Ale Hakala Presentation

12
Geochemistry of CO 2 Storage Alexandra Hakala Geosciences Division, Office of Research and Development National Energy Technology Laboratory Pittsburgh, PA ‹#› Geochemistry plays an important role in all aspects of a geological CO 2 sequestration system  Monitoring techniques  Groundwater aquifers   Liability issues   EPA Class VI rules (also includes injection well integrity)  Other subsurface resources  Seals: Wells and Natural Rocks  Storage formation   CO 2 plume behavior   Long-term permeability and porosity

Transcript of Ale Hakala Presentation

Page 1: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 1/12

Geochemistry of CO2 Storage 

Alexandra HakalaGeosciences Division, Office of Research and Development 

National Energy Technology Laboratory 

Pittsburgh, PA

‹#›

Geochemistry plays an important role in all

aspects of a geological CO2 sequestrationsystem

•  Monitoring techniques

•  Groundwater aquifers

 –  Liability issues

 –  EPA Class VI rules (also

includes injection well integrity)

•  Other subsurface resources

•  Seals: Wells and Natural Rocks

•  Storage formation

 –  CO2 plume behavior 

 –  Long-term permeability and

porosity

Page 2: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 2/12

‹#›

http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap6-18.gif 

•  Primary considerations for CO2 geochemical effects include:

 –  Mineral dissolution

 –  Metal and other trace element mobility

Primary focus is on carbonate geochemistry

‹#›

CO2 solubility in water changes with salinity,

pressure, temperature

•  Dealing with supercritical CO2 at depth

 –  Behavior of CO2 and geologic fluids within the reservoir will differ 

from shallow systems due to P, T effects on CO2 solubility

•  Need to account for CO2 thermophysical behavior both under 

storage formation conditions for predicting reservoir behavior,

and in all aspects of the system when performing site and risk

assessments

Duan, Z. and Sun, R.     An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar.   Chemical Geology 193 (2003) 257-271.

Page 3: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 3/12

‹#›

A variety of reactive materials are present in

all areas of a sequestration system

•  Solids

 –  Sandstones

 –  Carbonates

 –  Shale

 –  Basalts

 –  Cement

 –  Steel

•  Fluids

 –  Brine and Saline

fluids

 –  Oil –  Low-TDS waters

Mt. Simon Sandstone Cores

(MRCSP / Indiana Geologic Survey)

Basalt Cores(Big Sky)

Lower Tuscaloosa Sandstone

(in reactors)

(SECARB/TX-BEG)

Class H Well Cement Reacted with

H 2 S and CO2  

‹#›

A variety of pressure, temperature and

baseline geochemical conditions exist ingeologic CO2 sequestration systems

•  Carbonate chemistry, pH effects primary focus; also solvent

effects (e.g., organics)

•  Potential co-constituents of a CO2 stream

 –  Can the system handle trace amounts of H2S, SO2, O2,

byproducts of CO2 capture systems?

•  P,T conditions will affect thermodynamics and kinetics of 

different reaction processes

 –  Ion exchange, sorption, dissolution, precipitation

•  Also need to consider possible secondary geochemical effectsand geochemical monitoring tools

 –  Redox, microbiology, organics, isotope geochemistry

Page 4: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 4/12

‹#›

Geochemistry plays an important role in all

aspects of a geological CO2 sequestration

system

•  Monitoring techniques

•  Groundwater aquifers

 –  Liability issues

 –  EPA Class VI rules (also

includes injection well integrity)

•  Other subsurface resources

•  Seals: Wells and Natural Rocks

•  Storage formation

 –  CO2 plume behavior 

 –  Long-term permeability and

porosity

‹#›

Lower Tuscaloosa Sandstone

(SECARB Cranfield Injection Site)

•  Minimal short-term geochemical

reactivity

 –  Clay protection of carbonates

 –  Longer term reactions may occur 

Lab Experiment DataField Experiment Data

Lu, J.; Kharaka, Y.; Thorsden, J. J.; Horita, J.; Karamalidis, A.; Griffith, C.; Hakala, J. A.; Ambats, G.; Cole, D. R.; Phelps, T. J.; Manning, M. A.; Cook, P. J.;

Hovorka, S.    Geochemical interactions in the Lower Tuscaloosa reservoir at the Cranfield CO2 sequestration site, Mississippi, USA   Under Review.

