AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

download AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

of 15

Transcript of AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    1

    AISC-ASD89-1

    Title

    Design of Compression Member

    Description

    Check the adequacy of a W10 45 section by Allowable Stress Design. A36 steel is usedand service loads are 50 kips dead load and 110 kips live load.

    Compression Member

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    2

    Theoretical Results (AISC-ASD89)

    Compute slenderness ratio

    ( ) 1.0(30)1283.3

    4.32

    x

    x

    KL

    r= =

    ( ) 1.0(15)1289.6

    2.01

    y

    y

    KL

    r= =

    Compute allowable stress aF . Compare the /KL r with cC to determine whether the

    shoter or long column fomular applies

    2 22 2 29,000126

    36c

    y

    EC

    F

    = = =

    Since the controlling /KL rof 89.6 is less than cC , the allowable stress is based on the

    parabolic equation for inelastic buckling. Thus, by calculation or from ASD

    NUMERICAL VALUES TABLE 32

    2

    3

    3

    ( / )1

    214.3 ksi

    5 3( / ) ( / )

    3 8 8

    y

    c

    a

    c c

    KL rF

    CF

    KL r KL r

    C C

    = =

    +

    Comparison of stresses

    [ ]160

    12.0 ksi 14.3 ksi13.3a a

    g

    Pf FA= = = < =

    Results by the MIDAS/Gen

    ------------------------------------------------------------------------------------------MIDAS/Gen - Steel Code Checking [ AISC-ASD89 ]=====================================================

    *.DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS.

    -------------------------------------------------------------------------------------------------------------LCB C Loadcase Name(Factor) + Loadcase Name(Factor) + Loadcase Name(Factor)

    -------------------------------------------------------------------------------------------------------------1 0 DL( 1.000) + LL( 1.000)

    -------------------------------------------------------------------------------------------------------------

    *. UNIT SYSTEM : kip, in

    *. SECTION PROPERTIES : Designation = W10x45Shape = H - Section. (Rolled)

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    AISC-ASD89-1

    3

    Depth = 10.100, Top F Width = 8.020, Bot.F Width = 8.020Web Thick = 0.350, Top F Thick = 0.620, Bot.F Thick = 0.620

    *. DESIGN PARAMETERS FOR STRENGTH EVALUATION :Ly = 3.60000e+002, Lz = 3.60000e+002, Lu = 3.60000e+002

    Ky = 1.00000e+000, Kz = 5.00000e-001

    *. MATERIAL PROPERTIES :Fy = 3.60000e+001, Es = 2.90000e+004, MATERIAL NAME = A36

    *. FORCES AND MOMENTS AT (I) POINT :

    Axial Force Fxx =-1.60000e+002

    ===================================[[[*]]] CHECK AXIAL STRESS.

    ===================================

    ( ). Check slenderness ratio of axial compression member (Kl/r).[ AISC-ASD89 Specification B7. ]

    -. Kl/r = 89.6 < 200.0 ---> O.K.

    ( ). Calculate allowable compressive stress (Fa).

    [ AISC-ASD89 Specification E2. (E2-1) ][ 2*(Pi^2)*Es ]

    -. Cc = SQRT [ ----------------- ] = 126.10[ Fy ]

    -. Kl/r < Cc[ (Kl/r)^2 ][ 1 - ----------- ]*Fy[ 2*Cc^2 ]

    -. Fa = ------------------------------- = 14.258 kip/in^2.5 3*(Kl/r) (Kl/r)^3--- + ---------- - -----------3 8*Cc 8*Cc^3

    ( ). Calculate axial compressive stress of member (fa).-. fa = Fxx/Area = -12.030 kip/in^2.

