AH 503 Wichmeier

download AH 503 Wichmeier

of 67

Transcript of AH 503 Wichmeier

  • 8/11/2019 AH 503 Wichmeier

    1/67

    1

    Ke^

  • 8/11/2019 AH 503 Wichmeier

    2/67

    U . S .

    Departmentof

    A f ^ '

    Nat ionalAgricuJturalL..

    Division

    o f

    L en d i n g

    PRFDirTINC

    ^ ^ ' ^ ' ^ ' ' ^ ^ ' ^ ^ ' ^ ' ^

    R A I N F A L L

    E R O S I O N

    LOSSES

    A

    GUIDE

    TO

    CONSERVATIONPLANNING

    S u p e r s e d e s

    AgricultureHandbook

    N o .

    282,

    ' 'Predict ing

    R a i n f a l l - E r o s i o nLo s s e sF r o mC r o p l a n dE a s to f

    the

    R ocky

    M o u n t a i n s

    Sciencea n d

    d u c a t i o n

    Administration

    UnitedS t a t e s

    Department

    of

    Agriculture

    in

    o o p e r a t i o n

    with

    P u r d u e

    griculturalxperiment

    t a t i o n

    U S D A

    olicy

    o e s

    o t

    ermitiscrimination

    e c a u s efg e ,a c e ,o l o r ,

    a t i o n a lrigin,e x,r

    religion.nye r s o nho

    e l i e v e s

    e

    r

    he

    a s

    e e n

    i s c r i m i n a t e d

    g a i n s t

    n

    n y

    SDA-related

    activity

    s h o u l d

    write immediately

    to

    the

    Se c r e t ar y

    of

    Agriculture, Washington, D. C. 20250.

  • 8/11/2019 AH 503 Wichmeier

    3/67

    A B S T R A C T

    Wischme ie r ,

    W.

    .,

    n d

    mith,

    .D .

    978.

    r e dict ing

    a i n f a l l

    ros ion

    o s s e s a

    g u i d eoo n s e r v a t i o nl a n n i n g .

    .S.e p a r t m e n tfgr icul ture,griculture

    H a n d b o o k

    N o .

    537.

    The

    Universal o il

    os squation

    USLE)

    nables

    lannerso

    predictheaverageateofsoil

    erosion

    or a c h

    easible

    alter-

    nativeombination

    f

    cropystemndmanagement

    ractices

    in

    ssociation

    with specifiedoil

    ype,

    ainfall

    attern,

    nd

    topography.When

    h e s e

    redicted

    osses

    re

    ompared

    with

    given

    oil

    os solerances,

    hey

    rovidepecificuidelines

    or

    effectingrosion

    ontrol

    within

    pecified

    imits

    he

    quation

    groups

    he

    umerous

    nterrelated

    hysical

    nd

    anagement

    parameters

    hatnfluence

    rosionatender

    six

    major

    actors

    whosesite-specific

    values

    can

    e

    expressed

    numerically.

    A

    half

    century

    ferosionesearch

    n

    many

    tates

    a s

    supplied

    nfor-

    mationromwhich teastpproximate

    alues

    f

    heS LE

    factors a n

    e

    obtainedorspecifiedarmieldsorothersmall

    erosion

    rone

    reas

    hroughout

    he

    United

    tates.

    ables

    nd

    charts

    presentedn

    his

    handbookmake

    his

    nformationeadily

    available

    or

    ield

    s e.

    ignificant

    imitations

    n

    he

    vailable

    dataare

    identified.

    The

    S LEs

    an

    rosion

    model

    designed

    o

    computeongtime

    average

    oilo s s e sromheetand

    ill

    rosionnderspecified

    conditions.

    t

    s

    also

    useful

    or

    construction

    i tes

    and

    other

    non-

    agricultural

    onditions,

    ut

    t

    o e s

    ot

    redict

    eposition

    nd

    d o e sotcomputesediment

    yields

    rom

    gully,

    streombank,

    and

    streambederosion.

    K e y w o r d s :

    Conservationpractices,conservationillage,construc-

    tion

    i tes,

    crop

    canopy,

    crop

    e q u e n c e ,

    delivery

    atios,

    ero-

    sion

    actors,

    erosionndex,

    rosionrediction,

    rosionol-

    erances,

    rosivity,r o s s

    rosion,

    minimumillage,

    o-till,

    rainfall

    characteristics,

    ainfall

    data,

    esidue

    mulch,

    unoff,

    sediment,

    ediment

    elivery,

    lopeffect,

    wateruality,

    soilerodibility.

    Forsaleby

    theSuperintendent

    ofDocuments,

    U.S.

    GovernmentPrintingO f l B i c e

  • 8/11/2019 AH 503 Wichmeier

    4/67

    C O N T E N T S

    U.S.

    i^gnT-*--.

    / . ..

    NaionaM

    ''' W

    D V i s i o nof''^^^'^

    eitsWIie

    ..

    Purpose

    f

    andbook

    History

    f

    o il

    o s s

    quations

    S o i llo s solerances

    S o i l

    o s squation

    Rainfallnd

    runoffactor

    R )

    Rainfall

    erosion

    index

    Raluesorhawndnowmelt

    SoilerodibilityactorK )

    Definition

    factor

    Values

    f

    or

    pecific

    o i l s

    S o i l erodibility

    nomograph

    0

    Topographic

    actor

    (LS)

    2

    Slope-effect

    chart 2

    Slope-length

    effect 4

    Percent

    slope

    5

    Irregular

    slopes

    6

    Changes

    ns o i lypeor

    cover

    along

    he

    slope

    6

    Equationoro il

    etachment

    o nuccessive

    segments

    of

    a

    slope

    7

    Coverndmanagement

    actor

    C ) 7

    Definitionfactor 7

    Cropstage

    periods

    8

    Quantitative

    valuations

    f

    crop

    nd

    management

    effects

    8

    S o i lo s satios

    0

    E r o s i o nindexistribution

    ata

    1

    Procedure

    orerivingocal

    alues

    8

    Support

    racticeactor

    P )

    4

    Contouring

    4

    Contourtripcropping 6

    Terracing

    7

    Applying

    he

    o ilo s squation 0

    Predictingroplando il

    o s s e s

    0

    Determining

    lternative

    and

    s e

    and

    reatment

    combinations

    2

    Construction s i t e s 4

    Estimating

    upslope

    ontributions

    owatershed

    ediment

    yield

    5

    Accuracy

    f

    SL Eredictions

    7

    References 8

    Appendix 0

    Estimatingercentages

    of

    canopy

    nd

    mulchovers0

    Probability

    alues

    fEl

    n

    he

    nitedStates 0

    Computingheerosion

    ndexrom

    ecording-rain

    age

    ecords

    0

    Conversion

    to

    metric

    ystem

    1

    D 5

  • 8/11/2019 AH 503 Wichmeier

    5/67

    T A B L E S

    1

    . C o m p u t e d

    values

    or

    oils n

    erosionesearch

    stations

    2.Approximatevalues

    of

    he o ilerodibilityfactor,K,or 0benchmark

    soi ls

    nHawaii

    3.Values of

    he

    opographicactor,

    LS,

    or

    specific

    ombinations of

    lope

    ength

    and s t e e p n e s s

    2

    4.~Estimated

    relative

    oil losses

    rom

    u ccess iv eequal-length

    egments

    f niform

    slope ......5

    5.Rat io

    of

    soil

    oss

    from

    cropland

    o

    corresponding

    oss

    from

    continuous

    fallow

    2

    5 A . - ~ A p proximo

    te

    soil

    ossatiosorcotton 5

    5- - B. Soi l

    oss

    atiosorconditions

    not

    evaluated

    nable 6

    5 C S o i l

    ossatiospercent)forcropstage

    4

    whenstalksarechopped

    and

    distributedwithout

    soil

    illage

    5- - D. Fac tors

    o

    credit

    esidual

    f fects

    ofurned

    o d 6

    6. Perc entagesofheaverageannual lwhich

    normally

    ccu r s

    between

    January

    and

    he

    ndicated

    ates.Computedorhe

    eographic

    areas

    hown

    n

    igure

    .

    8

    7.MonthlydistributionofElatse l ec ted

    ain

    gageocations

    9

    8 . S a m p l e

    working

    able

    or

    derivation

    of

    otation

    C

    value

    0

    9. Mul c hactorsand

    engthimits

    orconstruction

    lopes 1

    10.Factor

    C

    value

    or

    permanent

    pasture,

    ange,

    and

    dle

    and

    2

    1 1 .FactorC

    valuesfor

    undisturbed

    orest

    and 3

    12.-Factor

    Cor

    mechanicallyprepared

    woodland

    i tes

    4

    13.Pvaluesandslope-length

    imits

    orcontouring *

    14.P

    values,

    maximumstrip

    widths,andslope-length

    imits

    or

    contourstripcropping6

    15.Palues

    or

    ontour-farmed

    erracedields 7

    16.Maximum

    ermissible

    C

    values

    T/RKLS)

    or

    R

    = 80 ,

    K=0.32,

    and1

    =

    5

    3

    17.Observed

    ange

    and

    0-,0-,

    and ercent

    probabilityvaluesoferosion

    indexat

    a c h

    f

    81

    key

    ocations

    2

    18.Expected

    magnitudes

    ofsingle-storm

    Elndex

    values 4

    19.Kineticenergy

    of

    ainfall

    expressed

    noot-tonsperacrepern c hofain6

    20.Kineticenergy

    ofainfall

    xpressed

    n

    metric

    on-meters

    er

    ectare

    er

    entimeters

    ofain

    .6

    F I G U R E S

    1.Average

    annual

    alues

    of

    he

    ainfall

    rosion

    ndex

    map)

    e

    tween

    ages

    and

    2. Est i matedaverageannualvalues

    of

    herainfall

    erosionndex

    n

    Hawaii

    3,The

    soilerodibilitynomograph

    1

    4.Slope-effect

    chart topographic

    actor,

    S ) ...

    3

    5.Influence

    of

    vegetative

    canopy

    n

    effective

    El

    values

    9

    6.Combined mulchnd

    anopy

    f fectswhenaverageall

    istancef

    rops

    from

    canopy

    o

    he

    ground

    s

    about

    0

    nc hes

    9

    7.Combinedmulchndanopy

    f fects

    whenverage

    all

    istance

    f

    rops

    fromcanopyohe

    ground

    sabout

    0

    nc hes 9

    8.Typical

    l-distribution

    curves

    orhree

    ainfall

    atterns 7

    9.Keymap

    or

    selectionof

    applicable

    El-distribution

    data

    romable 7

    10. Rel a t i on

    of

    percent

    coverodryweightof

    uniformly

    distributedesidue

    mulch0

    11. Sl ope- ef fec t

    chart

    or

    metric ystem 8

  • 8/11/2019 AH 503 Wichmeier

    6/67

    PREDICTING

    R A I N F A L L

    EROSION

    LOSSES

    A

    GUIDE

    TOC O N S E R V A T I O NP L A N N I N G

    WaiterH.

