift zdec = 1089 ± 1, the atoms formed and the universe becametransparent to radiation. Radiation emitted at that time, tdec = (379 ±8) kyr, has been red-shifted into the microwave range. Fluctuations havebeen measured first by COBE, and later by BOOMERANG, MAXIMA, ...,WMAP:

    4

  • Alexander Kusenko (UCLA) Q2C

    Cosmic microwave background radiation (CMBR)

    At redshift zdec = 1089 ± 1, the atoms formed and the universe becametransparent to radiation. Radiation emitted at that time, tdec = (379 ±8) kyr, has been red-shifted into the microwave range. Fluctuations havebeen measured first by COBE, and later by BOOMERANG, MAXIMA, ...,WMAP:

    5

  • Alexander Kusenko (UCLA) Q2C

    These fluctuations can be represented in the form of a power spectrum Cl.First, one expands in spherical harmonics:

    ∆T

    T=∑

    l,m

    almYlm(θ, φ)

    And then one plots

    Cl ≡1

    2l + 1

    l∑

    m=−l

    |alm|2

    6

  • Alexander Kusenko (UCLA) Q2C

    Power spectrum measured by WMAP

    7

  • Alexander Kusenko (UCLA) Q2C

    Power spectrum measured by WMAP

    shows angular sizeof the horizon at the time of recombination

    densities

    sensitive to the ratio ofordinary to dark matter

    WMAP: Ωmatter = 0.234 ± 0.035; Ωb = 0.0446 ± 0.0016

    8

  • Alexander Kusenko (UCLA) Q2C

    Gravitational lensing: seeing the invisible

    9

  • Alexander Kusenko (UCLA) Q2C

    Foreground cluster CL0024+1654 produces multiple images of a bluebackground galaxy in the HST image (left). Mass reconstruction (right).

    10

  • Alexander Kusenko (UCLA) Q2C

    None of the known particles can be dark matter

    11

  • Alexander Kusenko (UCLA) Q2C

    None of the known particles can be dark matter

    12

  • Alexander Kusenko (UCLA) Q2C

    Dark matter ⇒ new physics

    13

  • Alexander Kusenko (UCLA) Q2C

    Dark matter: what is it?

    Can take guesses based on...

    • ...compelling theoretical ideas

    • ...simplicity

    • ...observational clues

    Dark matter properties determine the detection strategy

    14

  • Alexander Kusenko (UCLA) Q2C

    Dark matter: compelling theoretical ideas

    SUSY is an appealing theoretical idea

    Dark matter comes as part of the package as one of the following:

    • Lightest supersymmetric particle, stable because of R-parity

    – neutralino

    – gravitino

    – axino

    • SUSY Q-balls, stable for gauge-mediated SUSY breaking, thanks to the baryon

    number and energy conservation.

    Theoretically motivated! Mass vs cross section OK, even ”natural”.

    By no means minimal. No experimental evidence so far, but the search isunder way.

    15

  • Alexander Kusenko (UCLA) Q2C

    SUSY

    WIMP

    Direct detection

    Weakly interacting particles (WIMP)can penetrate through rock; they can bedetected in underground detectors, such asZeplin and others, screened by the rockfrom cosmic rays (unwanted background)

    16

  • Alexander Kusenko (UCLA) Q2C

    Indirect detection of WIMPs

    Annihilations of WIMPs in the center of MW galaxy can be detected bygamma ray and x-ray telescopes in space

    17

  • Alexander Kusenko (UCLA) Q2C

    Axion

    �Strong CP problem: QCD vacuum is a superposition |θ〉 =

    n exp{−inθ}|n〉of topologically distinct vacuum states |n〉.

    LQCD = Lpert + θg2

    32π2F F̃

    θ̄ = θ + arg det M

    Experiment: |θ̄| ≪ 10−10 !

    18

  • Alexander Kusenko (UCLA) Q2C

    Possible solution: Peccei-Quinn symmetry

    An elegant solution: θ̄ relaxes to zero dynamically, by a VEV of the axion .

    Additional U(1) symmetry, Peccei-Quinn symmetry is spontaneouslybroken by instantons ⇒ axion has small mass.

