Advanced Nano-Composite Lithium-Metal-Oxide Electrodes for High Energy Lithium-Ion ...€¦ ·  ·...

23
Advanced Nano-Composite Lithium-Metal-Oxide Electrodes for High Energy Lithium-Ion Batteries Sun–Ho Kang Chemical Sciences and Engineering Division Argonne National Laboratory, Argonne, IL 60439 The 7 th US-Korea Forum on Nanotechnology: Nanomaterials and Systems for Nano Energy Seoul, Korea, April 5-6, 2010

Transcript of Advanced Nano-Composite Lithium-Metal-Oxide Electrodes for High Energy Lithium-Ion ...€¦ ·  ·...

Advanced Nano-Composite Lithium-Metal-Oxide Electrodes for High Energy Lithium-Ion Batteries

Sun–Ho Kang

Chemical Sciences and Engineering Division

Argonne National Laboratory, Argonne, IL 60439

The 7th US-Korea Forum on Nanotechnology: Nanomaterials and Systems for Nano EnergySeoul, Korea, April 5-6, 2010

Diverse Applications of Li-ion Batteries

e g SoCalEdison A123e.g.,SoCalEdison-A12332 MWh LIB

Li i B tt iConsumer Electronics

Hearing devices

Neuro-stimulator

Pacemaker

Military Applications

Li-ion Batteries as power sources

Insulin pump

Bone growth stimulatorSmart Grid

(Utility-scale energy storage)

Medical Devices

Beagle 2

Spaceships and SatellitesTransportation

Miscellaneous(power tools, backup power, etc.)

e.g.,HEV, PHEV, EV, E-Bike

Why Li-ion Batteries?/l

)

400

350aller

/l)

400

350aller Secondary batteries sales (US)

Den

sity

(W

h/

300

250

sma Lithium Batteries

(LIB, LPB…)

Den

sity

(W

h/

300

250

sma Lithium Batteries

(LIB, LPB…)

ric

Ener

gy D

200

150

Ni-MH

Ni Znric

Ener

gy D

200

150

Ni-MH

Ni Zn

Vol

umet

100

50 lighter

Ni-ZnNi-Cd

Lead-AcidVol

umet

100

50 lighter

Ni-ZnNi-Cd

Lead-Acid

0 40 80 120 160 200Gravimetric Energy Density (Wh/kg)

00 40 80 120 160 200

Gravimetric Energy Density (Wh/kg)

0

Li‐ion battery is the battery chemistry of choice for future generations of energy storage systems for portable electronics, power tools, and electric vehicles. LIBstorage systems for portable electronics, power tools, and electric vehicles. LIB is also one of the candidates for utility‐scale electric energy storage systems.

LIB as Energy/Power Source for Transportation

Plug‐in Hybrid Electric Vehicles (PHEV)

A h b id hi l i h b i h b h d b i– A hybrid vehicle with batteries that can be recharged by connecting a plug to an electric power source (or by ICE, if necessary): all electric range of 10+ miles (current target: 40+ miles)  g ( g )

– Impact on Energy, Economy, and Environmental Issues

• About half the gasoline consumed in the U.S. is consumed in the first 20 miles of daily travel of an automobile.

• Therefore, PHEV can significantly reduce foreign oil dependence as well as toxic and greenhouse gas emission

• President Obama’s speech to congress (24 Feb 2009): “We know the country that harnesses the power of clean, renewable energy will lead the 21st century. … New plug‐in hybrids roll off our assembly lines, but they will run on batteries made in Korea.”

• Significant, nation‐wide investment is being made by US (federal and state) government and commercial sectors for R&D activity as well as for establishing manufacturing industry (job creation)

DOE Targets for Energy Storage Systems for HEVs, PHEVs, and EVsand EVs

DOE Energy Storage Goals HEV(2010) PHEV(2015) EV(2020)

hCharacteristics Unit

Equivalent Electric Range  miles N/A 10‐40 200‐300

Discharge Pulse Power  kW 25‐40 for 10 sec 38‐50 80

l ( d ) kRegen Pulse Power (10 seconds) kW 20‐25 25‐30 40

Recharge Rate kW N/A 1.4‐2.8 5‐10

Cold Cranking Power @ ‐30 ºC (2 seconds) kW 5‐7 7 N/A

Available Energy kWh 0.3‐0.5 3.5‐11.6 30‐40Available Energy kWh 0.3 0.5 3.5 11.6 30 40

Calendar Life Year 15 10+ 10

Cycle Life Cycles 300k, shallow  3,000‐5,000, deep discharge 

750, deep discharge

Maximum System Weight kg 40‐60 60‐120 300

Maximum System Volume l 32‐45 40‐80 133

Operating Temperature Range ºC ‐30 to 52 ‐30 to 52 ‐40 to 85

Selling Price @ 100k units/year $ 500‐800 1 700‐3 400 4 000Selling Price @ 100k units/year $ 500 800 1,700 3,400 4,000

No commercially available chemistries (cathode, anode, electrolyte, etc.) meet the DOE targets for PHEVs and EVs with 40+ electric rangetargets for PHEVs and EVs with 40+ electric range.

