AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang...

22
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley) A. Vishwanath (Berkeley) Collaborator s Fa Wang et al, PRL 102, 047005 (2009) Fa Wang, Hui Zhai & DHL, EPL 85, 37005 (2009) Hui Zhai, Fa Wang & DHL, Phy. Rev. B (in press) Fa Wang Hui Zhai
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    218
  • download

    3

Transcript of AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang...

Page 1: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates

Fa Wang (Berkeley)Hui Zhai (Berkeley)Ying Ran (Berkeley)A. Vishwanath (Berkeley)

Collaborators

Fa Wang et al, PRL 102, 047005 (2009) Fa Wang, Hui Zhai & DHL, EPL 85, 37005 (2009)Hui Zhai, Fa Wang & DHL, Phy. Rev. B (in press)

Fa Wang Hui Zhai

Page 2: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

• Heavy fermion compounds, e.g., CeCoIn5, CeRhIn5, YbPd2Sn, CePd2Si2, CeIn3

Mathur et al, Nature, 394, 39 (‘98)

Systems with superconductivity near antiferromagnetic order

• Organic Compounds, e.g., -(BETS)2FeBr4, -(BEDT-TTF)2Cu[N(CN)2]Br

BEDNORZ, MULLER, Z. PHYSIK B-COND MAT  64   189 (86).  M.K. WU et al PHYS. REV. LETT. 58  908 (87). 

Page 3: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

The Question

Does the AFM correlation have anything to do with the pairing mechanism in these materials?

Let’s focus on the iron pnictides and the cuprates.

Page 4: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Method: Functional Renormalization Group (FRG)

There is a lack of an ideal `ab initio' method for (strongly) correlated systems.

• FRG: Unbiased, applicable to infinite system, but lacks a small parameter (such as the in 4-) to justify it rigorously.

• Exact diagonalization, Quantum Monte-Carlo,DMFT, Mean-field, Variational method, LDA, each has its own limitation.

Page 5: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Results for the (overdoped) Cuprates

Approach from the overdoped side

Page 6: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

k1 k3

k2 k4

Page 7: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Page 8: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Pairing mechanism

Dual scattering processes !

A

B

Page 9: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

AFM driven correlations

Note that SDW correlation grow over a very wide energy scale. It is not due to nesting.

Page 10: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

FRG results for the iron pnictides

Recent FRG resultsC. Platt, C. Honerkamp, W. Hanke, arXiv: 0903.1963

Page 11: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

FeAs trilayer

Page 12: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

k1 k3

k2 k4

k1+k2=k3+k4

2 x 106 scattering vortices have to be re-evalueated at each step of RG

Page 13: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

• Order parameter has opposite sign on electron and hole FS.• The gap function has large variations.• Large variation of the order parameter around some FS.

I. I. Mazin, et al. PRL 101, 057003 (2008) (LDA)K. Kuroki et al PRL 101, 087004 (2008). (LDA)Z.J. Yao et al, New J. Phys. 11, 025009 (2009) (FLEX)K. Seo et al, PRL 101, 206404 (2008). (Exchange model)

Page 14: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Gap variation

• The degree of gap anisotropy depends on microscopic parameters.• It originates from the orbital dependence of pairing.• It should be considered when fitting NMR and heat transport measurements.

Page 15: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Subleading pairing channels

Page 16: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

SDW and orbital current order

Page 17: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Two types of Pomeranchuk instability

•This is a band version of “orbital ordering”. •Expect this type of distortion to couple strongly with AFM.• Give rise to Lattice distortion.• Brings in magnetic anisotropy in the AFM ordered state.

Page 18: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Pairing Mechanism

Dual scattering processes !

A

B

Page 19: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

AFM driven correlations

SC

AFM

Current order

PI

AF correlation grow over a very wide energy range hence it is notdue to nesting. However whether the AFM will be surpassed by SC does depend on how well the FS are nested.

Page 20: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Gap function

Pnictide Ladder RG results

Page 21: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Conclusion

Page 22: AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)

Thank You !