    Wischmeier

    ndDwight.Smith ^

    PURPOSE

    FA N D B O O K

    Scientific

    lanningoro ilndwateronserva-

    t i o n

    equires

    nowledge

    of

    he

    elationsetween

    t h o s e

    actors

    hat

    causeo s sofo ilndwaterand

    t h o s e

    hatelpo

    educe

    uch

    o s s e s .

    ontrolled

    studiesnieldlotsndmallwatershedsave

    supplieduch

    aluable

    nformationegarding

    these

    omplexactor

    nterrelations.ut

    he

    reat-

    e s t

    ossibleenefits

    rom

    uchesearch

    an

    e

    realized

    nly

    when

    he

    indings

    re

    onverted

    o

    sound

    ractice

    n

    he

    umerousarmsandther

    erosionrone

    reashroughouthe

    ountry.

    pe-

    cificuidelinesre

    eeded

    orelectinghe

    on-

    trol

    ractices

    est

    suited

    o

    he

    articularneeds

    f

    each

    site.

    The

    o ilo s s

    rediction

    rocedure

    resented

    n

    this

    andbook

    rovides

    uch

    uidelines.

    he

    ro-

    cedure

    ethodically

    ombines

    esearchnforma-

    t i o n

    rom

    any

    o u r c e soevelop

    esign

    ata

    forach

    onservation

    lan.

    Widespread

    ield

    x-

    perience

    or

    more

    han

    wo

    decades

    as

    roved

    t

    highlyaluable

    as

    a

    onservationlanninguide.

    Theprocedure

    is

    founded

    o n

    anempirical

    s o i lo s s

    equation

    hatselieved

    o

    e

    pplicable

    wher-

    everumericalaluesftsactorsrevailable.

    R e s e a r c h

    has

    uppliednformationrom

    which

    t

    least

    pproximate

    alues

    of

    hequation'sactors

    can

    e

    btainedor

    pecific

    arm

    ieldsr

    ther

    small

    and

    reas

    hroughoutmost

    fhenited

    States.

    ables

    nd

    harts

    resented

    n

    his

    and-

    book

    make

    his

    nformation

    eadily

    vailable

    or

    field

    u s e .

    This

    evision

    fhe

    965andbook64)pdates

    the

    content

    and

    ncorporates

    newmaterial

    hat

    has

    been

    vailable

    nformally

    r

    rom

    cattered

    e-

    search

    eports

    n

    rofessionalournals.

    ome

    f

    theriginalhartsnd

    ablesreevised

    oon-

    form

    ith

    dditional

    esearch

    indings,

    nd

    ew

    ones

    re

    eveloped

    oxtendhe

    sefulness

    f

    theo ilo s squation.n

    ome

    nstances,xpand-

    ing

    able

    orchart

    ufficientlyomeetheeeds

    for

    widespread

    ieldpplication

    equiredrojec-

    tion

    fmpirical

    actorelationships

    ppreciably

    beyond

    he

    hysical

    imitsf

    he

    ata

    romwhich

    the

    elationshipswere

    erived.

    stimates

    btained

    in

    his

    manner

    re

    he

    est

    nformation

    vailable

    for

    heonditions

    hey

    epresent.

    owever,

    he

    instances

    re

    dentifiednheiscussions

    f

    he

    specificrosion

    actors,

    ables,ndharts.Major

    research

    eedsreuggested

    yhese

    iscussions

    and

    ere

    ecently

    ummarized

    n

    n

    vailable

    publication

    y

    Stewartandthers42).

    HISTORY

    F

    OIL

    OSSQ U A T I O N S

    Developing

    quations

    o

    alculate

    ield

    o il

    o s s

    beganbout

    940

    n

    he

    ornelt.heo ilo s s

    estimatingrocedure

    eveloped

    nhat

    egion

    between 1940

    and 1956 has been generally re-

    ^

    Retired.ormer

    esearch

    tatistician

    water

    anagement).

    ci -

    ence

    nd

    ducation

    dministration

    SEA),

    nd

    rofessormeritus,

    agriculturalngineering,urdueniversity,

    est

    afayette,nd.;

    and agricultural

    engineer,

    SEA,

    Beltsville,

    Md.

    ferred

    o

    as

    he

    lope-practice

    method.

    ingg

    64)^

    publishednquationn

    940elatingo il

    o s s

    rateoengthandercentageof

    slope.

    The

    ollow-

    ing

    ear.

    mith38,

    9)

    dded

    rop

    and

    onserva-

    tionracticeactors

    nd

    he

    oncept

    fpecific

    s o i ll o s simit,

    oevelop

    raphical

    methodor

    Numbers

    n

    arentheses

    refer

    o eferences

    p.

    8.

  • 8/11/2019 AH 503 Wichmeier

    7/67

    UNITED

    T A T E S

    EPARTMENT

    F

    GRICULTURE,AGRICULTURE

    ANDBOOKUMBER37

    determiningonservationracticesnhelbynd

    associated

    o i l s

    f

    heMidwest.

    rowningnds-

    sociates

    )

    dded

    o ilnd

    anagement

    actors

    and

    repared

    e tof

    ables

    o

    implifyields e

    of

    he

    quation

    n

    owa.

    esearch

    cientistsnd

    operationsersonnel

    f

    he

    oilonservation

    Ser-

    vice

    S C S )n

    heorthentral

    tates

    workedo-

    gether

    n

    eveloping

    he

    lope-practice

    quation

    for

    u s ethroughout

    theCornBelt.

    A

    ational

    ommittee

    et

    nhion

    946

    o

    adapthe

    Corneltquationoroplandnther

    regions.

    hi s

    ommittee

    eappraised

    heorn

    elt

    factoraluesnd

    dded

    ainfall

    actor.

    he

    resulting

    ormula,

    enerally

    nownsheus-

    grave

    quation

    31),

    as

    een

    idelysed

    or

    estimatingrossrosionromwatershedsnlood

    abatementrograms.

    raphical

    olutionf

    he

    equation

    wasublished

    n

    95219)

    andsed

    y

    the

    SC S

    n

    he

    Northeastern

    States.

    The

    o ilo s s

    quation

    resented

    nhisand-

    book

    as

    ecome

    nown

    sheniversaloil

    L o s s

    quation

    U S L E ) .

    egardless

    f

    hetherhe

    designation

    sully

    ccurate,

    he

    ame

    oes

    is-

    tinguish

    his

    quationrom

    heegionallyased

    s o i lo s sequations.TheSL Ewasdevelopedathe

    National

    unoffndoil

    o s s

    ata

    enter

    stab-

    lished

    n954y

    he

    cience

    nd

    ducation

    d-

    ministration

    formerlygricultural

    esearcher-

    vice)

    n

    ooperation

    with

    urdueniversity.

    ed-

    eral-State

    ooperative

    esearchrojects

    t

    9o-

    c a t i o n s ^

    ontributed

    more

    han

    0,000

    plot-years

    of

    basic

    unoff

    ndo ilo s s

    ataohisenter

    or

    summarizingnd

    verall

    tatisticalnalyses.

    fter

    1960,

    ainfall

    imulators22)perating

    rom

    ndi-

    ana,

    Georgia,

    Minnesota,

    andNebraska

    were

    used

    onieldlots

    n16

    states

    o

    fillome

    of

    hegapsn

    the

    ata

    eeded

    or

    actor

    valuation.

    Analysesfhisargessemblyfasic

    ata

    provided

    everal

    major

    mprovements

    orhe

    o il

    l o s squation

    53):a)

    ainfallrosion

    ndex

    evaluated

    rorn

    ocal

    ainfallharacteristics;b)

    quantitativeo ilrodibilityactor

    hat

    sevaluated

    directly

    rom

    o ilroperty

    data

    andsndependent

    of

    opography

    nd

    ainfallifferences;

    c)

    method

    f

    valuating

    ropping

    nd

    management

    effectsnelationo

    ocal

    limaticonditions;nd

    (d)

    method

    f

    ccounting

    or

    ffectsof

    nterac-

    tions

    etween

    rop

    ystem,roductivity

    evel,

    ill-

    age

    ractices,

    ndesiduemanagement.

    Developmentsi n c e

    965

    haveexpandedhe

    u s e

    of

    he

    o il

    o s s

    quation

    y

    roviding

    echniques

    for

    stimating

    ite

    alues

    f

    ts

    actors

    or

    ddi-

    tionalands e s ,

    limatic

    conditions,

    ndmanage-

    ment

    ractices.

    hese

    avencluded

    o il

    rodi-

    bilityomographor

    armland

    nd

    onstruction

    areas

    58);

    opographic

    actors

    or

    rregular

    lopes

    (72,5);

    over

    actors

    orangendoodland

    (57);

    over

    ndmanagementffects

    fonserva-

    tion

    illage

    ractices54);rosion

    redictionn

    construction

    reas61,4,

    5);

    stimated

    rosion

    indexalues

    or

    he

    Western

    tates

    ndawaii

    (5,

    ,

    5);o ilrodibilityactors

    or

    enchmark^

    Hawaiio i l s9);and

    mprovedesignand

    valua-

    tion

    of

    rosioncontrol

    support

    practices

    7,6).

    Research

    s

    ontinuing

    with

    mphasisonobtain-

    ing

    etternderstanding

    f

    he

    asicrinciples

    and

    r o c e s s e s

    f

    water

    rosion

    nd

    edimentation

    and

    evelopment

    fundamental

    models

    apable

    of

    redicting

    pecific-stormo il

    o s s e sndeposi-

    tion

    y

    verland

    iow

    JO ,

    7,

    2,

    6,

    2).

    he

    fundamental

    modelsave

    eenelpful

    or

    nder-

    standing

    heactors

    nhe

    ield

    o il

    o s s

    quation

    and

    or

    nterpreting

    he

    plotdata.

    SOIL

    O SS

    O L E R A N C E S

    The

    erm

    soil

    o s solerance

    enotes

    hemaxi-

    mumlevelfo ilrosion

    hatwillermit

    igh

    level

    of

    crop

    productivity

    to

    be

    sustained

    eco-

    nomicallyandndefinitely.

