Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics...

17
Aircraft Performance Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 Cruising flight Flight and maneuvering envelopes Climbing and diving Range and endurance Turning flight Copyright 2008 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Longitudinal Variables Longitudinal Point-Mass Equations of Motion ˙ V = C T cos" # C D ( ) 1 2 $V 2 S # mg sin % m & C T # C D ( ) 1 2 $V 2 S # mg sin % m ˙ % = C T sin" + C L ( ) 1 2 $V 2 S # mg cos % mV & C L 1 2 $V 2 S # mg cos % mV ˙ h = # ˙ z = #v z = V sin % ˙ r = ˙ x = v x = V cos % V = velocity " = flight path angle h = height (altitude) r = range Assume thrust is aligned with the velocity vector (small-angle approximation for !) Mass = constant Steady, Level Flight 0 = C T " C D ( ) 1 2 #V 2 S m 0 = C L 1 2 #V 2 S " mg mV ˙ h = 0 ˙ r = V Flight path angle = 0 Altitude = constant Airspeed = constant Dynamic pressure = constant Thrust = Drag Lift = Weight

Transcript of Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics...

Page 1: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Aircraft PerformanceRobert Stengel, Aircraft Flight Dynamics

MAE 331, 2008

• Cruising flight

• Flight and maneuveringenvelopes

• Climbing and diving

• Range and endurance

• Turning flight

Copyright 2008 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

http://www.princeton.edu/~stengel/FlightDynamics.html

Longitudinal Variables

Longitudinal Point-Mass

Equations of Motion

!

˙ V =CT cos" #CD( )

1

2$V

2S #mg sin%

m&

CT #CD( )1

2$V

2S #mg sin%

m

˙ % =CT sin" + CL( )

1

2$V

2S #mgcos%

mV&

CL

1

2$V

2S #mgcos%

mV

˙ h = #˙ z = #vz = V sin%

˙ r = ˙ x = vx = V cos%

!

V = velocity

" = flight path angle

h = height (altitude)

r = range

• Assume thrust is aligned with the velocityvector (small-angle approximation for !)

• Mass = constant

Steady, Level Flight

!

0 =CT "CD( )

1

2#V

2S

m

0 =CL

1

2#V

2S "mg

mV

˙ h = 0

˙ r = V

• Flight path angle = 0

• Altitude = constant

• Airspeed = constant

• Dynamic pressure = constant

• Thrust = Drag

• Lift = Weight

Page 2: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Simple Models of Subsonic

Aerodynamic Coefficients

!

CL

= CLo

+ CL""

!

CD

= CDo

+ "CL

2

• Lift coefficient

• Drag coefficient

• Subsonic flight, belowcritical Mach number

!

CLo

,CL",C

Do

,# $ constant

Subsonic

Supersonic

Transonic

Incompressible

Power and Thrust

• Propeller

• Turbojet

!

Power = P = T "V = CT

1

2#V

3S $ independent of airspeed

!

Thrust = T = CT

1

2"V

2S # independent of airspeed

• Throttle Effect

!

T = Tmax"T = CTmax

"Tq S, 0 # "T #1

Typical Effects of Altitude and

Velocity on Power and Thrust

• Propeller

• Turbojet

Thrust of a Propeller-

Driven Aircraft

!

T ="P"I

Pengine

V="net

Pengine

V

where

"P = propeller efficiency

"I = ideal propulsive efficiency

"netmax# 0.85 $ 0.9

• Efficiencies decrease with airspeed

• Engine power decreases with altitude

• With constant rpm, variable-pitch prop

Page 3: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

• Advance Ratio

!

J =V

nD

where

V = airspeed,m /s

n = rotation rate, revolutions /s

D = propeller diameter,m

from McCormick

Propeller Efficiency, ",

and Advance Ratio, JEffect of propeller-blade pitch angle

Thrust of a

Turbojet

Engine

!

T = ˙ m V"o

"o #1

$

% &

'

( )

"t

"t #1

$

% &

'

( ) * c #1( ) +

"t

"o* c

+

, -

.