- Key issues: Energy, Life, Safety, and Cost

ApproachMulti‐institution team assembled to design synthesize characterize and modelMulti institution team assembled to design, synthesize, characterize, and model oxide structures for next‐generation electrode materials 

Vehicle TechnologyVehicle Technology

DOE

Materials design and synthesisand synthesis

(CSE, Argonne)Electrochemistry(CSE, Argonne)

Structure Models(CSE, Argonne)

X-ray Absorption Spectroscopy

(APS, Argonne)

Electron Microscopy

(UIUC)Solid-State NMR

(Stony Brook)( , g )(Brookhaven)

( )(MIT)

What happens in a Li-ion cell?charge e-

charger

C

dischargee-

LiCoO2 Graphite

olle

ctor

Cu curr

Ch i Discharging

rent

corent col

electrolyte

Charging

Li Li+ + e-

Requires Energy

Discharging

Li+ + e- Li

Supplies Energy

Al c

urr llector

(+) (-)separator

Process reversibilityshould be ~100% for good cycle life

Active material in cathode is the source of lithium ions

LiMPO4(M=Fe, Ni, Co)

LiMn2O4LiMO2(M=Ni, Co, Mn, Li)

1D 2D 3D1D 2D 3D

Pros:Pros:Pros:• Fast Li motion through 3D

Li channel

• Low cost (Mn-based)

Cons:

• High theoretical capacity (~280 mAh/g)

Cons:St t l d t bili ti t

• Excellent safety

• Cost advantage (Fe)

Cons:Cons:

• Low theoretical capacity ( ~150 mAh/g)

• Capacity fading (Mn

• Structural destabilization at high SOC

• Highly oxidizing/unstable Ni4+ and Co4+  poor thermal safety

• Poor conductivity

• Low theoretical capacity (~170 mAh/g)

y g (dissolution, Jahn-Teller distortion)

thermal safety

Limitations of layered lithium metal oxides

LiMO2 (M=Ni,Co,Mn) Li(Li1/3Mn2/3)O2 (≡Li2MnO3)

TM plane TM plane

Similar structure to LiMO2

• One-third of M is replaced with Li

St d i b t Li+ d M 4+

For last two decades, layered LiMO2 (mostly LiCoO2) has been the positive electrode chemistry of choice for the LIBs for portable • Strong ordering between Li+ and Mn4+

Electrochemistry

• at <4.4 V vs. Li+/Li, Li2MnO3 is l t h i ll i ti

y pelectronics.

Limitations

Hi h t f C d Ni electrochemically inactive

• At >4.4 V vs. Li+/Li, lithium can be extracted together with oxygen:

Li2Mn4+O3 → Li2O + Mn4+O2 (460 mAh/g)

• High cost of Co and Ni

• Low practical conductivity (~150 mAh/g vs. ~280 theoretical capacity of LiCoO2) due to the structural instability at low Li content (Li/M<0.5)

Li2Mn O3 → Li2O + Mn O2 (460 mAh/g)

• However, the activated electrode tends to convert to spinel with cycling (same issue as LiMnO2)

• Conversion to spinel during cycling (LiMnO2)

• Highly unstable and oxidizing Ni4+ and Co4+ at charged state: thermal safety issues

Not a good electrode material for high energy Li-ion batteries with longevity!

Not a good electrode material for high energy Li-ion batteries with intrinsic thermal safety!

Nano-composite among Li2MnO3, LiMO2, and LiM’2O4

A unique approach of integrating lithium metal oxides with structural compatibility in nano‐composite structures:

(1) ‘layered‐layered’ electrodes with layered Li2MnO3 and LiMO2 components(1) layered layered  electrodes with layered Li2MnO3 and LiMO2 components

(2) ‘layered‐layered‐spinel’ electrodes comprised of layered Li2MnO3, layered LiMO2 and spinel LiM’2O4

components. 