Page 5: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 5/12

‹#›

Which microbial communities affect geochemical processes in CO2 storageformations and in shallow groundwaters? What geomicrobiological processes

need to be included as part of predictive modeling efforts?

Geochemical Reactions – Microbiological Studies

Wallula Pilot Well Basalt (WA)(BSCSP)

Lower Tuscaloosa Sandstone (MS)(SECARB / TX Bureau of 

Economic Geology)

Wellington Oil Field (KS)(SWP / Kansas Geological Survey)

• Characterize the influence of microbes on supercritical CO2 storagein candidate storage formations (basalt, sandstone, depleted oil

reservoirs)

• Determine how native microbes respond to supercritical CO2 

‹#›

Science base enables a more reliable assessment

of the impact of critical processes at the systemlevel.

CO2+brine dissolves

hydrated cement

Based on conservative assumptions… 

•  Avoid areas with wellbores 

 –  avoid depleted oil and gas reservoirs

•  Require use of CO2-resistant cement

 –  higher costs & limited field-use experience

Based on limited experience base… •  Potentially underestimate long-term costs 

 –  liability; wellbore maintenance; etc.

?

wellbore permeability

will increase

wellbore permeability

will not increase 

Page 6: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 6/12

‹#›

CO2-Brine-Cement and CO2-Cementreactions behave differently

Kutchko, Strazisar, Dzomback, Lowry, & Thaulow, Environmental Science and Technology, (2007)

Supercritical CO2 

CO2 

saturated brine 

Unaltered cement  

 Altered 

cement  

CaCO3(s)barrier (2)

Degraded Zone (3) 

Propagation of Fronts 

Ca(OH)2  depleted 

zone (1) 

‹#›

Different reaction effects are observed when H2S is presentas a co-constituent in the laboratory 

Kutchko, Strazisar, Hawthorne, Lopano, Miller, Hakala, Guthrie, Intl J. GHG Control (2011)

Page 7: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 7/12

‹#›

Prediction of groundwater aquifer response

complicated due to system heterogeneities

‹#›

Laboratory batch reaction experiments with

Gulf Coast Aquifer samples•  Observed change in pH values,

mineral morphology after CO2 

reaction with samples

•  Elevation of Type I and II

cations with initial CO2 flux

 –  Type I reached equilibrium,

but Type II declined over time(sorption effect?)

•  Rapid reactions of carbonate

minerals contribute toobserved changes in solution

chemistry

Lu, Partin, Hovorka, Wong, Environ. Earth Sci. (2010)

Page 8: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 8/12

‹#›

Shallow aquifer samples from Illinois and Texas show CO2 reaction results similar to the Gulf Coast Aquifer 

•  Laboratory experimental conditions using natural aquifer core samples•  pH decline after CO2 exposure

•  Increase in Type I cations, some Type II cations (e.g., Fe)

•  Increase in EPA-regulated elements, although concentrations remain

below the MCLs for U and As

Little and Jackson, Environ. Sci. Technol. (2010)

‹#›

Shallow CO2 injection groundwater monitoring

at the ZERT site in Bozeman, MT

•  Rapid, systematic pH

changes (7.0 – 5.6),

alkalinity, and electrical

conductance following

CO2 injection

•  Increase in Ca, Mg, Feand Mn following

injection

•  Dissolution of carbonate

minerals and

desorption-ion exchangefrom lowered pH values

Kharaka, Thorsden, Kakouros, Ambats, Herkelrath, Beers, Birkholzer, Apps, Spycher, Zheng, Trautz, Rauch, Gullickson (2010) Environ. Earth Sci.