/ 0

1/ 2

#1

1

2 3

4 3

5

6 3

7 3

where

˙ m = ˙ m air + ˙ m fuel

"o =pstag

pambient

$

% &

'

( )

(8 #1)/8

; 8 = ratio of specific heats 91.4

"t =turbine inlet temperature

freestream ambient temperature

$

% &

'

( )

* c =compressor outlet temperature

compressor inlet temperature

$

% &

'

( )

• Little change in thrust with airspeed below Mcrit

• Decrease with increasing altitude

from Kerrebrock

Performance Parameters

• Lift-to-Drag Ratio

• Load Factor

!

LD

=CL

CD

!

n = LW

= Lmg,"g"s

• Thrust-to-Weight Ratio

!

TW

= Tmg,"g"s

• Wing Loading

!

WS, N m

2or lb ft

2

Trimmed CL and !

• Trimmed liftcoefficient, CL

– Proportional toweight

– Decrease with V2

– At constantairspeed, increaseswith altitude

• Trimmed angle ofattack, !– Constant if dynamic

pressure and weightare constant

!

CLtrim=

W S

q =2W

"V2S

=2W e

#h

"0V2S

!

" trim =2W #V

2S $CLo

CL"

=W q S $CLo

CL"

Page 4: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Thrust Required for

Steady, Level Flight

• Trimmed thrust

!

Ttrim

= Dcruise

= CDo

1

2"V 2

S#

$ %

&

' ( +2)W 2

"V 2S

• Minimum required thrust conditions

!

"Ttrim

"V= C

Do

#VS( ) $4%W 2

#V 3S

= 0

" 2Ttrim

"V 2= C

Do

#S( ) +12%W 2

#V 4S

> 0

Necessary Condition= Zero Slope

Sufficient Conditionfor a Minimum

Airspeed for

Minimum Thrust in

Steady, Level Flight

• Fourth-order equation for velocity– Choose the positive root

!

"Ttrim

"V= C

Do

#VS( ) $4%W 2

#V 3S

= 0

or

V4 =

4%W 2

CDo

#2S2

!

VMT

=2

"

W

S

#

$ %

&

' (

)

CDo

• Satisfy necessary condition

P-51 Mustang

Minimum-Thrust

Example

!

VMT

=2

"

W

S

#

$ %

&

' (

)

CDo

=2

"1555.7( )

0.947

0.0163=76.49

"m /s

!

Wing Span = 37 ft (9.83m)

Wing Area = 235 ft2(21.83m

2)

LoadedWeight = 9,200 lb (3,465 kg)

CDo= 0.0163

" = 0.0576

W /S = 39.3 lb / ft2(1555.7 N /m

2)

Altitude, m

Air Density,

kg/m^3 VMT, m/s0 1.23 69.112,500 0.96 78.205,000 0.74 89.1510,000 0.41 118.87

Lift Coefficient in

Minimum-Thrust

Cruising Flight

!

VMT

=2W

"S

#

CDo

!

CLMT

=2W

"VMT

2

S=

CDo

#

• Airspeed for minimum thrust

• Corresponding lift coefficient

Page 5: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Power Required for

Steady, Level Flight

• Trimmed power

!

Ptrim

= TtrimV = D

cruiseV = C

Do

1

2"V 2

S#

$ %

&

' ( +2)W 2

"V 2S

*

+ ,

-

. / V

• Minimum required power conditions

!

"Ptrim

"V= C

Do

3

2#V 2

S( ) $2%W 2

#V 2S

= 0

Airspeed for Minimum Power

in Steady, Level Flight

• Fourth-order equation for velocity– Choose the positive root

!

VMP

=2

"

W

S

#

$ %

&

' (

)

3CDo

• Satisfy necessary condition

!

"Ptrim

"V= C

Do

3

2#V 2

S( ) $2%W 2

#V 2S

= 0

• Corresponding lift anddrag coefficients

!

CLMP

=3C

Do

"

CDMP

= 4CDo

Achievable Airspeeds

in Cruising Flight

• Two equilibrium airspeeds for a given thrust orpower setting– Low speed, high CL, high !

– High speed, low CL, low !

Achievable Airspeeds

in Cruising Flight

!

Tavail

= CDo

1

2"V 2

S#

$ %

&

' ( +2)W 2

"V 2S

CDo

1

2"V 4

S#

$ %

&

' ( *TavailV

2 +2)W 2

"S= 0

V4 *

TavailV2

CDo

"S+

4)W 2

CDo

"S( )2

= 0

!