    ^

    The

    ataereontributed

    y

    ederal-Stateooperativee-

    searchrojects

    the

    ollowing

    ocations:

    atesville,

    rk.;

    ifton

    and

    atkinsville,

    a.;

    ixon

    prings,

    oliet,

    nd

    rbana,II.;a -

    fayette,

    nd.;

    larinda,

    astaa,eaconsfield,ndependence,nd

    Seymour,owa;

    ays,

    ans.;aton

    ouge,

    a.;

    resque

    sle,

    Maine;

    Bentonarbor

    nd

    a s t

    ansing,

    ich.;

    orris,

    inn.;

    olly

    Springs and State

    College,

    M i s s . ;Bethany

    and

    McCredie, Mo.;

    Hastings,

    ebr.;

    eemerville,

    arlboro,

    nd

    ew

    runswick,.J.;

    Ithaca,

    eneva,

    nd

    Marcellus,

    .Y.;

    tatesville

    nd

    aleigh,

    .C.;

    Coshocton

    nd

    anesville,

    hio;herokeenduthrie,

    kla.;

    Stateollege,a.;

    lemsonnd

    partanburg,

    .C.;adison,

    S.Dak.;

    noxvillend

    reeneville,

    enn.;emple

    ndyler,

    ex.;

    Blacksburg,

    a.;ullman,

    ash.;

    aCrosse,

    adison,nd

    wen,

    Wis.;and

    Mayaguez,

    .R .

  • 8/11/2019 AH 503 Wichmeier

    8/67

    PREDICTING

    AINFALLROSION

    OSSES-A

    GUIDE

    O

    ONSERVATION

    PLANNING

    The

    major

    purposeofthe

    o il

    o s sequation

    s

    o

    ethodical

    ecisionmaking

    n

    onservation

    n ite

    asis.he

    quation

    nables

    lanner

    oredict

    he

    verageate

    fo il

    or

    ach

    f

    arious

    lternative

    ombina-

    ofcrop

    system,

    management

    echniques,

    and

    ractices

    on

    any

    particular

    site.

    When

    hese

    o s s e saneompared

    with

    o ilo s s

    or

    hat

    ite,

    hey

    rovidepecificguide-

    or

    ffectingrosionontrol/ithinhepec-

    imits.nyroppingnd

    managementom-

    orwhichhepredictederosion

    rate

    se s s

    he

    olerance

    ayexpected

    orovide

    rosion

    ontrol.

    rom

    heatisfactory

    ndicated

    y

    his

    rocedure,

    he

    ne

    uitedo articular

    arm

    r

    thernter-

    may

    thenbeselected.

    S o i l

    o s s

    olerances

    ranging

    rom

    5

    o

    2

    t/A/year

    heo i l s

    fhe

    nited

    tates

    wereerived

    y

    cientists,

    gronomists,

    eologists,

    oil

    on-

    nd

    ederal

    ndStateesearch

    ead-

    rst

    ix

    egionalorkshops

    n

    96 1nd

    962.

    onsidered

    n

    defininghese

    imits

    ncluded

    epth,

    hysical

    ropertiesnd

    therharac-

    ffectingootdevelopment,ully

    reven-

    n-field

    edimentroblems,

    eeding

    o s s e s ,

    rganicattereduction,

    nd

    lantutrient

    eep,medium-textured,

    moderately

    er-

    o il

    hat

    as

    ubsoil

    haracteristics

    avor-

    or

    plant

    growthhasa

    reater

    olerance

    han

    withhallow

    oot

    ones

    righ

    ercentages

    hale

    t

    he

    urface.idespreadxperience

    shown

    heseo ilo s solerances

    o

    eeasible

    enerally

    dequate

    or

    ustaining

    igh

    ro-

    evels

    ndefinitely.

    omeo i l s

    with

    eep

    favorable

    oot

    zones

    mayexceed

    he5-tolerance

    without

    o s sof

    sustainedroductivity.

    Soil

    o s s

    imits

    re

    ometimesstablishedri-

    marily

    or

    water

    uality

    ontrol.

    he

    riteriaor

    definingieldo il

    o s simitsor

    his

    urpose

    re

    not

    heames

    hose

    or

    olerances

    esigned

    o

    preserve

    roplandroductivity.

    oilepth

    s

    ot

    relevantor

    ffsite

    ediment

    ontrol,ndniform

    limits

    nrosionateswillllow

    ange

    nhe

    quantities

    f

    ediment

    er

    nit

    rea

    hat

    re

    e-

    livered

    oa

    iver.

    Soil

    material

    eroded

    rom

    a

    ield

    slopemayedepositednhe

    ieldoundaries,n

    terracehannels,nepressional

    reas,

    r

    nlat

    or

    vegetated

    areas

    raversed

    y

    he

    overland

    low

    before

    t

    reaches

    a

    iver.

    The

    erosion

    amageshe

    cropland

    n

    hichtccurs,

    utedimente-

    posited

    eartslaceoforiginsotdirectlyele-

    vant

    for

    water

    quality

    control.

    Ifhe

    o il

    o s s

    olerance

    esigned

    orustained

    cropland

    roductivityails

    o

    ttain

    he

    esired

    water

    quality

    standard,

    lexibleimitshat

    consider

    otheractorshouldeeveloped

    ather

    han

    uniformlyoweringheo il

    o s s

    olerance.

    hese

    factorsncludeistancefheieldrommajor

    waterway,heediment

    ransport

    haracteristics

    of

    he

    nterveningrea,

    ediment

    omposition,

    needs

    f

    hearticular

    odyf

    waterbeingro-

    tected,andheprobablemagnitude

    of

    luctuations

    in

    ediment

    oads

    42).

    i m i t s

    f

    ediment

    ield

    wouldrovide

    ore

    niformater

    uality

    on-

    trol

    han

    oweringheimits

    no il

    ovement

    fromield

    lopes.

    hey

    wouldlso

    equire

    ewer

    restrictions

    nropsystemelectionor

    ieldsrom

    which

    nly

    mallercentages

    f

    he

    roded

    o il

    becomeoff-farmsediment.

    SOIL

    OS S

    Q U A T I O N

    Therosionate

    tiven

    ite

    setermined

    he

    articular

    way

    n

    which

    he

    evels

    n

    u-

    hysical

    ndanagementariables.

    are

    that

    ite.

    hysical

    easurementsf

    o s sorach

    f

    he

    arge

    numberf

    ossible

    n

    which

    he

    evelsf

    hese

    ariable

    an

    ccur

    nder

    ield

    onditions

    would

    ot

    eeasible.o ilo s squations

    were

    evelopedo

    onservationlannersorojectimited

    ata

    o

    he

    many

    ocalitiesndonditions

    aveoteen

    irectly

    epresentednhee-

    TheSL E

    snrosion

    model

    esigned

    o

    re-

    dict

    he

    ongtime

    verage

    o il

    o s s e s

    n

    unoff

    frompecific

    ield

    reas

    n

    pecified

    ropping

    nd

    management

    ystems.

    idespread

    ield

    s eas

    substantiated

    ts

    sefulnessndalidity

    orhis

    purpose.

    tslsopplicable

    or

    uch

    onagricul-

    tural

    conditionss

    onstruction

    i t e s .

    With

    ppropriateelection

    f

    ts

    actor

    alues,

    theequationwill

    ompute

    he

    average

    o ilo s s

    or

    amulticropsystem,oraarticular

    cropyearn

    rotation,or

    for

    a

    articular

    cropstageperiodwithin

    a

    rop

    ear.

    t

    omputes

    heo il

    o s s

    oriven

  • 8/11/2019 AH 503 Wichmeier

    9/67

    UNITED

    TATES

    E P A R T M E N T

    F

    G RICULTURE,G RICULTURE

    ANDBOOK

    U M B E R37

    site she

    product

    ofsixmajor

    actors

    whosem o s t

    likely

    alues

    t

    articularocationan

    e

    x-

    p r e s s e d

    umerically.

    rosion

    variableseflected

    by

    these

    actors

    varyconsiderablyaboutheirmeans

    from

    torm

    otorm,ut

    ffects

    f

    he

    andom

    end

    o

    verage

    ut

    ver

    xtended

    periods.e c a u s e

    f

    he

    npredictable

    hort-time

    n

    he

    evels

    f

    nfluential

    ariables,

    hov/ever,

    resent

    oilos s

    quations

    re

    ubstan-

    essaccurateor

    prediction

    f

    specificevents

    or

    redictionfongtimeverages.

    The

    soillossequation

    is

    A=:RKLSCP

    0)

    s

    hecomputed o iloss

    per

    unit

    area,express-

    edn

    he

    units

    elect ed

    or

    K

    andor

    he

    peri-

    od

    elect ed

    or

    .

    n

    ractice,h e s e

    ares u -

    allyoelect edhat

    heyompute

    n

    o n s

    percreer

    ear,

    utthernitsa ne

    select ed.

    he

    ainfallandunoff

    actor,s

    henumberof

    rainfallrosion

    ndex

    nits,lus

    actor

    or

    runoff

    rom

    snowmelt

    or

    applied

    water

    where

    s uch

    unoff

    issignificant.

    K,

    heo ilrodibility

    actor,

    s

    heo ilossate

    per

    rosion

    ndex

    nit

    or

    specified

    o il

    s

    measured

    n

    nitplot,

    which

    sdefined

    s

    a

    2.6-ft

    ength

    f

    niform

    -percentlope

    continuouslyn

    clean-tilledallow.

    ,

    he

    lope-length

    actor,s

    heatio

    f

    o ilos s

    from

    hefieldslopeength

    o

    that

    from 2.6-

    ft

    ength under

    denticalonditions.

    ,

    helope-steepnessactor,

    she

    atio

    f

    o il

    loss

    rom

    he

    field

    slope

    gradiento

    hat

    rom

    a-percentlope

    nder

    therwise

    dentical

    conditions.

    he

    over

    nd

    managementactor,

    she

    atio

    ofsoil

    os s

    rom

    n

    areawith

    pecified

    cover

    and

    anagement

    ohat

    rom

    n

    dentical

    area

    nilledcontinuousallow.

    he

    upport

    ractice

    actor,

    s

    he

    atio

    fo il

    loss

    with

    upportractice

    ike

    ontouring,

    stripcropping,

    rerracingohatith

    straight-rowarming

    p

    andown

    he

    slope.

    The

    oil

    os s

    quationnd

    actor

    valuation

    charts

    ere

    nitially

    eveloped

    n

    ermsfhe

    Engl i shnits

    commonly

    s e d

    nheUnited ta tes.

    Theactordefinitions

    arenterdependent,

    ndi-

    rec tonversionfc r e s ,ons,n c h e s ,nd

    eeto

    metricunitswouldnotproducethekindofintegers

    thatwouldeesirableor

    an

    xpression

    f

    he

    equation

    n

    hat

    s y s t e m .

    Therefore,

    only

    the

    Engl ish

    unitsre

    s e d

    nhenitial

    resentation

    f

    he

    equation

    ndactorvaluation

    aterials,

    nd

    their

    counterparts

    nmetric

    units

    are

    given

    n

    he

    Appendix

    nder

    o n v e r s i o n

    o

    etr icy s t e m .