Page 9: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 9/12

‹#›

Modeling to predict aquifer-specific CO2-inducedgeochemical changes

•  Mineralogical properties of receiving aquifer dictate observed result of 

CO2 migration into shallow aquifers

•  CO2 gas dissolution into groundwater and subsequent reactions will

drive the evolution of carbonate chemistry and pH in the aquifer 

Wilkin and DiGiulio, Environ. Sci. Technol. (2010)

‹#›

Ongoing collaboration between NETL-ORD, University of Pittsburgh, and LANL

Natural analog sites used to study geochemistry of 

aquifers with elevated CO2 and salinity•  Natural analogs

 –  CO2 naturally upwelling throughshallow aquifer in volcanic or geothermal settings

•  Rapid release pathways alongfaults

•  Diffuse CO2 rising and flowingthrough aquifer 

•  High alkalinity and carbonatedissolution buffers pH changes dueto carbonate influx Keating et al. (2009)Environ. Earth Sci.

•  Buffering capacity and unknowngeochemical reactions complicate

modeling efforts

Keating et al. (2009) Environ. Earth Sci.

Page 10: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 10/12

‹#›

Chimayo aquifer sample collection from surface outcrops (March 2009)

0.1 km

Roadcut Bedplane 2 Yellow

(Lithosome A: silty-clayeyfine sand)

Roadcut Bedplane 1 Gray

(Interbedded B & A, fine-

grained)

Streamcut 2 Green (Lithosome

B, sand and gravel channel

fills)

Streamcut 1 Blue (Lower 

Lithosome B: silt, clay, fine

sand floodplain sediment)

Keating et al. (2009) Environ. Earth Sci.

Keating et al. (2009) Environ. Earth Sci.

Google Earth

‹#›

What is present in Chimayo sediments? If wedetermine what is present, can this information be

used in reactive transport simulations?

 Tools for identifying trace element content

•  Scanning Electron Microscopy

 –  Often, trace elements not concentrated enough toobserve in elemental maps

•  X-ray Absorption Spectroscopy

 –  Ideal for identifying speciation and distribution of elements in environmental samples, but limited

access to facilities

•  Sequential Extraction Techniques

 –  Relatively simple to perform and may yield usefulinformation, but potential limitations with selectivity

Ongoing collaboration between NETL-ORD, University of Pittsburgh, and LANL

Page 11: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 11/12

‹#›

Analysis of solids (Q-XRD and SEM) show quartz and clays withfeldspars, kaolinite, calcite, hematite, other phases

Q-XRD, wt%

Quartz 

Clay coating/ 

weathering 

keV

876543210

     o    u     n      t     s

4,000

3,000

2,000

1,000

0

O

S

Ca

CaSr  Ba

Ba

Ba

Ba

Ba, Sr and Ca inrandomly distributed  phase (RCBP2-G)

Ongoing collaboration between NETL-ORD, University of Pittsburgh, and LANL

‹#›

Sequential extractions, CO2 batch reactions and synchrotroncharacterization provide information on trace elements

0

0.01

0.02

0.03

0.04

As U

Exchangeables/Carbonates

MnOxides (Reducibles)

FeOxides (Reducibles)

Oxidizables

   R  a   t   i  o  o   f   [   E  x   t  r  a  c   t   i  o  n   S   t  e  p   ]   /   [   T  o   t  a   l   ]

Fe K α As K α  /Pb Lα 1

350 µm x 350 µm

As(III)

As(V)

Ongoing collaboration between NETL-ORD, University of Pittsburgh, and LANL

Page 12: Ale Hakala Presentation

8/6/2019 Ale Hakala Presentation

http://slidepdf.com/reader/full/ale-hakala-presentation 12/12