Pavail

= TavailV

V4 "

PavailV

CDo

#S+

4$W 2

CDo

#S( )2

= 0

• Jet aircraft (Thrust = constant) • Propeller-driven aircraft(Power = constant)

• Solutions for V can be put inquadratic form and solved easily

!

x "V 2; V = ± x

ax2

+ bx + c = 0

x = #b

b

2

$

% & '

( )

2

# c , a =1

• Solutions for V cannot be putin quadratic form; solution ismore difficult, e.g., Ferrari!smethod

!

aV4 + 0( )V 3 + 0( )V 2 + dV + e = 0

• Best bet: roots in MATLAB

Page 6: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

• With increasing altitude, available thrust decreases,and range of achievable airspeeds decreases

• Stall limitation at low speed

• Mach number effect on lift and drag increases thrustrequired at high speed

Thrust Required and Thrust

Available for a Typical Bizjet

Stall

Limit

Typical Simplified JetThrust Model

!

Tmax(h) = T

max(SL)

"#nh

"(SL), n <1

= Tmax(SL)

"#$h

"(SL)

%

& '

(

) *

x

+ Tmax(SL), x

where

, ="#$h

"(SL), n or x is an empirical constant

Maximum Lift-to-Drag Ratio(with Simplified Aero Model)

!

CL( )

L /Dmax

=CDo

"= C

LMT

!

LD

=CL

CD

=CL

CDo

+ "CL

2

!

" CL

CD

# $ %

& ' (

"CL

=1

CDo

+ )CL

2*

2)CL

2

CDo

+ )CL

2( )2

= 0

• Satisfy necessary condition for a maximum

• Lift-to-drag ratio

• Lift coefficient for maximum L/D and minimumthrust are the same

Airspeed, Drag Coefficient, and

Lift-to-Drag Ratio for L/Dmax

!

VL /D

max

=VMT

=2W

"S

#

CDo

!

CD( )

L /Dmax

= CDo

+ CDo

= 2CDo

!

L /D( )max

=CDo

"

2CDo

=1

2 "CDo

• Maximum L/D depends only on induced dragfactor and zero-! drag coefficient

Lift-Drag Polar for

a Typical Bizjet• L/D equals slope of line drawn from the origin

– Single maximum for a given polar

– Two solutions for lower L/D (high and low airspeed)

– Available L/D decreases with Mach number

• Intercept for L/Dmax depends only on # and zero-lift drag

Note different scalesfor lift and drag

Page 7: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

P-51 Mustang

Maximum L/D

Example

!

VL /Dmax

=VMT

=76.49

"m /s

!

Wing Span = 37 ft (9.83m)

Wing Area = 235 ft (21.83m2)

LoadedWeight = 9,200 lb (3,465 kg)

CDo= 0.0163

" = 0.0576

W /S =1555.7 N /m2

!

CL( )

L /Dmax

=CDo

"= C

LMT

= 0.531

!

CD( )

L /Dmax

= 2CDo

= 0.0326

!

L /D( )max

=1

2 "CDo

=16.31

Altitude, m

Air Density,

kg/m^3 VMT, m/s0 1.23 69.112,500 0.96 78.205,000 0.74 89.1510,000 0.41 118.87

Cruising Range and

Specific Fuel Consumption

!

0 =CT "CD( )

1

2#V

2S

m

0 =CL

1

2#V

2S "mg

mV

˙ h = 0

˙ r = V

• Thrust = Drag

• Lift = Weight

• Specific fuel consumption, SFC = cP or cT

• Propeller aircraft

• Jet aircraft

!

˙ w f = "cP P proportional to power[ ]

˙ w f = "cTT proportional to thrust[ ]

where

w f = fuel weight

!

cP :kg s

kWor

lb s

HP

cT :kg s

kNor

lb s

lbf

Breguet Range Equation for

Jet Aircraft

!

dr

dw=dr dt

dw dt= "

V

cTT

= "V

cTD

= "L

D

#

$ %

&

' ( V

cTW

• Rate of change of range with respect to weight of fuel burned

• Range traveled

!

Range = r = dr0

R

" = #L

D

$

% &

'

( ) V

cT

$

% &

'

( )

Wi

W f

"dw

w

• For constant true airspeed, V

!