    ( ). Check ratio of axial stress (fa/Fa).fa 12.030

    -. ---- = ------------ = 0.844 < 1.000 ---> O.K.Fa 14.258

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    4

    Comparison of Results

    Reference

    CHARLES G. SALMON, JOHN E. JOHNSON, Steel Structure,Example 6.11.1

    Reference MIDAS/Gen

    ( ) /y yKL r (slenderness ratio) 89.6 89.6

    cC (limit slenderness ratio) 126 126

    aF (allowable compressive stress) 14.3 ksi 14.3 ksi

    af (axial compressive stress) 12.0 ksi 12.0 ksi

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    1

    AISC-ASD89-2

    Title

    Design of Laterally Supported Beam

    Description

    Select the lightest W or M section to carry a uniformly distributed dead load of 0.2 kip/ft

    superimposed (i.e., in addition to the beam weight) and 0.8 kip/ft live load. The simply

    supported span is 20ft. The compression flange of the beam is fully supported against

    lateral movement. Use Allowable Stress Design with A36 steel.

    Laterally Supported Beam

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    2

    Theoretical Results (AISC-ASD89)

    A36 steel. Assume compact sectionsince nearly all sections satisfy the width/thickness

    limits : thus, the allowable stress bF would be

    0.66b y

    F F=

    Note that rounded values (i.e., 0.66 times 36 = 23.8 ksi ; use 24 ksi) are accepted values inaccordance with ASD-NUMERICAL VALUES TABLE

    The superimposed service load (1kip/ft) bending moment is2 2/ 8 1.0(20) / 8 50 ft-kipsM wL= = =

    Required 350(12)

    25 in24

    x

    b

    MS

    F= = =

    Try W12 22 : 325.4 inxS =

    Check compact limits (p

    ) of ASD-Table B5.1

    4.034.7 10.8

    2 2(0.425)

    f

    f

    b

    t= = < (Table 7.4.2) OK

    12.3147.3 107

    0.260w

    d

    t= = < (Table 7.4.2) OK

    Note that ASD uses overall depth dwhereas LRFD uses the supported height ch of the web

    even though the limit is the same.

    Check the flexural stress :21.022(20) /8 51.1 ft-kipsM = = (including beam weight)

    [ ]51.1(12)

    24.1 ksi 24 ksi25.4

    b b

    x

    Mf F

    S= = = = OK

    Use W12 22, 36 ksiy

    F =

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    AISC-ASD89-2

    3

    Results by the MIDAS/Gen

    ------------------------------------------------------------------------------------------MIDAS/Gen - Steel Code Checking [ AISC-ASD89 ]

    =====================================================

    *.DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS.--------------------------------------------------------------------------------------------------------------

    LCB C Loadcase Name(Factor) + Loadcase Name(Factor) + Loadcase Name(Factor)--------------------------------------------------------------------------------------------------------------

    1 0 Load( 1.000) + Self Weight( 1.000)--------------------------------------------------------------------------------------------------------------

    *. UNIT SYSTEM : kip, in

    *. SECTION PROPERTIES : Designation = W12x22

    Shape = H - Section. (Rolled)Depth = 12.310, Top F Width = 4.030, Bot.F Width = 4.030Web Thick = 0.260, Top F Thick = 0.425, Bot.F Thick = 0.425

    *. DESIGN PARAMETERS FOR STRENGTH EVALUATION :Ly = 2.40000e+002, Lz = 2.40000e+002, Lu = 0.00000e+000Ky = 1.00000e+000, Kz = 1.00000e+000

    *. MATERIAL PROPERTIES :Fy = 3.60000e+001, Es = 2.90000e+004, MATERIAL NAME = A36

    *. FORCES AND MOMENTS AT (1/2) POINT :Bending Moments My = 6.13250e+002, Mz = 0.00000e+000

    ==================================================[[[*]]] CHECK BENDING STRESSES ABOUT MAJOR AXIS.

    ==================================================

    ( ). Check depth-thickness ratio of web (DTR).

    [ AISC-ASD89 Specification B5.1 ]-. DTR = Dweb/tw = 44.077

    -. DTR < 640/SQRT[Fy] ---> COMPACT SECTION !( ). Check width-thickness ratio of flange (BTR).[ AISC-ASD89 Specification B5.1 ]

    -. h/t = 44.08 < 70. ---> kc = 1.0

    -. BTR = bf/2tf = 4.74-. BTR < 65/SQRT[Fy] ---> COMPACT SECTION !