MotivationMotivation

– Enhancing structural stability: integration of Li2MnO3 as a structural stabilizing agent in LiMO2 matrix to prevent structure collapse of the layered structure at low Li content

– Increasing capacity: activation of Li2MnO3 at high voltagesIncreasing capacity: activation of Li2MnO3 at high voltages

An example of layered-layered nano-composite structure

LiMO2 region Li2MnO3 region

Li2MnO3 regionLiMO2 region

Structural compatibility of Li2MnO3 and LiMO2: Li1.2Ni0.2Mn0.6O2

3)

XRD pattern Electron diffraction

ary

unit) (0

03

(104

)

m

ty (a

rbitr

a

01)

) 8) 10)

020)

C2/

m10

) C2/

m1)

C2/

m

Inte

nsi

(10

(006

)(0

12)

(015

)

(107

)(0

18 (11

(113

)

(0 (1(1

1-

Li2MnO3

10 20 30 40 50 60 70 80

Mostly LiMO2-like (rhombohedral, R-3m) feature with Li2MnO3-like (monoclinic, C2/m) characters (cation ordering peaks and diffuse streaks))Li1.2Ni0.2Mn0.6O2 ≡ 0.5Li2MnO3•0.5LiNi0.5Mn0.5O2

Structural compatibility of Li2MnO3, LiMO2, and LiM’2O4: Li Ni Mn O (y~1 88)

X-ray diffraction patterns

Li0.96Ni0.2Mn0.6Oy (y~1.88)un

it)

h

Li0.96Ni0.2Mn06OyLiMO2

(layered)+

arbi

trary

h h

hcalcined at 900 °C

S SS S

co+

Li2MnO3(layered with cation

ensi

ty (a 800 °C

700 °C

(layered with cation ordering)

+

10 20 30 40 50 60 70 80

Inte 700 C

LiM’2O4(spinel)

10 20 30 40 50 60 70 80

2θCuKα

Three‐component integrated structure

h: X-ray sample holder

co, cation ordering; s, spinel

Three component integrated structureLi0.96Ni0.2Mn0.6Oy ≡ 0.3LiNi0.5Mn1.5O4•0.7Li2MnO3•0.7LiMO2 (M=Ni0.5Mn0.5)

Nano-composite feature of Li0.96Ni0.2Mn0.6Oy:0.3LiNi0 5Mn1 5O4•0.7Li2MnO3•0.7LiMO2 (M=Ni0 5Mn0 5)0.5 1.5 4 2 3 2 ( 0.5 0.5)

HR TEM image

This HR TEM image demonstrates the structural integration of spinel (Fd 3m)This HR TEM image demonstrates the structural  integration of spinel (Fd‐3m) 

and layered (C2/m).

Nano-composite feature of Li1.2Co0.4Mn0.4O2:0 5Li MnO •0 5LiMO (M=Co)0.5Li2MnO3•0.5LiMO2 (M=Co)

Z contrast STEM image

View of transition metal planes along [001]MView of transition metal planes along [001]M

TM columns: bright-spots in imageLi columns: dark.

Honeycomb regions (hollow core = Li column) are Li2MnO3-like. Hexagonal regions (filled core

TM l ) LiC O lik N h= TM column) are LiCoO2-like. No sharp boundaries between honeycomb and hexagonal regions.

Li2MnO3Li2MnO3

X-ray absorption spectroscopy of 0.5Li2MnO3•0.5LiCoO2

Co EXAFS

Co-O

Co-TM0.5Li2MnO3•0.5LiCoO2Co-O bond distance ~ 1.91 ÅCo O bond distance 1.91 Å(same as in LiCoO2)

Co-TM data coordination is 5 4 +/-Co TM data coordination is 5.4 +/0.5 (6 in LiCoO2)

Exact phase matching of peaks in 4-Exact phase matching of peaks in 4-6 Å range (data not shown)

Co environment in 0.5Li2MnO3•0.5LiCoO2 appears very similar to LiCoO2 environment up to 7 Å.

X-ray absorption spectroscopy of 0.5Li2MnO3•0.5LiCoO2

Mn EXAFS

Mn-O 0.5Li2MnO3•0.5LiCoO2Mn-O bond distance ~ 1.89 Å

Mn-TM

Mn O bond distance 1.89 Å(same as in Li2MnO3)

Mn-TM data coordination is 4 2 +/-Mn TM data coordination is 4.2 +/0.5 (3 in Li2MnO3)

Exact phase matching of peaks in 4-Exact phase matching of peaks in 4-6 Å range (data not shown)

Mn environment in 0.5Li2MnO3•0.5LiCoO2 appears similar to Li2MnO3environment up to 7 Å.