R = "L

D

#

$ %

&

' ( V

cT

#

$ %

&

' ( ln w( )

Wi

W f

=L

D

#

$ %

&

' ( V

cT

#

$ %

&

' ( ln

Wi

W f

#

$ % %

&

' ( ( =

CL

CD

#

$ %

&

' ( V

cT

#

$ %

&

' ( ln

Wi

W f

#

$ % %

&

' ( (

Breguet RangeEquation

Maximum Range of a Jet

Aircraft Flying at

Constant Airspeed

!

" VCL CD( )"CL

= 0 leading to CLMR=

CDo

3#

• For given initial and final weight, range is maximized when

• Breguet range equation for constant V

!

R =CL

CD

"

# $

%

& ' V

cT

"

# $

%

& ' ln

Wi

W f

"

# $ $

%

& ' '

• Because weight decreases and V is assumed constant,altitude must increase to hold CL constant at its best value(“cruise-climb”)

!

W = CL MRq S " q =

W

S

#

$ %

&

' (

3)

CDo

" *(t) =2

V2

W (t)

S

+

, - .

/ 0 3)

CDo

Page 8: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Maximum Range of a

Jet Aircraft Flying at

Constant Altitude

• Range is maximized when

!

Range = "CL

CD

#

$ %

&

' ( 1

cT

#

$ %

&

' (

2

CL)SWi

W f

*dw

w1 2

=CL

CD

#

$ % %

&

' ( ( 2

cT

#

$ %

&

' (

2

)SWi

1 2

"Wf

1 2( )!

V =2W

CL"S

• At constant altitude

!

CL

CD

"

# $ $

%

& ' ' = maximum and (= minimum

Breguet Range Equation for

Propeller-Driven Aircraft

!

dr

dw=dr dt

dw dt= "

V

cPTV

= "V

cPDV

= "L

D

#

$ %

&

' ( 1

cPW

• Rate of change of range with respect to weight of fuel burned

• Range traveled

!

Range = r = dr0

R

" = #L

D

$

% &

'

( ) 1

cP

$

% &

'

( )

Wi

W f

"dw

w

• For constant true airspeed, V

!

R = "L

D

#

$ %

&

' ( 1

cP

#

$ %

&

' ( ln w( )

Wi

W f

=CL

CD

#

$ %

&

' ( 1

cP

#

$ %

&

' ( ln

Wi

W f

#

$ % %

&

' ( (

Breguet RangeEquation

• Range is maximized when

!

CL

CD

"

# $

%

& ' = maximum

P-51 Mustang

Maximum Range

(Internal Tanks only)

!

LoadedWeight = 9,200 lb (3,465 kg)

FuelWeight =1,320 lb (600 kg)

L /D( )max

=16.31

cP = 0.0017kg /s

kW

!

R =CL

CD

"

# $

%

& ' max

1

cP

"

# $

%

& ' ln

Wi

W f

"

# $ $

%

& ' '

= 16.31( )1

0.0017

"

# $

%

& ' ln

3,465 + 600

3,465

"

# $

%

& '

=1,530 km (825 nm( )

Dynamic Pressure and Mach Number

!

" = air density, functionof height

= "sea levele#$h

a = speed of sound, linear functionof height

Dynamic pressure = q =1

2"V

2

Mach number =V

a

Page 9: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Air Data System

Air Speed IndicatorAltimeterVertical Speed Indicator

from Kayton & Fried

Air Data Instruments(“Steam Gauges”)

Calibrated Airspeed Indicator Altimeter Vertical Speed Indicator

Variometer/Altimeter

True Airspeed Indicator

Machmeter

Private Aircraft

Cockpit Panels

Cirrus SR-22 PanelPiper J-3 Cub Panel

Jet Transport

Cockpit PanelsBoeing 747 “Steam Gauge” Panel Boeing 777 “Glass Cockpit”

Page 10: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Definitions of Airspeed

• True Airspeed (TAS)

• Indicated Airspeed (IAS)

• Calibrated Airspeed (CAS)

• Equivalent Airspeed (EAS)

• Airspeed is speed of aircraft measured withrespect to the air mass– Airspeed = Velocity (Inertial speed) if wind speed = 0

!

IAS = 2 pstag " pstatic( ) #SL

!

CAS = IAS corrected for instrument and position errors

!

EAS = CAS corrected for compressibility effects

!