    Numericalaluesor

    ac hf

    heix

    actors

    were

    erived

    rom

    nalyses

    f

    he

    ssembled

    e -

    searc h

    ata

    nd

    rom ational

    Weather

    ervice

    precipitationecords.

    or

    most

    onditions

    nhe

    United

    ta tes,he

    pproximate

    aluesof

    he

    ac-

    tors

    or

    anyparticular

    it e

    may

    e

    obtained

    rom

    charts

    nd

    ables

    nhisandbook.ocalitiesr

    countrieswhere

    he

    ainfallharacteristics,oil

    types,

    opographic

    eatures,

    r

    arm

    ractices

    are

    substantially

    eyond

    he

    ange

    fresent.S .

    data

    willind

    h e s e

    charts

    nd

    ables

    ncomplete

    anderhapsnaccurateorheir

    conditions.

    ow-

    ever,

    hey

    will

    provide

    guidelines

    hat

    a n

    educe

    the

    mount

    f

    ocal

    esearch

    eeded

    o

    evelop

    comparable

    charts

    andables

    or

    heirconditions.

    The

    subsectionn

    P r ed i ct i ngC r o p l a n d

    Soi lLo s s -

    e s ,age

    0

    llustrates

    ow

    o electactor

    values

    from

    he

    ablesandcharts.Readerswho

    have

    had

    n o

    experience

    with

    he

    o il

    oss

    equationmay

    wish

    toeadhat ect ion

    irst.

    After

    hey

    have

    eferred

    to

    he

    ablesnd

    igures

    ndocated

    he

    alues

    u s e d

    n

    hesample,heymay

    move

    eadily

    o

    he

    intervening

    etailed

    iscussions

    f

    he

    quation's

    factors.

    The

    soil

    os s

    rediction

    rocedure

    s

    more

    valu-

    able

    s

    guide

    forselectionofpracticesif

    the

    s er

    ha s

    eneral

    nowledge

    f

    he

    rinciples

    nd

    factor

    nterrelations

    n

    hich

    he

    quation

    s

    based.

    Therefore,he

    significance

    of

    a c h

    actor

    s

    d i s c u s s e d

    efore

    resentingheeference

    abler

    chart

    rom

    which

    ocalaluesmaye

    btained.

    Limitationsof

    he

    data

    available

    orevaluation

    of

    s o m e

    ofhe

    actors

    are

    also

    pointed

    out.

  • 8/11/2019 AH 503 Wichmeier

    10/67

    PREDICTING

    R A I N F A L L

    E R O S I O N L O S S E S - AGUIDEO

    O N S E R V A T I O N PLANNING

    R A I N F A L LANDU N O F FA C T O R

    R )

    Rillsnd

    ediment

    eposits

    bserved

    ftern

    unusually

    ntensestorm

    ave

    sometimes

    e do

    he

    c onc l us i onhat

    he

    significanterosions

    associated

    withonly ew

    storms,

    or

    hatt

    s

    solely unc-

    tionfeak

    ntensities.

    owever,morehan0

    years

    of

    measurements

    n

    many

    S t a t e s

    have

    shown

    that

    hiss

    othe as e

    5 1 ) .he

    atashow

    hat

    a

    ainfall

    actor s ed

    oestimate

    average

    nnual

    soil

    ossmustncludehe

    cumulative

    f fectsofthe

    many

    moderate-sized

    storms, swell she f fects

    o fthe

    occasionalsevereo n e s .

    The

    umerical

    alue

    s edor

    n

    he

    oil

    oss

    equationmust

    quantifyhe

    aindrop

    mpact

    effect

    a n d

    must

    alsorovide

    elativenformation n

    he

    amount

    ndate

    of

    unoff

    ikelyo

    e

    associated

    withhe

    ain.

    he

    ainfall

    rosionndexerived

    by

    Wischmeier49 )

    appearso

    meet

    h e s e

    equire-

    m e n t s

    etter

    han

    ny

    ther

    f

    he

    many

    ainfall

    parameters

    nd

    roupsf

    arameters

    ested

    against

    he

    ssembled

    lot

    ata.

    he

    ocal

    alue

    of

    his

    ndexenerallyquals

    or

    he

    o il

    oss

    equationndmay

    ebtained

    irectlyrom

    he

    map

    n igure. owever,he

    ndex

    o esotn-

    cludeheerosiveorcesofunofffromhaw,

    snow-

    melt,

    r

    rrigation.

    rocedureor

    valuating

    for

    ocations

    wherehis

    ypeofunoffssignificant

    will

    e

    iven

    nderheopic V a l u e s

    or

    Thaw

    andS n o w m e l t .

    Rainfall

    r o s i o n

    ndex

    Th e

    esearch

    ata

    ndicate

    hat

    when

    actors

    other

    han

    ainfall

    re

    eld

    onstant,

    torm

    oil

    lossesrom

    ultivated

    ieldsre

    irectly

    ropor-

    tionalo ainstorm

    arameter

    dentified

    s

    he

    El

    defined

    below)

    49).

    he

    elation

    f

    soil

    os s

    o

    thisarameter

    s

    inear,nd

    ts

    ndividualtorm

    V alues

    aredirectlyadditive.

    he

    u m

    fhe

    storm

    E l

    alues

    or iveneriods umericalmea-

    su r eofheerosive

    otentialof

    he

    ainfall

    within

    thatperiod.

    The

    average

    annual

    otal

    of

    he

    storm

    E l

    valuesn particularocality

    s

    heainfallero-

    s ionndexor

    hat

    ocality.

    e c a u s e

    fpparent

    cyclical

    patterns

    n

    ainfalldata

    33),

    he

    published

    rainfallrosion

    ndex

    alues

    wereasedn

    2 -

    yearstationrainfallrecords.

    Rain

    howersfes s

    han

    ne-half

    nc hnd

    separated

    rom

    therain

    eriods

    ymorehan

    6

    ours

    eremittedrom

    he

    rosion

    ndex

    computations, nless

    s

    m u c h s0.25

    nofain

    ell

    in

    5

    min.ExploratoryanalysesshowedhatheEl

    values

    or

    uc h

    ains

    re

    sually

    oomall

    or

    practical

    ignificance

    nd

    hat,

    ollectively,

    hey

    have

    ittle

    ffect

    n

    onthly

    ercentages

    f

    he

    annual

    l.

    heo s t

    f

    bstracting

    nd

    nalyzing

    4,000

    ocation-yearsofainfall-intensity

    atawas

    greatly

    educedy

    adopting

    he.5-in

    hreshold

    value.

    ElParameter

    By

    efinition,

    he

    value

    f

    lor

    iven

    ain-

    stormquals

    he

    roduct,

    otal

    torm

    nergy

    E)

    times

    he

    maximum

    0-min

    ntensity

    I30)/

    where

    is

    n

    undreds

    f

    oot-tons

    er

    acre

    nd

    3 0

    s

    n

    inch eser

    our

    in/h).

    ls

    n

    bbreviationor

    energy-times-intensity,

    andheermhouldot

    e

    considered

    imply

    an

    nergyparameter.

    he

    data

    show

    hatainfall

    energy,

    tself,-is

    not

    ood

    n-

    dicatorferosive

    otential.

    he

    torm

    nergy

    n-

    dicateshe

    olume

    f

    ainfall

    nd

    unoff,

    ut

    long,slow

    ain

    may

    ave

    he

    a m e value s

    shorter

    aintu c h

    igher

    ntensity.aindrop

    erosion

    ncreases

    with

    ntensity. he

    3 0component

    indicates

    he

    rolonged-peak

    ates

    f

    etachment

    and

    unoff.

    heroducterm. l,s tatistical

    interactionerm

    hat

    efiects

    howotal

    energyand

    peak

    nensityre

    ombinedn

    a c h

    articular

    storm.Technically,tndicates

    how

    particle

    detach-

    ment

    scombined

    withransportcapacity.

    Th energy f ainstorm

    s

    unction

    f

    he

    amount

    of

    ain

    nd fall

    he

    torm's

    omponent

    intensities.edianaindrop

    iz e

    n c r e a s e sith

    rain

    ntensity

    2),

    nd

    erminal

    elocitiesof

    ree-

    falling

    waterdrops

    ncrease

    with

    ncreasedrop-

    s ize

    7 3 ) .

    ince

    he

    energy

    of

    given

    m a s s

    n

    o -

    tion

    sroportional

    o

    elocity-squared,

    ainfall

    energy

    s

    irectlyelatedo

    ain

    ntensity.he

    relationship

    sexpressed

    y

    heequation,

    E=:

    916+3 3 1

    ogio,

    (2 )

    where

    s

    inetic

    nergynoot-tons

    ercre-

    inchnd

    s

    ntensity

    nnc hes

    er

    our62).

    limitof n/h

    smposed

    n

    y

    he indinghat

    median

    ropsize

    o e s

    otontinueo

    ncrease

    whenntensitiesexceed n/h

    7 ,5 ). he

    energy

  • 8/11/2019 AH 503 Wichmeier

    11/67

    FIGURE1 . ^ A v e r a ge

    n n ua l

    v a l u e s

    f

    hea i n f a l l

    rosion

    n d e x .

  • 8/11/2019 AH 503 Wichmeier

    12/67

    UNITED

    TATES

    E P A R T M E N T

    F

    G RICULTURE, AG RICULTURE

    ANDBOOKUMBER

    37

    of

    ainstorm

    s

    omputed

    rom

    ecording-rain

    gage

    data.

    Thestorm

    sdivided

    nto

    uc c ess i ven-

    crements

    f

    ssentially

    niformntensity,

    nd

    rainfallnergy-intensity

    able

    erived

    rom

    he

    above

    ormula

    app.,

    able 9)

    s

    s e d

    o

    compute

    the

    energyore a c hncrement.B e c a u s ethe

    energy

    equationndnergy-intensity

    ableave

    e e n

    frequently

    ublished

    ith

    nergy

    xpressed

    n

    foot-tonser

    cre-inch,

    hisnit

    was

    etained

    n

    table

    9.

    owever,

    oromputation

    f

    lalues,

    storm

    energy

    s

    expressed

    n

    hundreds

    of

    oot-tons

    peracre.

    Therefore,

    energies

    computed

    by

    the

    pub-

    lishedormula

    or

    able

    9must e

    dividedby 00

    before

    multiplying

    by3 0

    o

    compute

    E.)

    I s o e r o d e n tMaps

    L o c a lvalues

    f

    he

    ainfall

    rosion

    ndex

    may

    be

    taken

    directly

    fromhe

    soerodent

    maps,figures

    I

    nd

    .

    he

    plotted

    ines

    n

    he

    maps

    are

    called

    isoerodentse c a u s e

    heyonnectoints

    f

    qual

    rainfallerosivity.Erosi onndex

    valuesfor

    ocations

    between

    heines

    re

    obtained

    y

    inearnterpo-

    lation.