    ( ). Calculate allowable bending stresses (FBCy,FBTy).[ AISC-ASD89 Specification F1.1 (F1-1) ]

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    4

    -. FBCy,FBTy = 0.66*Fy = 23.760 kip/in^2. if Fy < 65 ksi.

    ( ). Calculate actual bending stresses of member (fbcy,fbty).-. fbcy = (My*Ccom)/Iyy = -24.196 kip/in^2.-. fbty = (My*Cten)/Iyy = 24.196 kip/in^2.

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    AISC-ASD89-2

    5

    Comparison of Results

    Reference

    CHARLES G. SALMON, JOHN E. JOHNSON, Steel Structure,Example 7.5.1

    Reference MIDAS/Gen

    bF (allowable stress) 0.66 23.8 ksib bF f= = 0.66 23.8 ksib bF f= =

    / 2f fb t (width-thickness ratio of flange) 4.7 4.7

    bf (flexural stress) 24.1 ksi 24.2 ksi

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    1

    AISC-ASD89-3

    Title

    Design for Combined Bending and Axial Load

    Description

    Investigate the acceptability of a W16 67 used as a beam-column under the loading shown

    in Figure. The total service loads areP= 350 kips andM= 60 ft-kips, and yF = 60 ksi. Use

    Allowable Stress Design.

    Beam-column with Combined Bending and Axial Load

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    2

    Theoretical Results (AISC-ASD89)

    Column effect

    15(12)73

    2.46y

    KL

    r= =

    / 730.747

    97.7c

    KL r

    C= =

    0.381(60) 22.8 ksia c y

    F C F= = =

    350

    17.8 ksi19.7ag

    P

    f A= = =

    17.80.78 0.15

    22.8

    a

    a

    f

    F= = >

    Beam effect

    76 76(10.235)8.4 ft

    60(12)

    f

    c

    y

    bL

    F= = = (controls)

    or

    20,000 20,00011.6 ft

    ( / ) 2.40(60)12c

    f y

    Ld A F

    = = =

    12,000 12,00027.8 ksi 0.60

    / 15(12)(2.40)b y

    b f

    F FL d A

    = = = <

    15(12)65.5

    2.75

    b

    T

    L

    r= =

    2 2( / ) (65.5)40.0 40.0 29.9 ksi

    425 425

    b T

    b

    L rF = = =

    1 20.6 0.4( / ) 0.60mC M M= =

    60(12)6.15 ksi

    117

    bf = =

    0.6(6.15)0.12

    29.9

    m b

    b

    C f

    F= =

    15(12)25.9

    6.96x

    KL

    r= =

    ' 223 ksieF =

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    AISC-ASD89-3

    3

    where thex-axis is the axis of bending. The magnification factor is

    '

    1 1.0 1.01.09

    1 17.8 / 223 1 0.07981 /a ef F= = =

    Check of ASD FormulasFor stability, Formular (H1-1)

    '

    1.0( ) 0.78 0.12(1.09) 0.91 1.01 /

    a m b

    a b a e

    f C f

    F F f F+ = + = O.K.

    ( ). Calculate allowable compressive stress (Fa).

    [ AISC-ASD89 Specification E2. (E2-1) ][ 2*(Pi^2)*Es ]

    -. Cc = SQRT [ -----------------] = 97.68[ Fy ]

    -. Kl/r < Cc[ (Kl/r)^2 ][ 1 - ----------- ]*Fy[ 2*Cc^2 ]

    -. Fa = -------------------------------- = 22.778 kip/in^2.5 3*(Kl/r) (Kl/r)^3--- + ---------- - ----------3 8*Cc 8*Cc^3

    ( ). Calculate axial compressive stress of member (fa).-. fa = Fxx/Area = -17.766 kip/in^2.

    ( ). Check ratio of axial stress (fa/Fa).fa 17.766

    -. ---- = ------------- = 0.780 < 1.000 ---> O.K.Fa 22.778

    ===================================================

    [[[*]]] CHECK BENDING STRESSES ABOUT MAJOR AXIS.===================================================

    ( ). Check laterally unbraced length of compression flange (Lu).