TAS = EAS "SL

"(z)

• Mach number

!

M =TAS

a

Dynamic Pressure and Mach Number

Flight Envelope Determined by

Available Thrust

• Flight ceiling defined byavailable climb rate– Absolute: 0 ft/min

– Service: 100 ft/min

– Performance: 200 ft/min

• Excess thrust providesthe ability to accelerateor climb

• Flight Envelope: Encompasses all altitudes and airspeeds atwhich an aircraft can fly in steady, level flight

Additional Factors Define the

Flight Envelope• Maximum Mach number

• Maximum allowableaerodynamic heating

• Maximum thrust

• Maximum dynamicpressure

• Performance ceiling

• Wing stall

• Flow-separation buffet– Angle of attack

– Local shock waves

Page 11: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Equilibrium Gliding Flight

!

D = CD

1

2"V

2S = #W sin$

CL

1

2"V

2S = W cos$

˙ h = V sin$

˙ r = V cos$

Gliding Flight

!

D = CD

1

2"V

2S = #W sin$

CL

1

2"V

2S = W cos$

˙ h = V sin$

˙ r = V cos$

• Thrust = 0

• Flight path angle < 0 in gliding flight

• Altitude is decreasing

• Airspeed ~ constant

• Air density ~ constant

!

tan" = #D

L= #

CD

CL

=˙ h

˙ r =

dh

dr

" = #tan#1 D

L

$

% &

'

( ) = #cot

#1 L

D

$

% &

'

( )

• Gliding flight path angle

• Corresponding airspeed

!

Vglide =2W

"S CD

2

+ CL

2

Maximum Steady

Gliding Range

• Glide range is maximum when $ is least negative, i.e.,most positive

• This occurs at (L/D)max

!

tan" =˙ h

˙ r = negative constant =

h # ho( )r # ro( )

$r =$h

tan"=

#$h

#tan"= maximum when

L

D= maximum

!

"max

= #tan#1D

L

$

% &

'

( ) min

= #cot#1L

D

$

% &

'

( ) max

Sink Rate

• Lift and drag define $ and V in gliding equilibrium

!

D = CD

1

2"V 2

S = #W sin$

sin$ = #D

W

!

L = CL

1

2"V 2

S =W cos#

V =2W cos#

CL"S

!

˙ h = V sin"

= #2W cos"

CL$S

D

W

%

& '

(

) * = #

2W cos"

CL$S

L

W

%

& '

(

) *

D

L

%

& '

(

) *

= #2W cos"

CL$S

cos"C

D

CL

%

& '

(

) *

• Sink rate = altitude rate, dh/dt (negative)

Page 12: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

• Minimum sink rateprovides maximumendurance

• Minimize sink rate bysetting ! (dh/dt)/dCL = 0(cos $ ~1)

• See Mathematicaperformance calculationsin Blackboard CourseMaterials

Conditions for Minimum

Steady Sink Rate

!

˙ h = "2W cos#

CL$S

cos#C

D

CL

%

& '

(

) *

= "2W cos

3 #

$S

CD

CL

3 / 2

%

& '

(

) *

!

CLME

=3C

Do

"and C

DME

= 4CDo

!

LD( )

ME

=1

4

3

"CDo

=3

2

LD( )

max

# 0.86 LD( )

max

Minimum

Sink Rate

!

˙ h ME

= "2cos

3 #

$

W

S

%

& '

(

) *

CDME

CL ME

3 / 2

%

& ' '

(

) * * + "

2

$

W

S

%

& '

(

) *

CDME

CL ME

3 / 2

%

& ' '

(

) * *

!

CLME

=3C

Do

"and C

DME

= 4CDo

!

VME

=2W

"S CDME

2+ C

LME

2#

2 W S( )"

$

3CDo

# 0.76VL D

max

• For small $, maximum-endurance airspeed andsink rate

L/D for Minimum

Sink Rate

• For L/D < L/Dmax, there are two solutions

• Which one produces minimum sink rate?

!

LD( )

ME

" 0.86 LD( )

max

VME

" 0.76VL D

max

Gliding Flight of the

P-51 Mustang

!