    Thesoerodent

    map

    n

    heriginalersionf

    this

    handbook(64)

    was

    developed

    from

    22-year

    s t a-

    tion

    ainfall

    ecordsbycomputingheElvalueor

    e a c h

    torm

    hatmet

    he

    previously

    definedhresh-

    old

    criteria.soerodents

    were

    then

    ocated

    between

    t hese

    point

    valueswithhe

    help

    of

    published

    ain-

    fall

    ntensity-frequency

    ata

    47 )

    and

    opographic

    maps.

    he

    1

    estern

    tatesweremitted

    rom

    thenitial

    ap

    e c a u s eheainfall

    atterns

    n

    this

    ountainous

    egion

    re

    poradic

    nd

    ot

    enoughong-term,

    ecording-rain

    age

    ecords

    wereavailableoestablish

    aths

    of

    equal

    erosion

    index

    values.

    The

    soerodent

    mapwasextendedohe

    Paci f ic

    Coast

    n

    97 6

    y

    s e

    fon

    estimating

    rocedure.

    Resultsofnvestigationsatthe

    Runoff

    and o il os s

    DataCenter

    at

    Purdue

    Universityshowedhathe

    known

    erosion

    ndex

    alues

    n

    he

    Western

    Plains

    and

    orth

    Central

    tatesouldepproximated

    with

    easonable

    ccuracy

    yheuantity

    7 . 3 8

    p2.i7^

    where s

    he

    -year,-hainfall

    mount

    (55) ,

    his

    elationship

    as

    s e d

    ith

    ational

    Weatherervice

    sopluvial

    maps

    opproximate

    erosionndexalues

    or

    he

    Western

    tates.

    he

    resulting

    soerodents

    areompatible

    with

    he

    ew

    pointvalueshatade e n

    stablished

    withinhe

    II

    Western

    tatesand

    a n

    rovide

    helpfulguides

    foronservationlanning

    n

    iteasis.

    ow-

    ever,

    hey

    re

    ess

    recise

    hanh o s eomputed

    forthe37-Statearea,

    wheremoredatawereavail-

    able

    nd

    ainfall

    atterns

    re

    ess

    rotic. lso,

    linear

    nterpolations

    etween

    heines

    willot

    alwayseccuratenmountain

    egionse c a u s e

    values

    f

    he

    rosion

    ndexmay

    hange

    ather

    abruptly

    with levationhanges.he

    point

    values

    thatwereomputed

    irectly

    rom

    ong-term

    ta -

    tion

    ainfallecordsnhe

    Western

    tates

    re

    n-

    cludedn

    able

    7 ,

    s

    eference

    points.

    Figure

    waseveloped

    y

    computing

    hero-

    s ionndex

    forfirst-order

    weatherstations

    inHawaii

    anderivinghe

    elation f

    h e s ealues

    o

    a-

    tional

    Weather

    Service

    ntensity-frequencydata

    or

    the

    ive

    ajorslands.

    When

    heresent

    hort-

    term,

    ainfall-intensityecordsave

    e e n

    uffi-

    cientlyengthened,

    more

    pointvalues

    of

    the

    ndex

    should

    be

    computed

    by

    the

    tandard

    procedure.

    Figure

    howshatocal,verage-annualal-

    uesof

    he

    rosion

    ndexn

    he

    8

    onterminous

    Sta tesangeromesshan0

    omorehan0 0.

    Th e

    erosion

    ndexmeasureshecombined

    effect

    of

    rainfall

    ndts

    ssociated

    unoff.fheoil

    nd

    topography

    were

    xactly

    heameverywhere,-

    averageannual

    oilo sse s

    rom

    lotsmaintained

    incontinuous

    allow

    would

    differndirectpropor-

    tion

    o

    heerosion

    ndex

    values.However,

    his

    po-

    tential

    ifference

    sartiallyffsetyifferences

    in

    soil,

    topography,

    vegetative

    cover,

    and

    esidues.

    On

    ertile

    oils

    n

    he

    ighainfall

    reas

    f

    he

    Southern ta tes,

    ood

    egetaloverrotects

    he

    soilurfacehroughout

    o s t

    fhe

    ear

    nd

    heavy

    lantesiduesmayrovideexcellent

    cover

    also

    uring

    he

    ormant

    e a s o n .

    n

    heegions

    whereheerosionndexsextremelyow,ainfall

    is

    seldom

    adequateorestablishingannualmead-

    owsand

    hecover

    providedby

    othercropss

    often

    for

    elatively

    hort

    eriods.enc e,erious

    oil

    erosion

    azardsxist

    n

    semiaridegionsswell

    as

    n

    humid.

    F r e q u e n c y

    i s t r ibut ion

    The

    soerodent

    opsresent

    2-year-average

    annualvalues

    of

    Elor

    the

    delineated

    areas.

    How-

    ever,bothhe

    annual

    andhemaximum-stormval-

    uesat

    aparticularocationvary

    from

    year

    to

    year.

    Analysis

    f

    81tation

    ainfallecords

    howed

    thathey

    end

    oollow

    og-normal

    requency

    dis-

    tributions

    hat

    are

    usually

    well

    defined

    bycontinu-

  • 8/11/2019 AH 503 Wichmeier

    13/67

    PREDICTING

    AINFALLROSION

    LOSSES-A

    GUIDE

    O

    ONSERVATIONPLANNING

    us

    ecords

    from

    0

    o25

    ears

    49).

    ables

    f

    probabilities

    of annual andmaximum-

    R

    V a l u e s

    o r

    Tha w

    Thetandard

    ainfall

    rosion

    ndexstimates

    rosive

    orces

    fhe

    ainfall

    ndtsirectly

    runoff.nhePacificNorthwest,asmuch

    s

    0

    ercent

    fhe

    rosion

    n

    he

    teeplyolling

    asbeenstimated

    o

    derive

    rom

    un-

    ssociated

    s ^ i t h

    urface

    hawsnd

    nowmelt.

    ypefrosion

    s

    otccountedor

    y

    he

    rosionndex

    ut

    s

    onsidered

    ither

    pre-

    or

    appreciable

    nmuch

    ofhe

    Northwest

    n

    ortionsfhe

    entral

    Western

    tates.

    recipitationelationshipwouldotccount

    peak

    o s s e s

    n

    earlyprinigecause

    a s

    he

    win-

    rogresses,

    heo il

    ecomes

    ncreasingly

    more

    as

    he

    o il

    moisture

    rofile

    s

    eing

    illed.

    storm

    l

    alues

    t

    he81

    locations

    re

    resented

    in

    theappendix

    (tables

    17

    and

    18).

    a n dn o w m e l t

    the

    urfacetructure

    seing

    rokenowny

    repeated

    reezing

    nd

    hawing,

    nduddling

    andurfaceealingreakinglace.dditional

    researchfhe

    rosion

    r o c e s s e sndeansf

    controlnder

    heseonditions

    s

    rgentlyeeded.

    In

    he

    eantime,

    hearly

    pring

    rosion

    y

    runoff

    rom

    nowmelt,haw,

    r

    ightain

    n

    ro-

    zen

    o ilmay

    e

    ncluded

    nhe

    o il

    o s s

    computa-

    tionsy

    dding

    ubfactor,g ,

    oheocation's

    erosion

    ndex

    obtain

    R.

    nvestigationsofimited

    data

    ndicatedhatnstimatef

    g

    may

    e

    b-

    tainedyaking.5

    imes

    he

    ocal

    ecember-

    through-March

    recipitation,easured

    snches

    of

    water.

    F o r

    example,

    a

    location

    in

    the

    North-

    M A U l

    K A U A I

    O A H U

    MOLOKAI

    FIGURE

    2 . E s t i m a t e d

    v e r a g e

    n n u a l

    al ueso f

    he

    a i n f a l l

    ros ion

    n d e x

    n

    a w a i i .

  • 8/11/2019 AH 503 Wichmeier

    14/67

    NITED

    TATE SEPAR T MEN TF

    G R I C U L T U R E ,

    A G R I C U L T U R E

    A N D B O O K

    U M B E R

    37

    hatas

    n

    rosion

    ndex

    f0

    fig.

    )

    verages

    2nfrecipitation

    etween e-

    ndMarch1wouldhave

    an

    estimated

    annual of.5 (1 2)

    +

    20 ,or

    8.

    This

    type

    of runoff

    may

    also

    be

    a

    significant

    factornhe

    orthern

    ier

    of

    Centralnd

    astern

    Sta tes.Wherexperiencendicates

    his

    o

    e

    he

    c a s e ,

    t

    hould

    e

    ncluded

    n

    nd

    lso

    n

    he

    erosion

    ndex istributionurves

    s

    llustrated

    n

    p a g e

    27.

    SOILRODIBIUTYA C T O RK)

    Th e

    eaning

    f

    heerm

    soil

    rodibility"

    s

    different

    rom

    hatof

    he

    ermsoil

    ero-

    he

    ate

    f

    o ilrosion.

    ,n

    he

    oil

    os s

    maye

    nfluenced

    morey

    and

    lope,

    haracteristics,

    over,

    nd

    management

    y

    nherentroperties

    f

    heoil.

    owever,

    oils

    rodemore

    eadily

    hanthers

    ven

    ll

    theractors

    re

    he

    a m e .

    his iffer-

    aused

    yroperties

    f

    he

    o il

    tself,

    s

    e -

    osheo il

    rodibility.everal

    arly

    t-

    were

    made

    o

    determine

    criteria

    or

    c i en-

    lassifications

    foilsccording

    o

    rodibility

    ,

    8,28 ,

    5 ),

    ut

    classifications

    s e d

    orerosion

    were

    only

    elative

    ankings.

    Differences

    nheatural

    susceptibilities

    of

    oils

    Definit ion

    Theo il

    rodibility

    actor,

    ,

    nhe

    S LEs

    aluexperimentally

    etermined.

    or

    articular

    soil,t

    s

    he

    ate

    of

    o il

    ossper

    ero-

    ndex

    unit

    asmeasuredon

    "unit"

    plot,which

    as

    e e n

    arbitrarily

    defined

    s

    ollows:

    A

    unit

    plot

    s

    2 .6

    t

    ong,with

    uniform

    ength-

    slopeof percent,ncontinuous

    fallow,

    illed

    nddown

    he

    slope.

    Continuous

    fallow,

    or

    this

    s

    andhat

    as

    e e n

    illed

    and

    kept

    ree

    egetation

    ormorehan

    ears.

    uring

    he

    eriodof

    so i l

    oss

    measurements,the

    plot

    splowed

    laced

    n

    conventional

    corn

    seedbed

    condition

    pring

    nd

    s

    illed

    s

    eededo

    revent

    vegetative

    rowthnd

    evereurface

    rusting.

    hen

    allof

    h e s e

    conditionsare

    met, , ,C,and

    P

    a c h

    equal

    .0 ,

    and

    equals

    A/El.

    The 2 .6

    tength

    and

    percent teepnesswere

    select ed

    s

    a s e

    alues

    or,

    ,nd

    e c a u s e

    they

    re

    heredominant

    slope

    engthnd

    about

    the

    average

    radient

    nwhich

    ast

    erosion

    mea-

    to

    rosion

    re

    ifficult

    o

    uantify

    rom

    ield

    b-

    servations.

    ve n

    soil

    with

    elatively

    ow

    erodi-

    bilityactor

    ay

    howi gnsf

    eriousrosion

    whent

    c c urs

    n

    ong

    rteepl opesr

    n

    o -

    calities

    ithumerous

    igh-intensityainstorms.

