Agenda

62
February 1, 2005 HYPERION ERAU 1 Thermal Analysis of a Radiation Shield for Antimatter Rocketry Concepts Jon Webb Embry Riddle Aeronautical University

description

Thermal Analysis of a Radiation Shield for Antimatter Rocketry Concepts Jon Webb Embry Riddle Aeronautical University. Agenda. Why Hyperion Rocket Principles Why antimatter Velocity Profile and Fundamentals Thermal Considerations. Why fly so fast in space?. Space flight takes to long!. - PowerPoint PPT Presentation

Transcript of Agenda

Page 1: Agenda

February 1, 2005 HYPERIONERAU

1

Thermal Analysis of a Radiation Shield for Antimatter Rocketry Concepts

Jon Webb

Embry Riddle Aeronautical University

Page 2: Agenda

February 1, 2005 HYPERIONERAU

2

Agenda

• Why Hyperion

• Rocket Principles

• Why antimatter

• Velocity Profile and Fundamentals

• Thermal Considerations

Page 3: Agenda

February 1, 2005 HYPERIONERAU

3

Why fly so fast in space?

Space flight takes to long!

Page 4: Agenda

February 1, 2005 HYPERIONERAU

4

Microgravity Environment

Skeletal and Muscular atrophycan make it impossible toreturn to the surface of Earth!

Page 5: Agenda

February 1, 2005 HYPERIONERAU

5

Cosmic Radiation

Radiation in space is lethal!!

Page 6: Agenda

February 1, 2005 HYPERIONERAU

6

Rocket Principles

• Specific Impulse is the fuel efficiency of a rocket engine

• As fuel energy density increases so does Specific Impulse and delta V

• The equation for Specific Impulse is:

g

cI sp

Page 7: Agenda

February 1, 2005 HYPERIONERAU

7

Rocket Principles

• Thrust is a force

• Thrust is the time rate change of propellant momentum

• Momentum is the mass of fuel ejected multiplied by the exhaust velocity

Page 8: Agenda

February 1, 2005 HYPERIONERAU

8

Chemical Rocketry

• LO/LH2

Page 9: Agenda

February 1, 2005 HYPERIONERAU

9

Fuel Energy Density

Fuels Energy Release J/kg Converted Mass Fraction

Chemical

LO/LH 1.35 x 107 1.25 x 10-10

Atomic Hydrogen 2.18 x 108 2.40 x 10-9

Metastable Helium 4.77 x 108 5.30 x 10-9

Nuclear Fission238U 8.20 x 1013 9.10 x 10-4

Nuclear Fusion

DT (0.4/0.6) 3.38 x 1014 3.75 x 10-3

CAT-DT (1.0) 3.45 x 1014 3.84 x 10-3

D3He (0.4/0.6) 3.52 x 1014 8.90 x 10-3

pB11 (0.1/0.9) 7.32 x 1013 8.10 x 10-4

Matter-Antimatter 9.00 x 1016 1

Page 10: Agenda

February 1, 2005 HYPERIONERAU

10

What is antimatter (positrons)

• Produces photons isotropically• Produces photons back to back• 0.511 MeV per photon

Page 11: Agenda

February 1, 2005 HYPERIONERAU

11

How do we propel a S/C

Page 12: Agenda

February 1, 2005 HYPERIONERAU

12

Shield Design (Rad. Lengths)

Absorbed Energy Vs. Radiation Lengths

0

20

40

60

80

100

120

0 1 2 3 4 5

Radiation Lengths (#)

Ab

sorb

ed E

ner

gy

(% o

f in

cid

ent

ener

gy)

Series1

Page 13: Agenda

February 1, 2005 HYPERIONERAU

13

Shield Design

• Made of Tungsten

• Melting point of 3600 K

• Density of 19.3 gm/cm3

• Radiation length is 0.35 cm

• 5 radiation lengths thick

• Roughly 1.75 cm thick

Page 14: Agenda

February 1, 2005 HYPERIONERAU

14

Shield Design (Dimension)

Shield Area Vs. Shield Radius

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600

Shield Area (m^2)

Shi

eld

Rad

ius

(m)

Series1

Page 15: Agenda

February 1, 2005 HYPERIONERAU

15

Shield Design (Mass)

Shield Mass Vs. Inner Area (5 rad lengths)

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

Shield Area (m^2)

Sh

ield

Mas

s (M

t)