Loaded Weight = 9,200 lb (3,465 kg)

L /D( )max

=1

2 "CDo

=16.31

#MR = $cot$1 L

D

%

& '

(

) *

max

= $cot$1

(16.31) = $3.51°

CD( )L / Dmax

= 2CDo= 0.0326

CL( )L / Dmax

=CDo

"= 0.531

VL / Dmax=

76.49

+m /s

˙ h L / Dmax= V sin# = $

4.68

+m /s

Rho =10km = 16.31( ) 10( ) =163.1 km

Maximum Range Glide

!

Loaded Weight = 9,200 lb (3,465 kg)

S = 21.83 m2

CDME= 4CDo

= 4 0.0163( ) = 0.0652

CL ME=

3CDo

"=

3 0.0163( )0.0576

= 0.921

L D( )ME

=14.13

˙ h ME = #2

$

W

S

%

& '

(

) *

CDME

CL ME

3 / 2

%

& ' '

(

) * * = #

4.11

$m /s

+ME = #4.05°

VME =58.12

$m /s

Maximum Endurance Glide

Page 13: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

• Rate of climb, dh/dt = Specific Excess Power

Climbing

Flight

!

˙ V = 0 =T "D"W sin#( )

m

sin# =T "D( )

W; # = sin

"1 T "D( )W

!

˙ " = 0 =L #W cos"( )

mV

L =W cos"

!

˙ h = V sin" = VT #D( )

W=

Pthrust # Pdrag( )W

Specific Excess Power (SEP) =Excess Power

Unit Weight$

Pthrust # Pdrag( )W

• Note significance of thrust-to-weight ratio and wing loading

Steady Rate of Climb

!

˙ h = V sin" = VT

W

#

$ %

&

' ( )

CDo+ *CL

2( )q

W S( )

+

,

- -

.

/

0 0

!

L = CLq S = W cos"

CL =W

S

#

$ %

&

' ( cos"

q

V = 2W

S

#

$ %

&

' ( cos"

CL)

!

˙ h = VT

W

"

# $

%

& ' (

CDoq

W S( )() W S( )cos

2 *

q

+

, -

.

/ 0

= VT

W

"

# $

%

& ' (

CDo1V

3

2 W S( )(

2) W S( )cos2 *

1V

• Necessary condition for a maximum with respectto airspeed

Condition for Maximum

Steady Rate of Climb

!

˙ h = VT

W

"

# $

%

& ' (

CDo

)V3

2 W S( )(

2* W S( )cos2 +

)V

!

" ˙ h

"V= 0 =

T

W

#

$ %

&

' ( + V

"T /"V

W

#

$ %

&

' (

)

* +

,

- . /

3CDo

0V2

2 W S( )+

21 W S( )cos2 2

0V2

Maximum Steady

Rate of Climb:

Propeller-Driven Aircraft

!

"Pthrust

"V=

T

W

#

$ %

&

' ( +V

"T /"V

W

#

$ %

&

' (

)

* +

,

- . = 0

• At constantpower

!

" ˙ h

"V= 0 = #

3CDo

$V2

2 W S( )+

2% W S( )$V

2

• Therefore, with cos2$ ~ 1

• Airspeed for maximum rate of climb at maximum power, Pmax

!

V4 =

4

3

"

# $ %

& ' ( W S( )

2

CDo

)2; V = 2

W S( ))

(

3CDo

=VME

Page 14: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Maximum Steady

Rate of Climb:

Jet-Driven Aircraft

• Condition for a maximum at constant thrust and cos2$ ~ 1

• Airspeed for maximum rate of climb at maximum thrust, Tmax,found by solving equation of the form!

" ˙ h

"V= 0

0 = #3C

Do

$

2 W S( )V

4 +T

W

%

& '

(

) * V

2 +2+ W S( )

$

= #3C

Do

$

2 W S( )V

2( )2

+T

W

%

& '

(

) * V

2( ) +2+ W S( )

$

!

0 = ax2

+ bx + c and V = + x

What is the Fastest Way to Climb from

One Flight Condition to Another?

• Specific Energy• = (Potential + Kinetic Energy) per Unit Weight

• = Energy Height

Energy Height

• Could trade altitude with airspeed with no change in energyheight if thrust and drag were zero

!