    A o ilwith

    high

    natural

    erodibility

    factor, nhe

    other

    hand,

    may

    show

    ittle

    evidence

    of

    actual

    ero-

    s ionnder

    gentle

    ainfallwhen

    t

    c c urs n

    hort

    andgentle

    lopes,

    or

    when

    he e s t

    possible

    man-

    agement

    s

    racticed.

    he

    f fects

    ofainfalldiffer-

    e n c e s ,lope,

    over,

    nd

    anagementrec -

    countedornhepredictionequation

    by

    hesym-

    bols

    R, , ,C,and

    .

    Therefore,

    the

    o ilerodibility

    factor,

    ,

    must

    eevaluatedndependentlyof

    he

    effects

    of

    the

    other

    factors.

    o f

    actor

    surements

    n

    henited tatesade e nmade.

    Th e

    designated

    management

    rovides

    ondition

    thatearlyliminates

    f fects

    fover,

    manage-

    ment,

    andand

    s e

    esidual

    and

    hatc an

    edupli-

    cated

    on

    any

    cropland.

    Direct

    easurementsf nell-replicated,

    unitplots s

    described

    efiect

    hecombined

    f fects

    of

    allhe

    oil

    properties

    hatsignificantly

    nfluence

    the a s ewith

    which

    articular o ilserodedy

    rainfall

    and

    unoff

    f

    ot

    protected.

    owever,

    s

    an

    average

    valueor

    given

    soil,

    and

    direct

    mea-

    surement

    f

    heactorequires

    o ilos s

    measure-

    m e n t sor

    epresentative

    ange

    f

    tormizes

    and

    ntecedento ilonditions.

    S eendividual

    S t o r m oilosses

    nder

    A P P L Y I N GTHESOILLOSS

    E Q U A T I O N . )

    o

    valuate

    or

    oils

    hat

    o

    ot

    usually

    ccurn -percent

    lope,o ilos s

    ata

    from

    lotshatmeetall

    he

    other

    specifiedondi-

    tionsare

    adjustedo

    his

    a s eby

    .

    Values

    f

    o r

    pecific

    oils

    Representative

    alues

    of

    or

    o s t

    f

    he

    o il

    vailable

    r e s e a r c h

    information.

    These tables are

    types

    and texture c lasses

    c a n be obtained

    from

    tables

    prepared

    by

    oil

    cient is ts

    sing

    the latest

    available

    romhe

    Regional

    Technical

    ervice

    C e n -

    tersr tatefficesfCS .aluesorhexact

  • 8/11/2019 AH 503 Wichmeier

    15/67

    PREDICTING

    AINFALLROSION

    OSSES-A

    GUIDE

    O

    ONSERVATION

    PLANNING

    TABLE 1.

    Computed

    K values

    for

    soils on erosion

    researchtations

    Soil ou r c e

    of

    data

    omputed

    K

    Dunkirkilt

    oam

    eneva,.Y.O.9

    K e e n esiitoam

    anesviile,hio48

    S helby

    oam

    ethany,

    Mo.41

    L o d i

    oam l

    acksburg,

    a.39

    Fayette

    ilt

    oam

    aCrosse,

    Wis.

    38

    C e ci l

    andylayoam

    Watkinsville,

    Ga.

    36

    Marshallil tloam

    l

    arinda,

    owa

    33

    Ida

    iltoam astaa,owa

    33

    M a n s i cclayloam

    ays,

    a n s .

    32

    Hagerstown

    ilty

    lay

    oam tateollege,a..31

    A u s t i nlay emple,

    ex.

    29

    Mexico

    il t

    loam

    cCredie,

    Mo.28

    Honeoyeilt

    oam

    Marcellus,

    .Y.28

    C e ci landyoam

    l

    emson,

    .C.

    28

    Ontario

    oam eneva,

    .Y.

    .2 7

    C e ci lclayoam

    atkinsville,

    Ga.

    26

    B o s w e l lindandy

    oam

    yler,ex.

    25

    C e ci l

    sandy

    loam

    atkinsville,

    Ga.

    23

    Z a n e i s

    inesandy

    oam

    ut

    hrie,

    kla.

    22

    T i f t o n

    oamy

    and

    fton,

    Ga.

    10

    Freeholdoamysand

    arlboro,

    .J.

    08

    B at hiaggy

    il t

    oam

    with

    urface

    Arnot,

    .Y.

    05

    s t o n e s

    1>

    n c h e semoved....

    Albiagravelly

    loam

    eemerville,

    .J.

    03

    *Evaluated from continuous fallow. All others were

    computed

    f r omowcropdata.

    s o i l

    onditions

    tpecific

    ite

    ane

    omputed

    by

    s e

    f

    he

    o il

    rodibility

    nomograph

    resented

    in

    he

    nextsubsection.

    Usuallyo ilype

    ecomes

    e s s

    rodiblewith

    decrease

    niltraction,

    egardlessf

    whether

    he

    corresponding

    ncrease

    s

    n

    he

    and

    raction

    r

    the

    layraction.

    verall,rganic

    matterontent

    ranked

    ext

    o

    article-sizedistribution

    sanndi-

    cator

    f

    rodibility.owever,

    oi l 's

    rodibility

    isunction

    ofomplexnteractionsfa

    ubstan-

    tial

    umber

    oftshysicalandhemical

    roperties

    and

    ftenaries

    within

    tandardexture

    l a s s .

    Values

    fetermined

    or

    3

    ajor

    o i l sn

    which

    rosionlotstudiesunder

    naturalain

    were

    conducted

    ince

    930

    re

    isted

    n

    able

    .

    even

    of

    hesealues

    re

    rom

    ontinuous

    allow.

    he

    others

    re

    romrowcrops

    averaging

    0

    lot-years

    of

    ecord

    nd

    rownnystems

    orhich

    he

    cropping

    ffect

    adeenmeasurednthertud-

    i e s .Othero i l s

    n

    which

    aluable

    rosion

    tudies

    haveeenonducted^ereot

    ncluded

    nhe

    table

    ecause

    f

    ncertainties

    nvolved

    n

    djust-

    mentsofhedata

    or

    effectsofcroppingand

    man-

    agement.

    Direct

    measurementf

    herodibility

    actor

    s

    both

    ostly

    nd

    ime

    onsuming

    nd

    as

    een

    feasible

    onlyor

    a

    ew

    majors o i l

    ypes.

    Toachieve

    a

    etter

    nderstandingfow

    nd

    owhatx-

    tentachfariousropertiesofa

    o il

    ffectsts

    erodibility,

    nnterregional

    tudy

    as

    nitiated

    in961.hetudyncludedhes e

    field-plot

    rainfall

    imulators

    n

    at

    eastadozenStatesoob-

    tain

    omparativeata

    n

    umerous

    o i l s ,

    abora-

    tory

    eterminations

    of

    physical

    andhemical

    rop-

    erties,

    ndperation

    f

    dditional

    allow

    lots

    under

    atural

    ain.

    everal

    mpirical

    rodibility

    equations

    were

    eported

    3,

    0),

    A

    o il

    rodibility

    nomograph

    orarmland

    nd

    onstruction

    i tes

    (58)

    rovidedoreenerallypplicablework-

    ing

    ool.pproximatealues

    or

    0

    enchmark

    s o i l s

    n

    awaii

    are

    istedn

    table

    2.

    *See

    ootnote

    3,

    p..

    T AB L E

    2.

    Approximate

    aluesofth esoil

    erodibilityfactor,

    K,

    for

    10

    benchmarksoils

    n iawaii

    Order

    S u b o r d e r Great

    r ou p

    S u b g r o u p

    Family

    Se r ie s

    K

    U lt is o ls Humults Tropohumults

    Humoxic

    ropohumults

    Clayey,aolinitic,sohyperthermic

    Waikane 0.10

    O x i s o l s

    Torrox Torrox

    Typic

    Torrox

    Clayey,

    aolinitic,sohyperthermic

    Molokai

    .24

    O x i s o l s

    Ustox

    Eutrustox

    Tropepticutrustox

    clayey,

    aolinitic,

    sohyperthermic Wahiawa

    .17

    V e r t i s o l s U s t e r t s Chromusterts TypicChromusterts

    Veryine,montmorillonitic,sohyperthermic

    Lualualei

    Kawaihae

    .28

    .32

    A r i d i s o l s

    Orthids

    Camborthids Ustollic

    amborthids

    Medial,sohyperthermic

    (Extremelystonyhase)

    I n c e p t i s o l s Andepts

    Dystrandepts

    Hydric

    ystrandepts

    Thixotropic,

    sothermic

    Kukaiau

    .17

    I n c e p t i s o l s

    Andepts Eutrandepts

    Typicutrandepts Medial,sohyperthermic

    Naolehu(Variant) .20

    I n c e p t i s o l s Andepts

    Eutrandepts

    E n t icutrandepts

    Medial,sohyperthermic

    Pakini

    .49

    I n c e p t i s o l s

    Andepts

    Hydrandepts

    Typic

    ydrandepts

    Thixotropic,sohyperthermic

    Hilo

    .10

    I nc ep t iso ls

    Tropepts

    Ustropepts

    Vertic

    stropepts

    Veryine,aolinitic,

    sohyperthermic

    Waipahu

    .20

    SOURCE;l-Swaify

    and'

    Dangler9).

  • 8/11/2019 AH 503 Wichmeier

    16/67

    10

    UNITEDTATESEPARTMENT

    F

    GRICULTURE,

    AG RICULTURE

    ANDBOOK

    U M B E R37

    Soilrodibi l i ty

    Thesoil

    oss

    data

    show

    hatveryfine

    sand

    0 . 0 5 -

    nn )

    s

    omparable

    n

    rodibility

    o

    silt-sized

    ndhat

    mechanical-analysis

    ata

    re

    more

    valuablewhen

    xpressedyannter-

    ernrhatdescribes

    he

    proportions

    n

    which

    and,.silt,

    nd

    lay

    ractions

    re

    combined

    n

    soil.

    When

    mechanical

    analysis

    dataased

    n

    tandard

    S D A

    lassificationre s e dor

    he

    n

    igure3 ,

    he

    percentageof

    very

    fine

    0.1-0.05mm)mustirst

    e

    ransferred

    rom

    sand

    ractionohe

    silt

    raction.The

    mechani-

    a l

    analysis

    data

    re

    hen

    effectivelydescribedy

    article-size

    arameter

    M,

    which

    quals

    percent

    0.1-0.002

    mm)

    imesheuantity00-minus-

    Where

    he

    ilt

    ractiono es

    otx-

    0

    ercent,

    rodibility

    aries

    pproximately

    s

    he

    .1 4

    power

    ofhis

    parameter,

    but

    prediction

    s

    mproved

    ydding

    nformation

    n

    matter

    ontent,

    oiltructure,

    nd

    rofile

    lass .