Series1

Page 16: Agenda

February 1, 2005 HYPERIONERAU

16

Momentum Attenuation

• Compton Scattering• Brehmstralling• Photo-electric Effect- photons/electrons ejected at

random angles- Might reduce

momentum/cosine average

• Monte-Carlo analysis is being developed to research effects

electron

Atom

Page 17: Agenda

February 1, 2005 HYPERIONERAU

17

Thermal Problem

• Energy is lost as heat in the tungsten shield

• We must find a way to dissipate the heat in order to augment the thrust

• We must find a way to regain the energy lost from the heat to augment efficiency (Isp)

Page 18: Agenda

February 1, 2005 HYPERIONERAU

18

Shield Thermal Loading

Shield Inner Area Vs. Thermal Loading (Constant 3300 K)

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

Shield Area (m^2)

Th

erm

al E

ner

gy

(GJ)

Series1

Page 19: Agenda

February 1, 2005 HYPERIONERAU

19

Radiative Cooling

• For highest Isp we must find the steady state condition where blackbody radiation equals input energy.

• This will severely limit the thrust

Eradiated

E thermal , P thrust

Page 20: Agenda

February 1, 2005 HYPERIONERAU

20

Radiative Cooling

• View Factors must be examined

• The extreme limits of the pi/2 to –pi/2 shield may re-radiate energy into the other side of the shield.

Page 21: Agenda

February 1, 2005 HYPERIONERAU

21

Radiative Cooling

• We may want to consider making the shield flat and very large, or decrease the angular limits of the shield.

• Annihilate e+ inside shield

Page 22: Agenda

February 1, 2005 HYPERIONERAU

22

Radiative Cooling

22

2cos

DR

R

D

AP

R

R

22

1sinDR

R

All Values in Radians

minmax sinsincos

max

min

cos1

cos

d

22

2cos

DR

R

Page 23: Agenda

February 1, 2005 HYPERIONERAU

23

Radiative Cooling

Shield Radius Vs. Cosine Average (Large Shield)

0.6368

0.63682

0.63684

0.63686

0.63688

0.6369

0.63692

0.63694

0.63696

0 2 4 6 8 10 12

Shield Radius (m)

Co

sin

e A

vera

ge

Series1

Page 24: Agenda

February 1, 2005 HYPERIONERAU

24

Radiative Cooling

Shield Radius Vs. Cosine Average (Small Shield)

0.585

0.59

0.595

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0 0.2 0.4 0.6 0.8 1 1.2

Shield Radius (m)

Co

sin

e A

vera

ge

Series1

Page 25: Agenda

February 1, 2005 HYPERIONERAU

25

Radiative Cooling

Flat Shield Radius Vs. Mass

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Shield Radius (m)

Sh

ield

Mas

s (M

t)

Series1

Page 26: Agenda

February 1, 2005 HYPERIONERAU

26

Radiative Cooling

1. 7.

2.

3. 8.

4.

5.

6.

4TAq 2mcq

42 TAmc 42 TAcm

42

2TA

cm

2

42

c

TAm

cmF 2

cos

c

TAF

4cos

Page 27: Agenda

February 1, 2005 HYPERIONERAU

27

Radiative CoolingRadiated Power Vs. Shield Inner Area

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Shield Inner Area (m^2)

Rad

iate

d P

ower

(M

W)

Series1

Page 28: Agenda

February 1, 2005 HYPERIONERAU

28

Radiative Thrust

Shield Inner Area Vs. Thrust (Radiative Cooling)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

Shield Area (m^2)

Th

rust

(N

)

Series1

Page 29: Agenda

February 1, 2005 HYPERIONERAU

29

Convective Cooling

• Use liquid Hydrogen or Ammonia to absorb excess heat

• Allow fluid to expand across the shield to produce thrust with a decreased Isp

Page 30: Agenda

February 1, 2005 HYPERIONERAU

30

Convective Cooling

LH2 Properties

- Cp = 10,000 J/ (kg.K)- h = 210 W/(m2.K)- TLH2 = 16 K- Tshld = 3300 K

Page 31: Agenda

February 1, 2005 HYPERIONERAU

31

Convective Power Transfer

1. 2. 2LHshield TThAQ 2

689640m

WxAQ

Energy Transfer Rate to LH2 Vs. Shield Inner Area

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Shield Inner Area (m^2)

Po

wer

(M

W)

Power

Page 32: Agenda

February 1, 2005 HYPERIONERAU

32

LH2 Mass Flow Rate

3.

4.

5.

22

LHshieldpLH TTC

Qm

pLH C

hAm 2

s

kgxAmLH 021.02

Page 33: Agenda

February 1, 2005 HYPERIONERAU

33

LH2 Mass Flow Rate

Mass Flow Rate Vs. Shield Inner Area

0

2

4

6

8

10

12

0 100 200 300 400 500 600

Shield Inner Area (m^2)

Mas

s F

low

Rat

e (k

g/s

)

Mass Flow Rate

Page 34: Agenda

February 1, 2005 HYPERIONERAU

34

Convective Thrust from LH2

6.