    Axion is a weakly interacting particle ⇒ dark matter

    19

  • Alexander Kusenko (UCLA) Q2C

    Axion dark matter

    20

  • Alexander Kusenko (UCLA) Q2C

    Axion dark matter

    Various searches:

    • axion-photon conversion in magnetic field

    • detection of solar axions

    • long-range forces; possible advantage in space: drag-free environment

    21

  • Alexander Kusenko (UCLA) Q2C

    Sterile dark matter: a simple (minimalist) solution

    Need one particle ⇒ add just one particle

    If a fermion, must be gauge singlet (anomalies)

    Interactions only through mixing with neutrinos

    ⇒ sterile neutrino

    Small mass and, therefore, stability! No symmetries required.

    22

  • Alexander Kusenko (UCLA) Q2C

    Sterile neutrinosThe name ”sterile” was coined by BrunoPontecorvo in a paper [JETP, 53, 1717 (1967)],which also discussed

    • lepton number violation

    • neutrinoless double beta decay

    • rare processes (e.g. µ → eγ)

    • vacuum neutrino oscillations

    • detection of neutrino oscillations

    • astrophysical neutrino oscillations

    23

  • Alexander Kusenko (UCLA) Q2C

    Pontecorvo: neutrino oscillations can”convert potentially active particles into

    particles that are, from the point of view

    of ordinary weak interactions, sterile, i.e.practically unobservable, since they have

    the ”incorrect” helicity” [JETP, 53, 1717(1967)]

    24

  • Alexander Kusenko (UCLA) Q2C

    Sterile neutrinos with a small mixing to active neutrinos

    {

    |ν1〉 = cos θ|νe〉 − sin θ|νs〉|ν2〉 = sin θ|νe〉 + cos θ|νs〉 (1)

    The almost-sterile neutrino, |ν2〉 was never in equilibrium. Production ofν2 could take place through oscillations.

    The coupling of ν2 to weak currents is also suppressed, and σ ∝ sin2 θ.The probability of νe → νs conversion in presence of matter is

    〈Pm〉 =1

    2

    [

    1 +

    (

    λosc

    2λs

    )2]−1

    sin2 2θm, (2)

    where λosc is the oscillation length, and λs is the scattering length.

    25

  • Alexander Kusenko (UCLA) Q2C

    Sterile neutrinos in the early universe

    Sterile neutrinos are produced in primordial plasma through

    • off-resonance oscillations. [Dodelson, Widrow; Abazajian, Fuller; Dolgov,Hansen; Shaposhnikov et al.]

    • oscillations on resonance, if the lepton asymmetry is non-negligible[Fuller, Shi]

    26

  • Alexander Kusenko (UCLA) Q2C

    Mixing is suppressed at high temperature [Dolgov, Barbiieri; Stodolsky]

    sin2 2θm =(∆m2/2p)2 sin2 2θ

    (∆m2/2p)2 sin2 2θ + (∆m2/2p cos 2θ − V (T ))2, (3)

    For small angles,

    sin 2θm ≈sin 2θ

    1 + 0.79 × 10−13(T/MeV)6(keV2/∆m2)(4)

    Production of sterile neutrinos peaks at temperature

    Tmax = 130 MeV

    (

    ∆m2

    keV2

    )1/6

    27

  • Alexander Kusenko (UCLA) Q2C

    The resulting density of relicsterile neutrinos in conventionalcosmology, in the absence of alarge lepton asymmetry:

    Ων2 ∼ 0.3(

    sin2 2θ

    10−8

    )

    (

    ms

    keV

    )2

    1e-11 1e-10 1e-09 1e-08 1e-07

    sin2θ

    1

    10

    m s [

    keV

    ]

    Ω > 0.3

    Ω = 0.3

    s

    s

    dark matter

    [Dodelson, Widrow; Dolgov, Hansen; Fuller, Shi; Abazajian, Fuller, Patel]

    28

  • Alexander Kusenko (UCLA) Q2C

    Lyman-α forest: a look at the small-scale structure

    29

  • Alexander Kusenko (UCLA) Q2C

    The resulting density of relicsterile neutrinos in conventionalcosmology, in the absence of alarge lepton asymmetry:

    Ων2 ∼ 0.3(

    sin2 2θ

    10−8

    )

    (

    ms

    keV

    )2

    Lyman-α forest clouds showsignificant structure on smallscales. Dark matter must be coldenough to preserve this structure.