    F or

    oilscontaining

    es s

    han

    0

    percent

    siltand

    ine

    and,

    he

    omograph

    fig.

    )

    olves

    he

    O O

    K

    =2 .1

    M'-'*

    (10-')

    ( 1 2

    ~a )-f-3 . 2 5 ( b -2 ) +2 . 5 (e -3 )

    (3 )

    M

    =

    the

    article-size

    arameterdefined

    bove,

    a

    =

    percent

    organic

    matter,

    b

    =thesoil-structurecode

    s ed

    nsoilclassifica-

    tion,

    and

    c=the

    rofile-permeability

    lass .

    entersection

    of

    theselect ed

    percent-silt

    andper-

    ines

    omputeshe

    alue f

    M

    n

    he

    orizontal

    cale

    fhe

    omograph.

    laynters

    nto

    he

    omputation

    s

    00

    he

    percentages

    of

    sand

    and

    silt.)

    Theata

    ndicate

    hange

    nhe

    elation

    f

    o

    rodibility

    when

    he

    ilt

    andery

    ine

    sand

    xceeds

    about

    7 0

    percent.

    This

    change

    was

    eflected

    ynflectionsnhe

    ercent-

    urves

    that

    oint

    ut

    a sotee ne-

    y

    umerical

    equation.

    Readers

    who

    would

    ikemore

    etailegarding

    ata

    nd

    elationships

    nderlyingheomo-

    quationmayobtain

    his

    rom

    ournal rti-

    ( 58 ,

    60).

    Nomograph

    o l u t i o n

    With

    appropriate data, enter thecale at

    he

    N o m o g r a p h

    leftnd

    roceed

    o

    ointsepresentinghe

    oil's

    percentand0.10-2.0mm),ercent

    rganicmat-

    ter,tructureode,

    nd

    ermeabilitylass

    s

    l-

    lustrated

    y

    he

    otted

    ine

    nhe

    omograph.

    Th e

    orizontalnd

    ertical

    oves

    must

    e

    made

    in

    he

    isted

    e q u e n c e .

    se

    inear

    nterpolations

    between lottedi nes. he

    structure

    o de

    and

    per-

    meabilitylas s esre

    efinedn

    he

    omograph

    forreference.

    Manyagricultural

    oilshave

    oth

    ine

    granular

    topsoilandmoderatepermeability. orh e s e oi ls,

    Kmaye

    eadrom

    he

    caleabeled'first

    p-

    proximationf ,"ndhe

    ec ond

    lock

    f

    he

    graphsot

    needed.

    orall

    ther

    oi ls,

    owever,

    theroceduremust e

    completedo

    he o il

    erodi-

    bility calenhe

    s e c o n d

    halfofhe

    graph.

    The

    echanicalnalysis,rganic

    atter,

    nd

    structuredata

    are

    thosefor

    the

    topsoil.

    o r

    evalua-

    tion

    of

    Kfor

    desurfacedsubsoilhorizons,

    hey

    per-

    tain

    ohe

    upper

    n

    ofhe

    new o il

    rofile.

    he

    permeabilitylass

    she

    rofileermeability.

    C o a r s e

    ragments

    are

    excludedwhen

    determining

    percentages

    f

    and,

    ilt,

    nd

    lay.

    f

    substantial,

    they

    may

    ave

    ermanent

    mulch

    ffect

    which

    c a n

    evaluated

    rom

    he

    pper

    urve

    f

    he

    chartn

    mulch

    nd

    anopy

    f fectsp .9,

    ig.

    )

    and

    pplied

    o

    he

    umber

    btained

    rom

    he

    nomograph

    solution.

    C o n f i d e n c eimits

    In

    estsagainstmeasured

    K

    values

    anging

    rom

    0.03

    o .69,

    5

    percent

    ofthenomograph

    solutions

    differedromhe

    measured values

    yesshan

    0. 02,

    nd5

    ercent

    f

    hem

    y

    es s

    han

    .04.

    Limitedata

    vailable

    n97 1or

    mechanically

    exposed and subsoil

    .horizonsndicated

    bout

    comparable

    ccuracy

    or

    h e s e

    onditions.ow-

    ever,more

    ecentdataaken

    n

    esurfaced

    gh-

    clay

    ubsoils

    howedhe

    omograph

    olution

    o

    lackhe

    desired

    ensitivity

    o

    differences

    n

    rodi-

    bilitiesf

    h e s eo ilorizons.

    or

    u choilshe

    contentfreeronnd

    luminum

    xides

    anks

    next

    oarticle-sizedistribution s

    anndicator

    of

    erodibility

    37),o m e

    igh-clay

    oils

    orm

    what

    ha s

    e e n

    alled

    rreversible

    ggregates

    n

    he

    surface

    when

    illed.

    hes e

    behave

    ike

    argerri-

    maryparticles.

  • 8/11/2019 AH 503 Wichmeier

    17/67

    PREDICTING

    A I N F A L LROSION

    L O S S E S - A

    U ID EOO N S E R V A T I O N

    PLANNING

    n

    \\\

    w\\\

    > -

    ;-X

    X

    <

    V\^

    \

    V

    S.\\VN

    X -J

    \\

    \

    v

    >

    XNV

    X 5

    \\

    N

    \,

    \\\N

    x\

    \ \

    X

    5

    o

    \

    >"

    ^

    \X'*^ N

    v\

    ( / )

    < \^

    V

    ^ N

    X^ X

    3

    \

    x

    ^

    V

    ^xxx^

    V

    e

    w

    w

    o oo

    :

    \\

    \\ I^XvXI-X

    5.3

    S5

    i

    o

    x\

    XXX

    N

    x^X

    ib

    /''

    /

    UJ

    o

    t

    o

    e x

    ^

    2

    /

    ;

    > ^ < x

    A

    ^ y

    o :

    a

    o

    'Wx

    /

    //

    o

    ///

    'A

    p

    0

    ^

    p

    r

    o

    p

    r

    1

    a

    t

    e

    d

    -

    2

    .

    0

    n

    m

    .

    t

    t

    e

    d

    c

    u

    r

    v

    e

    s

    .

    2

    .

    8

    ,

    s

    t

    r

    u

    e

    h

    i

    ///

    ^

    /

    ^

    \n

    -5

    s

    a

    n

    d

    0

    .

    1

    0

    b

    e

    t

    w

    e

    e

    n

    p

    o

    s

    a

    n

    d

    5

    X

    ,

    C

    M

    /

    -.

    1

    11.

    1

    O O

    O O O

    O

    O o o

    o

    Q

    JUMM-

    C J

    ro

    ^

    lO

    0)

    N

    00

    c>

    o

    QNVS

    a N I d A d B A4

    I

    ISiNaodad

  • 8/11/2019 AH 503 Wichmeier

    18/67

    UNITE D

    TATE S

    E P A R T M E N T

    F

    G R I C U L T U R E ,

    A G R I C U L T U R E

    A N D B O O K

    UMBER37

    T O P O G R A P H I C

    A C T O R

    L S)

    Bothhe

    ength

    nd

    he

    teepness

    f

    he

    and

    substantially

    affect

    he

    ateof

    soilerosion

    by

    hewo

    ffects

    ave

    een

    valuated

    ep-

    n

    esearch

    andare

    epresented

    n

    he

    soil

    loss

    quationy

    nd

    ,espectively.

    nield

    applications,

    owever,

    onsidering

    he

    wos

    single

    opographicactor,

    S,

    s

    more

    onvenient.

    S l o p e - E f f e c thart

    L S

    sheexpectedatio

    of

    soilos sperunit

    area

    ield

    slope

    o

    hat

    rom

    72.6-ft

    ength

    of

    -percent

    slope

    nder

    therwise

    dentical

    his

    atio

    or

    specified

    combinations

    of

    lope

    engthnd

    niform

    radientmay

    e

    irectly

    rom

    he

    lope-effect

    hartfig.

    ) .Enter n

    he

    horizontalaxis

    with

    he

    fieldslope

    move

    vertically

    o

    he

    appropriate

    percent-

    curve,

    ndead

    Sn

    he

    caleat

    he

    eft.

    o r

    xample,he

    Sactor

    or

    00-ft

    ength f

    0-percent

    lope

    s

    .4 .

    h ose

    who

    refer

    able

    s eable

    nd

    nterpolate

    etween

    isted

    Toompute

    oil

    os s

    rom

    l opeshatre

    p-

    onvex,

    oncave,

    romplex,hehart

    S

    valueseedo

    e

    adjusted

    sndicatedn

    he

    S

    a l u e s

    orrregularl o p e s .igure

    able

    ssume

    l opes

    hat

    ave

    ssentially

    radient.

    he

    hart

    nd

    able

    were

    e-

    ived

    by

    the

    equation

    IS=X/72.6) * {65.4] s i n ' 8

    +

    4.56s in 6-j-0.065) (4)

    where

    X

    =

    slope

    lengthin

    feet;

    6 =angleofslope;and

    m=

    0 .5

    f

    he

    percentslopes

    r

    more,

    .4 n

    s l opesof .5

    o

    .5ercent,

    .3

    on

    l opesof

    o

    3

    percent,

    and 0.2 on

    uniform

    gradients

    of

    less

    than

    percent.

    The

    asis

    or

    his

    equations

    given

    n

    hesub-

    sectioniscussinghe

    ndividualffects

    f

    lope

    length

    nd

    teepness.

    owever,

    he

    elationships

    expressed

    byheequation

    were

    derived

    rom

    data

    obtainedn

    ropland,nder

    atural

    ainfall,

    n

    s l opesangingrom

    o

    8

    ercentn

    teepness

    andabout

    0

    to

    0 0ftnength.

    How

    ar

    beyond

    these

    anges

    n

    lopeharacteristics

    he

    elation-

    ships

    erived

    romheataontinueo

    ec c u -

    ratea s

    ot

    e e n

    etermined

    yirect

    oil

    os s

    measurements.

    The a l ouse

    egi on f

    he

    Northwestepresents

    TABLE

    3.