7.

9.

10.

222 HHH VxmF

22

2

LHH m

EV

22 2 LHshieldpH TTCV

s

mVH 32.81042

22 2 Hshieldpp

H TTCC

AhF

Page 35: Agenda

February 1, 2005 HYPERIONERAU

35

Convective Thrust from LH2

Thrust due to expanding Hydrogen Vs. Shield Area

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Shield Area m^2

Th

rust

(kN

)

Thrust

Page 36: Agenda

February 1, 2005 HYPERIONERAU

36

Shield Thrust to Weight Ratio

Acceleration Vs. Shield Area

0.48

0.485

0.49

0.495

0.5

0.505

0 200 400 600 800 1000 1200

Shield Area (m^2)

Acc

eler

atio

n (

m/s

^2)

Series1

Page 37: Agenda

February 1, 2005 HYPERIONERAU

37

Convective Specific Impulse

11.

12.

13.

14.

222

cosHshieldp

peeT TTC

C

AhcmF

gm

FI

LHspH

22

g

TTCI

Hshieldp

spH

222

sIHsp

8262 gmm

FFI

eeLH

eeHsp

2

2

Page 38: Agenda

February 1, 2005 HYPERIONERAU

38

Specific Impulse vs. Shield Temp.

Specific Impulse vs. Shield Temperature

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000

Shield Temperature (K)

Sp

ecif

ic I

mp

uls

e (s

)

Series1

Page 39: Agenda

February 1, 2005 HYPERIONERAU

39

Thrust Augmentation

• Shield Mass: 170 Mt• 10 Shields• Shield Area: 10,000m2

• Thrust: 1.70 MN• Isp: 826 seconds

5 rad. lengths

10 sub-shields

Page 40: Agenda

February 1, 2005 HYPERIONERAU

40

Convective Case Study 1

• MS/C = 40 Mt

• F = 1.70 MN• A = 10,000 m2

• P = 6,896 MW

• Msh = 170 Mt

• Md = 210 Mt

• Mdote+ = 7.662 x 10-8 kg/s

• MdotH2 = 210 kg/s

Page 41: Agenda

February 1, 2005 HYPERIONERAU

41

Convective Case Study 1

Initial Mass in Low Earth Orbit/Hydrogen Propellant Mass Vs. dV (400 Mt Payload)

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Change in Velocity (km/s)

IML

EO

/Hyd

rog

en M

ass

(Mt)

IMLEO

Liquid Hydrogen Mass

f

isp M

MgIV ln

Page 42: Agenda

February 1, 2005 HYPERIONERAU

42

Convective Case Study 1

Positron Mass Vs. Burnout Velocity

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

Change in Velocity (km/s)

Po

sitr

on

Mas

s (m

icro

-gra

ms)

Series1

Page 43: Agenda

February 1, 2005 HYPERIONERAU

43

Convective Case Study 2

• MS/C = 40 Mt

• F = 261.9 kN• A = 1130.4 m2

• P = 780 MW

• Msh = 19.2 Mt

• Md = 66.113 Mt

• Mdote+ = 4.33 x 10-9 kg/s

• MdotH2 = 23.7 kg/s

Page 44: Agenda

February 1, 2005 HYPERIONERAU

44

Convective Case Study 2

Initial Mass in Low Earth Orbit/H2 Propellant Mass Vs. dV (400 Mt Payload)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25

Change in Velocity (km/s)

IML

EO

/H2

Mas

s (M

t)

IMLEO

H2 Mass

f

isp M

MgIV ln

Page 45: Agenda

February 1, 2005 HYPERIONERAU

45

Convective Case Study 2

Mass of Positrons Vs. dV

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Change in Velocity (km/s)

Mas

s o

f P

osi

tro

ns

(mic

ro-g

ram

s)

e+ mass

Page 46: Agenda

February 1, 2005 HYPERIONERAU

46

Convective Case Study

Burn Time Vs. Burnout Velocity

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

Change in Velocity (km/s)

Bu

rn T

ime

(min

ute

s)

Series1

Page 47: Agenda

February 1, 2005 HYPERIONERAU

47

Further Convective Work

• Combine case studies into 3-D graphs (dV vs. IMLEO/H2/e+ mass vs. shield mass/radius/area)

• Research energy/heat deposition as a function of thickness plus H2 gaps

• Increase SA without increasing mass

Page 48: Agenda

February 1, 2005 HYPERIONERAU

48

Electrical Power Production

• Another option is to use a working fluid that can be expanded through a turbine to produce electricity

• This would allow for low thrust missions and provide the spacecraft with electricity for its subcomponents

Page 49: Agenda

February 1, 2005 HYPERIONERAU

49

Tri-Modal Operation

• Lastly the engine could be cooled with LH2 when large thrust is needed and operate in a radiative mode to slowly accelerate S/C in interplanetary space.