    [ AISC-ASD89 Specification F1.1 (F1-2) ]-. Lcr1 = (76*bf)/SQRT[Fy] = 100.42 in.-. Lcr2 = 20000/((d/Af)*Fy) = 138.93 in.-. Lcr = MIN[ Lcr1, Lcr2 ] = 100.42 in.-. Lu = 180.00 in. > Lcr

    ( ). Calculate bending coefficient (Cb).[ AISC-ASD89 Specification F1.3 ]

    -. Cb = 1.000 (User defined or default value)

    ( ). Calculate radius of gyration (rT)-. Azz = Bf*tf + tw*(Ccom-tf)/3 = 7.7938-. Izz = tf*Bf^3/12 + {(Ccom-tf)/3}*tw^3/12 = 59.4289

    -. rT = SQRT[Izz/Azz] = 2.761

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    AISC-ASD89-3

    5

    ( ). Check ratio of Lu-rT (Lu/rT).[ AISC-ASD89 Specification F1.3 ]

    -. CRrog2 = SQRT[ (510000*Cb)/Fy ] = 92.195-. Lu/rT = 65.185 < CRrog2

    ( ). Calculate allowable compressive bending stresses (FBC).[ AISC-ASD89 Specification F1.3 (F1-6,F1-8) ]

    12000*Cb-. FBCi = -------------- = 27.786 kip/in^2.

    (Lu*d)/Af2 Fy*(Lu/rT)^2

    -. FBCj = [ --- - ------------------ ]*Fy = 30.002 kip/in^2.3 1530000*Cb

    -. FBC = MAX( FBCi, FBCj ) = 30.002 kip/in^2.

    ====================================[[[*]]] CHECK COMBINED STRESSES.

    ====================================

    ( ). Check interaction ratio of combined stresses (Axial compression + bending).[ AISC-ASD89 Specification H1. (H1-1, H1-2) ]

    -. fa/Fa > 0.15-. Single Curvature Bending.-. Cmy = 0.6 - 0.4*(My1/My2) = 0.600-. Single Curvature Bending.

    -. Cmz = 0.6 - 0.4*(Mz1/Mz2) = 1.000-. Cmz > 1.0 ---> Cmz = 1.0

    12*(Pi^2)*Es-. F'ey = ----------------- = 223.267 kip/in^2.

    23*(Kl/r)^2Cmy

    -. SFy = --------------- = 0.6521. - fa/F'ey

    *. Check interaction ratio of combined stress at member end point.fa Cmy*fbcy Cmz*fbcz

    -. Rmax1 = ---- + ----------------------- + ----------------------Fa (1-fa/F'ey)*FBCy (1-fa/F'ez)*FBCz

    fa SFy*fbcy SFz*fbcz= ---- + ------------- + ------------- (H1-1)Fa FBCy FBCz

    = 0.914 < 1.000 ---> O.K.fa fbcy fbcz

    -. Rmax2 = ----------- + --------- + -------- (H1-2)0.6*Fy FBCy FBCz

    = 0.699 < 1.000 ---> O.K.

  • 5/24/2018 AISC-ASD89-2_Design Axial Member & Lateral Support Beam.pdf

    Verification Example

    6

    Comparison of Results

    Reference

    CHARLES G. SALMON, JOHN E. JOHNSON, Steel Structure,Example 12.14.1

    Reference MIDAS/Gen

    ( ) /y y

    KL r (slenderness ratio) 73 73

    aF (allowable compressive stress) 22.8 ksi 22.8 ksi

    af (axial compressive stress) 17.8 ksi 17.8 ksi

    bF (allowable compressive bending stress) 29.9 ksi 30.0 ksi

    mC (equivalent moment correction factor) 0.6 0.6

    '

    eF (Euler stress devided by a factor of a safety) 223 ksi 223 ksi

    Interaction ratio of combined stresses

    (for stability)

    (for yielding)

    0.91

    0.70

    0.91

    0.70

    '

    1.0( )1 /

    a m b

    a b a e

    f C f

    F F f F+

    0.60

    a b

    y b

    f f

    F F+