    Values

    of

    the

    topographic

    factor,

    LS,

    forspecificcombinatiorisofslopelength

    and

    steepness^

    Slope

    e n g t h

    ( feet )

    ^ ^ l o ^ r

    ^ ^

    ^

    ^ ^ ^ ^ ^

    ^ ' ' ^ ^

    0 .2 0.060 0.069 0. 07 5 0.080 0.086

    0.092

    0.099 0.105

    .110

    .114

    .121 0.126

    0.5

    73

    .083 .090

    .096

    .104 .110

    .119

    .126

    13 2

    13 714 5

    .152

    0. 8

    86

    .098 ,107 ,113 .123 .130

    .141

    .14915 6

    16 2

    17 1

    .179

    2 33 .163 .185

    .201

    .227 .248 .280 .30532 634 437 6

    .402

    3

    90 .233 .264 .287

    .325

    .354 .400 .437

    466

    49 2

    53 6 .573

    4 .230

    .303

    .357

    .400 .471

    .528

    .62\ .697

    76 2

    82 092 0 1.01

    5

    68

    ,379 ,464 .536 .656 .758 .928 1.07.20

    .31

    .52 1.69

    6

    .336

    .476

    ,583

    .673

    .824

    .952

    1.17

    1.35

    .50

    .65

    .9 0

    2.13

    8 96

    ,701

    .859

    .992 1.21

    1.41

    1.72

    1.98

    ,2 2.4 3

    .81

    3.4

    10

    85 .968 1.19 1.37 1.68 1.94 2.37 2.74

    .0 6

    .36

    .8 7 4.33

    12 0 3 1.28 1.56 1.80 2.21 2.55 3.13 3.61

    .0 4

    .4 2.11 5.71

    14

    1.15

    1.62

    1.99

    2.30

    2.81

    3.25

    3,98

    4.59

    .1 3

    .6 2

    .4 9

    7.26

    16

    1.42 2.01

    2.46

    2.84 3.48

    4.01

    4.92

    5.68.3 5

    .9 5

    .0 3

    8.98

    18

    1.72 2.43 2.97 3.43 4.21 3.86 5.95 6.87

    .6 8.41

    .71

    10.9

    20 2.04 2.88 3.53 4. 08 5.00 5.77

    7.07

    8.16

    .1 20. 01.5 12.9

    ^

    is=

    X/72.6) *

    (65.41

    s i n '

    6-f 4.56in 0-\ -

    0.065)

    where

    X=

    s l o p e

    e n g t h

    n

    f e e t ;

    =0. 2o r

    g r a d i e n t s

    5

    ercent,

    .4

    orercentl o p e s ,nd

    .3or

    3ercentre s s ) ;nd

    =

    numberfqual-lengthegmentsnto

    whichheslopewas

    divided.

    Fouregments

    would

    roduce2,3,0,nd5

    percent,espectively. egmentNo.

    s lways t

    the

    op

    fheslope.

    Slope

    toe

    nfluenced

    y

    nteractions

    withsoil

    properties

    andurfaceonditions,uthenteraction

    ffects

    have

    not

    beenquantified

    y

    esearch

    data.

    Neither

    are

    data

    available

    o

    define

    heimitson

    he

    equa-

    tion's

    applicability.

    Thisquation

    an

    eerivedrom

    he

    ormerly

    publishedquation

    or

    .

    xpressing

    heactors

    a

    unction f

    he

    ine

    f

    he

    angleof

    lopeather

    thanheangent

    s

    moreccurate

    ecause

    ain-

    drop-impact

    orces

    long

    he

    urface

    nd

    unoff

    shear

    tress

    re

    unctions

    fheine. ubstituting

    100

    sin

    or

    percent

    slope,

    which

    s

    00

    an ,does

    not

    ignificantly

    ffect

    he

    nitial

    tatistical

    eriva-

    tionr

    hequation'solutions

    or

    lopes fess

    than

    20ercent.

    utasslopes

    ecome

    steeper,

    he

    differenceetween

    heine

    nd

    he

    angente-

    comes

    ppreciable

    ndrojections

    ar

    eyondhe

    range

    f

    he lotata

    ecome

    moreealistic.

    he

    numeratorwasdividedyhe

    constant

    denomina-

    tor

    for

    simplification.

  • 8/11/2019 AH 503 Wichmeier

    22/67

    16 UN IT EDTATE S

    E P A R T M E N T

    FG R I C U L T U R E ,

    A G R I C U L T U R E

    A N D B O O KUMBER37

    I r regular

    S o i los ssalsoaffectedbytheshapeof slope.

    ield

    l opeseithersteepenoward

    he

    ower

    convex

    slope)

    or

    flatten

    oward

    he

    owerend

    lope) .se

    f

    he

    verage

    radient

    o

    igure

    or

    able

    would

    underestimate

    o il

    tothe

    oot

    of

    a

    convexslope

    and

    would

    t

    orconcave l opes.

    rregular

    l opes

    a n

    suallye ivided

    ntoegmentshatave

    niformradient,uthesegments

    cannot

    e

    valuated

    sndependent

    l opeswhenunoff

    fromone

    segment

    to

    the

    next.

    However,here

    wo

    implifying

    ssumptions

    a n

    eccepted,S

    orrregular

    l opesa ne

    erivedyombininge l ec tedalues

    he

    lope-effecthart

    nd

    able

    5 5 ) .

    he

    re

    hat

    1)he

    hanges

    n

    radient

    ot

    sufficient

    to

    a u s e

    pslope

    deposition,and

    )

    he

    rregularslope a n

    edivided

    nto

    small

    f

    equal-length

    egments

    nu ch

    man-

    r

    hatheradientwithin

    ac h

    egmentor

    practical

    purposes

    c an be

    considered

    uniform.

    After

    ividing

    heonvex,

    oncave,rcomplex

    nto

    qual-lengthegmentssefinedar-

    ier,

    he

    roceduressollows:

    is t

    he

    egment

    n

    herder

    n

    which

    hey

    c c u r

    nhe

    beginning

    at

    he

    upper

    end.

    Enter

    he

    slope-

    chart

    withhe

    otal

    slopeengthand

    ead

    S

    ac h fheistedradients.

    Multiplyh e s ey

    C h a ng e sn

    o ilype

    r

    The

    rocedure

    or

    rregularl opes

    an

    nclude

    fhanges

    no il

    ype

    within lope

    length

    55 ) .

    heroductsofalueselected

    rom

    origure

    and

    able

    o

    evaluate S

    or

    irregular

    l opesremultiplied

    yhe

    espective

    aluesof beforesumming.

    ollustrate,

    s s u m e

    the

    alues

    or

    he

    oils

    n

    he

    hree

    egments

    f

    heconvexslopenhe

    preceding

    example

    were

    . 27, .32 ,

    and

    . 3 7 ,

    espectively.

    he

    average

    L S

    or

    heslope

    would eobtained sollows:

    Slopes

    the

    orrresponding

    actors

    rom

    able nddd

    the

    products

    o

    obtain

    S

    orhe

    entire

    slope. he

    following

    abulation

    llustrates

    herocedureor

    a

    400-ft

    convex

    slope

    n

    which

    heupper

    third a s

    a

    radient

    of

    ercent;

    he

    middle

    hird,

    0

    er-

    cent ;

    and

    he

    ower

    hird,5

    percent:

    Segmenf

    Percent lope Table

    Table

    Product

    1 5

    1.07 0.19

    0.203

    2

    10

    2.74

    .35

    .959

    3

    15

    5.12

    .46

    L S

    2.355

    =3.517

    F or

    he

    concave

    slope

    of

    he

    a m e

    ength,with

    thesegment

    gradients

    n

    everseorder,hevalues

    inhe

    hirdolumn

    wouldeistedneverse

    or-

    der.

    he

    products

    would

    hen

    e

    . 9 7 3 ,

    .959,and

    0.492,

    giving

    u m

    of2,42or S .

    Resear ch

    a s

    ot

    defined

    ust

    ow u c h

    radi-

    ent

    changesneeded

    nder

    various

    conditionsor

    deposition

    f

    soilarticles

    f

    various

    izes

    o

    e -

    gin,

    ut

    depositional

    areas

    a ne

    determined

    y

    observation.

    henhe

    lope

    reaks

    re

    harp

    enough

    o

    a u s e

    deposition,herocedure a ne

    u s e d

    oestimate

    S

    or

    slope

    segments

    aboveand

    below

    he

    epositional

    rea.

    owever,t

    willot

    predict

    he

    otal

    ediment

    oved

    rom

    u ch

    n

    interruptedlopee c a u s e

    t

    oe sot

    redict

    he

    amountofdeposition.

    C o v e rA l o n ghe

    Slope

    Withinimits,

    he

    rocedure

    ane

    urther

    x-

    tendedoaccount

    or

    hanges

    n

    overalonghe

    slopeength

    ydding

    olumnf

    egment

    values.However,

    t

    s

    notapplicableorsituations

    where

    ractice

    hange long

    he

    lopea u s e s

    deposition. orexample,

    grass

    bufferstrip

    cr oss

    the

    oot

    of

    slope

    n

    which

    ubstantial

    erosion

    s

    occurring

    nduces

    eposition.he

    mount

    f

    his

    deposition

    s unction

    f

    ransport

    elationships

    (JO)

    andannot

    e

    predictedytheSLE.

    Segment

    No .

    Table

    3

    Table

    4

    K

    Product

    1

    1.07

    0.19 0.27

    0.055

    2 2.74

    .35 .32

    .307

    3

    5.12

    .46

    .37

    KLS

    .871

    =

    1.233

  • 8/11/2019 AH 503 Wichmeier

    23/67

    PREDICTING

    R A I N F A L L

    R O S I O N L O S S E S - AGUIDE

    O

    O N S E R V A T I O N PLANNING

    17

    Equation

    o r

    Soil

    D e t a c h m e n t

    o n

    This

    rocedure

    s

    ounded

    nn

    quation

    7 2 )

    a n

    e

    applied

    also

    when

    heslope

    segments

    eot

    of

    qual

    ength.

    o n c e p t s

    nderlying

    his

    includethefollowing:

    Sediment

    oad

    t

    ocation

    n

    lope

    so n -

    ither

    by

    he

    ransport

    capacity

    of

    he

    un-

    ndainfall

    r

    y

    he

    mount

    f

    etached

    aterial

    vailableor

    ransport.

    henhe

    of

    detachedmaterial

    xceedshe

    ransport

    deposition

    c c ursandhe

    sediment

    oad

    etermined

    rimarily

    y

    he

    ransport

    apacity

    heunoff

    at

    hatocation.

    Where

    pslope

    de-

    Successive

    S e g m e n t s

    o f

    Slope

    tachment

    a s

    ot

    qualed

    he

    ransport

    apacity,

    sedimentoad

    t

    iven

    ocation

    s unctionof

    erosion

    characteristics

    of

    heupslopeareaand

    a n

    be

    omputed

    yheSLE.

    o il

    os srom iven

    segment

    of

    heslope a nhen e

    computed s

    he

    difference

    between

    he

    sediment

    oads

    at

    the

    ower

    and

    upper

    ends

    of

    thesegment.

    Fosterand

    Wischmeier

    1 2)

    resent

    rocedure

    forusinghisequationoevaluate Sorrregular

    s lopesandoaccountforhe f fects

    of

    he o il

    r

    coverage

    hanges

    long

    lope,oongs

    he

    changesdonot a u s edepositiono c c u r .

    COVERND

    MANAGEMENT

    A C T O RC)

    Coverand

    management

    f fects

    ca