Model for atomic arrangement in TM plane of 0.5Li2MnO3•0.5LiMO22 3 2

LiMO2-like2

Li2MnO3-like

An intimate mixture of LiMO2-like and Li2MnO3-like areas (~1-3 nm 2 2 3size) are present in 0.5Li2MnO3•0.5LiMO2

Electrochemistry of two-component systemLi Ni C M O Fi t l fil f lithi ll

5

V)

Li1.2Ni0.18Co0.10Mn0.52O2: First cycle profile of a lithium cell

LiMO2-like Li2MnO3-like

4

5ag

e (V

300

2

3

ell v

olta

2 0-4 6 V100

150

200

250

300

city

(mAh

/g)

LiCoO2

0

1Ce 2.0 4.6 V

0.1 mA/cm2

RT0 10 20 30 40 500

50

100

Cap

a

Cycle Number

0 100 200 3000

Capacity (mAh/g)Two step behavior during the first charge:

LiMO2-like region: LiMO2 → Li+ + MO2 + e-

Li2MnO3-like region: Li2MnO3 → 2Li+ + MnO2 + 1/2O2 + 2e- (O2 evolution confirmed by in situ DEMS)DEMS)Very high capacity during the subsequent discharge and excellent capacity retention

Li Ni M O Fi t l fil f lithi ll

Electrochemistry of three-component system

5

V)

Li0.96Ni0.2Mn0.6Oy: First cycle profile of a lithium cell

spinel

4

5ag

e (V

Li2MnO3 activation + spinel

2

3

ell v

olta

2 0-4 95 V150

200

250

300

ty (m

Ah/

g)

0

1Ce 2.0 4.95 V

0.05 A/cm2

RT0 10 20 30 40 500

50

100

Cap

acit

Cycle Number

spinel

0 100 200 3000

Capacity (mAh/g)

Three distinctive regions:LiMO2-like region, Li2MnO3-like region (activation), and spinel signatures

Very high capacity during the subsequent discharge and excellent capacity retention

Superior electrochemical property of the nano-composite electrode material to other materialselectrode material to other materials

Li1+xMn2-xO4

LiCoO5

V)

LiCoO2

Li(Ni1/3Co1/3Mn1/3)O2

layer-layer

4

tage

(V

y y layer-layer-spinel

3

ell V

olt

2

Ce

0 50 100 150 200 250

Capacity (mAh/g)

Capacity Retention and Rate Capability of Li1.2Ni0.25Mn0.75Oy

5

Cycling performance Rate performance

4

V)200

250

Ah/

g)

3

olta

ge (V

100

150

acity

(mA

2

Vo

Li cell2.0-4.95 V10 mA/g

3.5C 1C C/2350

100

Cap

a

900 oC 800 oC700 oC

0 50 100 150 200 2501

Capacity (mAh/g)

10 mA/g

0 10 20 30 40 500

Cycle Number

700 C

Beneficial impact of the spinel component in the structure– Excellent cycling performance (800, 900 °C samples) in spite of the very high cut‐off 

voltagevoltage.– Good rate capability (~200 mAh/g at 1C rate). 

SUMMARY

A novel concept of integrating lithium metal oxides with different 

structures (but compatible) in nano‐scale has been adopted to design and 

develop electrode materials for advanced high‐energy lithium‐ion 

batteries. 

Two component system– Two component system

– Three‐component system

Through advanced analytic techniques the atomic arrangement featuresThrough advanced analytic techniques, the atomic arrangement features 

of the nano‐composite materials have been demonstrated.

The nano‐composite material exhibited outstanding electrochemicalThe nano composite material exhibited outstanding electrochemical 

performance.

Possibility of using these nano‐composite electrode materials in PHEV y g p

batteries is under investigation.

The Argonne’s nano‐composite cathode materials have recently been 

licensed to major chemical companies and battery companies.

Acknowledgement

Argonne National Laboratory

CSE Division: M. M. Thackeary, C. S. Johnson, D. P. Abraham, J. Bareno, G. y, , , ,Henriksen

APS: M. Balasubramanian – XAS

UIUC

C. H. Lei, I. Petrov – TEM

C. Carlton, Y. Shao-Horn – TEM

Department of Energy

Office of Basic Energy Sciences – ‘fundamental research’

Office of FreedomCar and Vehicle Technologies – ‘exploratory (BATT) and li d (ABRT) R&D’applied (ABRT) R&D’