Total Energy

Unit Weight" Specific Energy =

mgh + mV22

mg= h +

V2

2g

" Energy Height, Eh, ft or m

Specific Excess Power

!

dEh

dt=d

dth +

V2

2g

"

# $

%

& ' =

dh

dt+V

g

"

# $

%

& ' dV

dt

=V sin( +V

g

"

# $

%

& ' T )D)mgsin(

m

"

# $

%

& ' =V

T )D( )W

=VCT )CD( )

1

2*(h)V 2

S

W

= Specific Excess Power (SEP) =Excess Power

Unit Weight+Pthrust ) Pdrag( )

W

Page 15: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Contours of Constant

Specific Excess Power

• Specific Excess Power is a function of altitude and airspeed

• SEP is maximized at each altitude, h, when

!

d SEP(h)[ ]dV

= 0

Subsonic Energy Climb

• Objective: Minimize time or fuel to climb to desired altitudeand airspeed

Supersonic Energy Climb

• Objective: Minimize time or fuel to climb to desired altitudeand airspeed

• “V-n diagram”

• Maneuvering envelopedescribes limits on normalload factor and allowableequivalent airspeed– Structural factors

– Maximum and minimumachievable lift coefficients

– Maximum and minimumairspeeds

– Protection againstoverstressing due to gusts

– Corner Velocity:Intersection of maximum liftcoefficient and maximumload factor

Typical Maneuvering Envelope

• Typical positive load factor limits– Transport: > 2.5

– Utility: > 4.4

– Aerobatic: > 6.3

– Fighter: > 9

• Typical negative load factor limits– Transport: < –1

– Others: < –1 to –3

C-130 exceeds maneuvering envelopehttp://www.youtube.com/watch?v=4bDNCac2N1o&feature=related

Page 16: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

Maneuvering Envelopes (V-n Diagrams) for

Three Fighters of the Korean War Era

Republic F-84

North American F-86

Lockheed F-94

• Vertical force equilibrium

Level Turning Flight

!

Lcosµ =W

• Load factor

!

n = LW

= Lmg

= secµ,"g"s

• Thrust required to maintain level flight

!

Treq = CDo+ "CL

2( )1

2#V 2

S = Do +2"

#V 2S

W

cosµ

$

% &

'

( )

2

= Do +2"

#V 2SnW( )

2

!

µ :Bank Angle

• Level flight = constant altitude

• Sideslip angle = 0

• Bank angle

Maximum Bank Angle

in Level Flight

!

cosµ =W

CLq S=1

n= W

2"

Treq #Do( )$V2S

µ = cos#1W

CLq S

%

& '

(

) * = cos

#1 1

n

%

& ' (

) * = cos

#1W

2"

Treq #Do( )$V2S

+

,

- -

.

/

0 0

• Bank angle is limited by

!

µ :Bank Angle

!

CLmax

or Tmax

or nmax

• Turning rate

Turning Rate and Radius in Level Flight

!

˙ " =CLq S sinµ

mV=

W tanµ

mV=

gtanµ

V=

L2 #W

2

mV

=W n

2 #1

mV=

Treq #Do( )$V2S 2% #W

2

mV

• Turning rate is limited by

!

CLmax

or Tmax

or nmax

• Turning radius

!

Rturn =V

˙ " =

V2

g n2#1

Page 17: Aircraft Performance Longitudinal Variables Robert … · Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008 ¥Cruising ßight ¥Flight and maneuvering envelopes ¥Climbing and

• Corner velocity

Corner Velocity Turn

• Turning radius

!

Rturn =V2cos

2 "

g nmax

2# cos2 "

!

Vcorner

=2n

maxW

CLmas

"S

• For steady climbing or diving flight

!

sin" =Tmax

#D

W

• Turning rate

!

˙ " =g n

max

2

# cos2 $( )

V cos$

• Time to complete a full circle

!

t2" =

V cos#

g nmax

2$ cos2 #

• Altitude gain/loss

!

"h2# = t

2#V sin$

F-16 in 9-g turnhttp://www.youtube.com/watch?v=zT-pJDo6nkw&feature=related

Pilot in 9-g centrifuge traininghttp://www.youtube.com/watch?v=3rQexWEwV6M&feature=related

Maximum Turn Rates

Herbst Maneuver

• Minimum-time reversal of direction

• Kinetic-/potential-energy exchange

• Yaw maneuver at low airspeed

• X-31 performing the maneuver

Next Time:Aircraft Equations of Motion