    1e-11 1e-10 1e-09 1e-08 1e-07

    sin2θ

    1

    10

    m s [

    keV

    ]

    Ω > 0.3

    Ω = 0.3

    s

    s

    dark matter

    too warm

    Seljak et al.

    Viel et al.

    30

  • Alexander Kusenko (UCLA) Q2C

    Cold or warm dark matter?

    CDM works well, but...

    There are problem problems with cold dark matter on small scales

    31

  • Alexander Kusenko (UCLA) Q2C

    Some CDM problems eliminated by WDM• overproduction (by an order of magnitude!) of the satellite halos for galaxies of the

    size of Milky Way.

    • WDM can reduce the number of halos in low-density voids. [Peebles]

    • observed densities of the galactic cores (from the rotation curves) are lower than whatis predicted based on the ΛCDM power spectrum. [Dalcanton et al.; van den Bosch etal.; Moore; Abazajian]

    • The “angular-momentum problem”: in CDM halos, gas should cool at very early timesinto small halos and lead to massive low-angular-momentum gas cores in galaxies.[Dolgov]

    • disk-dominated (pure-disk) galaxies are observed, but not produced in CDM becauseof high merger rate. [Governato et al.; Kormendy et al.]

    • observations of dwarf spheroidal galaxies ⇒ m ∼ keV [Gilmore et al.]

    32

  • Alexander Kusenko (UCLA) Q2C

    Radiative decay

    Sterile neutrino in the mass range of interest have lifetimes longer thanthe age of the universe, but they do decay:

    ν2 W+ ν1

    l -l -

    γ

    ν2 l - ν1

    W+W+

    γ

    Photons have energies m/2: X-rays. Large lumps of dark matter emit someX-rays. [Abazajian, Fuller, Tucker; Dolgov, Hansen; Shaposhnikov et al.]

    33

  • Alexander Kusenko (UCLA) Q2C

    X-ray observations

    Virgo cluster image from XMM-Newton

    34

  • Alexander Kusenko (UCLA) Q2C

    Chandra, XMM-Newton can see photons: νs → νeγ

    [Abazajian et al; Hansen et al.; Boyarsky et al.; Watson et al.]

    35

  • Alexander Kusenko (UCLA) Q2C

    Chandra, XMM-Newton can see photons: νs → νeγ

    dSphs (favored)

    [Abazajian et al; Hansen et al.; Boyarsky et al.; Watson et al.]

    36

  • Alexander Kusenko (UCLA) Q2C

    Emission of sterile neutrinos from a supernova

    • Sterile neutrino emission from a supernova is anisotropic

    • Sterile neutrinos with masses and mixing angles consistent with darkmatter can explain the pulsar velocities

    [AK, Segrè; Fuller, AK, Mocioiu, Pascoli]

    37

  • Alexander Kusenko (UCLA) Q2C

    The pulsar velocities.

    Pulsars have large velocities, 〈v〉 ≈ 250 − 450 km/s.[Cordes et al.; Hansen, Phinney; Kulkarni et al.; Lyne et al. ]

    A significant population with v > 700 km/s,about 15 % have v > 1000 km/s, up to 1600 km/s.[Arzoumanian et al.; Thorsett et al. ]

    38

  • Alexander Kusenko (UCLA) Q2C

    A very fast pulsar in Guitar Nebula

    HST, December 2001HST, December 1994

    39

  • Alexander Kusenko (UCLA) Q2C

    Map of pulsar velocities

    40

  • Alexander Kusenko (UCLA) Q2C

    Proposed explanations:

    • asymmetric collapse [Shklovskii] (small kick)

    • evolution of close binaries [Gott, Gunn, Ostriker] (not enough)

    • acceleration by EM radiation [Harrison, Tademaru] (kick small, predictedpolarization not observed)

    • asymmetry in EW processes that produce neutrinos [Chugai; Dorofeev,Rodinov, Ternov] (asymmetry washed out)

    • “cumulative” parity violation [Lai, Qian; Janka] (it’s not cumulative )

    41

  • Alexander Kusenko (UCLA) Q2C

    Asymmetric collapse

    “...the most extreme asymmetric collapsesdo not produce final neutron star velocities above 200km/s” [Fryer ’03]

    42

  • Alexander Kusenko (UCLA) Q2C

    Supernova neutrinos

    Nuclear reactions in stars lead to a formation of a heavy iron core. Whenit reaches M ≈ 1.4M⊙, the pressure can no longer support gravity. ⇒collapse.