• When the engine is in a radiative mode, electricity can be produced

Page 50: Agenda

February 1, 2005 HYPERIONERAU

50

Concluding Remarks

• Antimatter offers extraordinary propulsion capabilities

• Unfortunately thermal challenges are quite daunting

• Production and storage are a whole different challenge

Page 51: Agenda

February 1, 2005 HYPERIONERAU

51

Concluding Remarks

• Advantages warrant serious look

• Possible high Isp uses as a thermal rocket by increasing the shield surface area

• Best method is to use the reflecting shield

Page 52: Agenda

February 1, 2005 HYPERIONERAU

52

Questions or Comments

• ????

Page 53: Agenda

February 1, 2005 HYPERIONERAU

53

Backup Slides

Page 54: Agenda

February 1, 2005 HYPERIONERAU

54

Propulsion Systems

Goal is to obtain highest Isp

Page 55: Agenda

February 1, 2005 HYPERIONERAU

55

Antiprotons

• Statistically complicated• Produces massive particles

Page 56: Agenda

February 1, 2005 HYPERIONERAU

56

Flight TimesMinumum Rendezvous Times Vs. Isp for a 5000 kg Spacecraft (dm/dt = 50 mg/s)

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

Isp (thousand seconds)

Tra

nsfe

r T

ime (

weeks)

0 0.002 0.004 0.006 0.008 0.01 0.012

<cos(theta)>

Mercury

Venus

Mars

Jupiter

Series5

Page 57: Agenda

February 1, 2005 HYPERIONERAU

57

Flight TimesMinimum Rendezvous Time Vs. Isp for a Spacecraft of 5000 kg (dm/dt = 50 mg/s)

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180

Isp (thousand seconds)

Tra

nsfe

r T

ime (

mo

nth

s)

0 0.002 0.004 0.006 0.008 0.01 0.012

<cos(theta)>

Saturn

Uranus

Neptune

Pluto

Series5

Page 58: Agenda

February 1, 2005 HYPERIONERAU

58

Flight TimesMinimum Rendezvous Times Vs. Isp for a Spacecraft of 50 mT (dm/dt = 50 mg/s)

0

50

100

150

200

250

0 5 10 15 20 25 30 35

Isp (million seconds)

Tra

nsfe

r T

ime (

days)

0 0.5 1 1.5 2 2.5

<cos(theta)>

Mercury

Venus

Mars

Jupiter

Series5

Page 59: Agenda

February 1, 2005 HYPERIONERAU

59

Flight TimesMinimum Rendezvous Time Vs. Isp for a Spacecraft of 50 mT (dm/dt = 50 mg/s)

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

Isp (million seconds)

Tra

nsfe

r T

ime (

days)

0 0.5 1 1.5 2 2.5

<cos(theta)>

Saturn

Uranus

Neptune

Pluto

Series5

Page 60: Agenda

February 1, 2005 HYPERIONERAU

60

Lunar Flight TimesLunar Rendezvous Time and Propellant Mass Vs. <cos (theta)>for a spacecraft of 10 mT

dm/dt = 50 mg/s

0

10

20

30

40

50

60

0 0.002 0.004 0.006 0.008 0.01 0.012

<cos(theta)>

Tra

nsfe

r T

ime (

days)

0

50

100

150

200

250

Pro

pellan

t M

ass (

kg

)

Moon Trip Time

Propellant Mass

Page 61: Agenda

February 1, 2005 HYPERIONERAU

61

Lunar Flight TimesLunar Rendezvous Time Vs. <cos(theta)> and Propellant Mass for a 10 mT spacecraft, dm/dt

= 50 mg/s

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5

<cos(theta)>

Tra

nsfe

r T

ime (

ho

urs

)

0

2

4

6

8

10

12

14

16

18

Pro

pellan

t M

ass (

kg

)

Lunar Trp Time

Propellant Mass

Page 62: Agenda

February 1, 2005 HYPERIONERAU

62

Interstellar Flight Times

Mrocket Mprop Velocity Tt (years) To (years)400 Mt 53.9 Mt 0.10 c 45.7 45.5400 Mt 170 Mt 0.50 c 9.59 8.41400 Mt 360 Mt 0.98 c 5.12 1.65