    Energy released:

    ∆E ∼ GNM2Fe core

    R∼ 1053erg

    99% of this energy is emitted in neutrinos

    43

  • Alexander Kusenko (UCLA) Q2C

    Pulsar kicks from neutrino emission?

    Pulsar with v ∼ 500 km/s has momentum

    M⊙v ∼ 1041 g cm/sSN energy released: 1053 erg ⇒ in neutrinos. Thus, the total neutrinomomentum is

    Pν; total ∼ 1043 g cm/s�

    �a 1% asymmetry in the distribution of neutrinos

    is sufficient to explain the pulsar kick velocities

    But what can cause the asymmetry??

    44

  • Alexander Kusenko (UCLA) Q2C

    Magnetic field?

    Neutron stars have large magnetic fields. A typical pulsar has surfacemagnetic field B ∼ 1012 − 1013 G.Recent discovery of soft gamma repeaters and their identification asmagnetars

    ⇒ some neutron stars have surface magnetic fields as high as1015 − 1016 G.

    ⇒ magnetic fields inside can be 1015 − 1016 G.Neutrino magnetic moments are negligible, but the scattering of neutrinosoff polarized electrons and nucleons is affected by the magnetic field.

    45

  • Alexander Kusenko (UCLA) Q2C

    Core collapse supernova

    Onset of the collapse: t = 0

    Fe

    core

    46

  • Alexander Kusenko (UCLA) Q2C

    Core collapse supernova

    Shock formation and “neutronization burst”: t = 1 − 10 ms

    PNSburst

    shock

    ν

    Protoneutron star formed. Neutrinos are trapped. The shock wave breaksup nuclei, and the initial neutrino come out (a few %).

    47

  • Alexander Kusenko (UCLA) Q2C

    Core collapse supernova

    Thermal cooling: t = 10 − 15 s

    PNSthermal

    ν

    Most of the neutrinos emitted during the cooling stage.

    48

  • Alexander Kusenko (UCLA) Q2C

    Electroweak processes producing neutrinos (urca),

    p + e− ⇀↽ n + νe and n + e+ ⇀↽ p + ν̄e

    have an asymmetry in the production cross section, depending on the spinorientation.

    σ(↑ e−, ↑ ν) 6= σ(↑ e−, ↓ ν)The asymmetry:

    ǫ̃ =g2

    V− g2

    A

    g2V

    + 3g2A

    k0 ≈ 0.4 k0,

    where k0 is the fraction of electrons in the lowest Landau level.

    49

  • Alexander Kusenko (UCLA) Q2C

    In a strong magnetic field,

    20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    B=10 G16

    B=3x10 G15

    0K

    20 30 40 50 60

    µ, MeV

    B=3x10 G16

    k0 is the fraction of electrons in the lowest Landau level.

    Pulsar kicks from the asymmetric production of neutrinos?[Chugai; Dorofeev, Rodionov, Ternov]

    50

  • Alexander Kusenko (UCLA) Q2C

    Can the weak interactions asymmetry cause an

    anisotropy in the flux of neutrinos due to a large

    magnetic field?

    No

    eνeνeν

    eνeν

    eνeν

    eνeν e

    ν

    Neutrinos are trapped at high density.

    51

  • Alexander Kusenko (UCLA) Q2C

    Can the weak interactions asymmetry cause an

    anisotropy in the flux of neutrinos due to a large

    magnetic field?

    NoRescattering washes out the asymmetry

    In approximate thermal equilibrium the asymmetries in scattering amplitudesdo not lead to an anisotropic emission. Only the outer regions, nearneutrinospheres, contribute (a negligible amount). [Vilenkin,AK, Segrè]

    However, if a weaker-interacting sterile neutrino was produced inthese processes, the asymmetry would, indeed, result in a pulsarkick!

    52

  • Alexander Kusenko (UCLA) Q2C

    Sterile neutrinos leave the star without scattering. Hence, they give thepulsar a kick.

    eνeν

    νsνs

    νs

    νs

    νs

    B

    53

  • Alexander Kusenko (UCLA) Q2C

    Allowed range of parameters (time scales, fraction of total energy emitted):

    1e-11 1e-10 1e-09 1e-08 1e-07

    sin2θ

    1

    10

    m s [

    keV

    ]

    �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    Ω = 0.3

    Ω > 0.3

    ν

    ν

    dark matter

    pulsar kick

    oscillations)(off−resonance

    [Fuller, AK, Mocioiu, Pascoli]

    54

  • Alexander Kusenko (UCLA) Q2C

    Resonant active-sterile neutrino conversions in matter

    Matter potential:

    V (νs) = 0

    V (νe) = −V (ν̄e) = V0 (3Ye − 1 + 4 Yνe)

    V (νµ,τ) = −V (ν̄µ,τ) = V0 (Ye − 1 + 2 Yνe) + cZ

    L

    ~k · ~Bk

    cZ

    L=

    eGF√2

    (

    3Ne

    π4

    )1/3

    [D’Olivo, Nieves, Pal]

    55

  • Alexander Kusenko (UCLA) Q2C

    The magnetic field shifts the position of the resonance because of the~k· ~B

    kterm in the potential:

    µν

    νs

    νs

    νs

    νs

    νµµν µν

    µν

    µν

    In the absence of magnetic field, νs escape isotropically

    56

  • Alexander Kusenko (UCLA) Q2C

    The magnetic field shifts the position of the resonance because of the~k· ~B

    kterm in the potential:

    µν

    νsνs

    νs

    νs

    νsνs

    µνµν

    µν eν

    µν

    µνµν

    B

    Down going neutrinos have higher energies

    of the

    57

  • Alexander Kusenko (UCLA) Q2C

    The range of parameters (resonance, adiabaticity, weak damping):

    1e-11 1e-10 1e-09 1e-08 1e-07

    sin2θ

    1

    10

    m s [

    keV

    ]

    �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    Ω = 0.3

    Ω > 0.3

    ν

    ν

    pulsar kick(resonant oscillations)

    dark matter

    2

    58

  • Alexander Kusenko (UCLA) Q2C

    Resonance & off-resonance oscillations

    1e-11 1e-10 1e-09 1e-08 1e-07

    sin2θ

    1

    10

    m s [

    keV

    ]

    ����������������������������������������

    ����������������������������������������

    2

    Ω > 0.3s

    1

    3

    �������������������������������������������������

    �������������������������������������������������pulsar kick

    pulsar kick and dark matter (L=0)

    too warm

    [ A.K., Segrè, PL B396, 197 (1997); Fuller, A.K.,Mocioiu,Pascoli, PR D 68, 103002 (2003)]

    59

  • Alexander Kusenko (UCLA) Q2C

    Other predictions of the pulsar kick mechanism

    • Stronger supernova shock [Fryer, AK, ApJ, in press; astro-ph/0512033]

    iii

    iii

    ConvectionRegion

    60

  • Alexander Kusenko (UCLA) Q2C

    Other predictions of the pulsar kick mechanism

    • Stronger supernova shock [Fryer, AK, ApJ, in press; astro-ph/0512033]

    61

  • Alexander Kusenko (UCLA) Q2C

    Other predictions of the pulsar kick mechanism

    • Stronger supernova shock [Fryer, AK, ApJ, in press; astro-ph/0512033]

    • No B − v correlation is expected because

    – the magnetic field inside a hot neutron star during the first ten seconds is verydifferent from the surface magnetic field of a cold pulsar

    – rotation washes out the x, y components

    • Directional ~Ω − ~v correlation is expected, because

    – the direction of rotation remains unchanged– only the z-component survives

    B

    62

  • Alexander Kusenko (UCLA) Q2C

    Reionization

    WMAP, three years of data, reionization redshift: zr = 10.9+2.7−2.3.

    (This improves the one-year WMAP result, zr = 17 ± 5.)

    Observations of distant quasars: reionization must be completed by z = 6.

    First stars can ionize gas, but can they form so early?

    WMAP 3 yrs ⇒ new challenge: can one end reionization by z = 6 withoutexceeding the optical depth τ

    WMAP= 0.10 ± 0.03?

    Small halos collapse first and start ionizing gas. If reionization is to becompleted by z = 6, small halos shine to early, too bright, and exceedτ

    WMAP.

    63

  • Alexander Kusenko (UCLA) Q2C

    Need suppression of star formation in small halos by an order ofmagnitude: [Haiman, Bryan, astro-ph/0603541]

    Warm dark matter (gravitinos) could suppress small structure and butthey would also delay the star formation.

    What about sterile neutrinos?

    • they are warm ⇒ small halos suppressed

    • they decay and produce x-rays, and x-rays can ionize gas!

    64

  • Alexander Kusenko (UCLA) Q2C

    Photons from radiative decays

    Sterile neutrino in the mass range of interest have lifetimes longer thanthe age of the universe, but they do decay:

    ν2 W+ ν1

    l -l -

    γ

    ν2 l - ν1

    W+W+

    γ

    Photons have energies m/2: X-rays. X-rays can ionize gas.

    65

  • Alexander Kusenko (UCLA) Q2C

    Sterile neutrino decays: an increase in ionization fraction

    10 20 50 100 200 500 1000

    0.001

    0.01

    0.1

    1

    xe

    z

    The ions too few to explain the WMAP results [Ferrara, Mapelli]...

    ...but it’s a much higher fraction than in the absence of sterileneutrinos. Ionization catalyzes formation of molecular hydrogen [AK;P.L. Biermann]...

    production of molecular hydrogen speeds up gas cooling, halocollapse and star formation

    66

  • Alexander Kusenko (UCLA) Q2C

    [Tegmark, et al., ApJ 474, 1 (1997) ]

    67

  • Alexander Kusenko (UCLA) Q2C

    Molecular hydrogen

    H + H → H2 + γ − very slow!In the presence of ions the following reactions are faster:

    H+ + H → H+2 + γ,H+2 + H → H2 + H+.

    H+ catalyze the formation of molecular hydrogen![Biermann, AK, PRL 96, 091301 (2006)]

    68

  • Alexander Kusenko (UCLA) Q2C

    The fraction of molecularhydrogen f

    ḟ ≈ km(t) nH(t) xe(t),

    where km is the rate shown

    0 200 400 600 800 10000

    0.5

    1

    1.5

    2

    z

    mk , 1

    0 cm

    /s

    −16

    3

    End result: H2 production is enhanced at z ∼ 100Sterile neutrino decays can precipitate the early star formation. Stars canreionize the universe by redshif zr = 11 ± 3 (WMAP) while avoiding theminihalo problem

    69

  • Alexander Kusenko (UCLA) Q2C

    Clues of sterile neutrinos

    The sterile neutrinos can explain:

    • the light neutrino masses

    • dark matter

    • baryon asymmetry via leptogenesis [ Asaka, Shaposhnikov; Akhmedovet al. ]

    • pulsar kicks

    • reionization

    70

  • Alexander Kusenko (UCLA) Q2C

    Clues of sterile neutrinos

    Depending, of course, on how far down it goes.This could be the greatest discovery of the century.

    71

  • Alexander Kusenko (UCLA) Q2C

    Summary

    • Dark matter is out there and needs to be discovered!

    • NASA can make the discovery in space using x-ray and gamma-ray telescopes

    • A sterile neutrino with keV mass is a viable dark matter candidate, free of CDMproblems, consistent with dSphs observations.

    • The same neutrino is emitted from a supernova with a sufficient anisotropy to explainthe pulsar velocities

    • The same neutrino can boost the production of molecular hydrogen and precipitate arapid early star formation.

    • A rather minimal extension of the Standard Model, the addition of three sterileneutrinos explains all the present data, including dark matter, the baryonasymmetry of the universe, the pulsar velocities, and reionization

    72