Advanced materials for catalysis UMR 5253 - Institut de Chimie … · 2014. 10. 14. · jet fuel or...

59
UMR 5253 - Institut de Chimie Moléculaire et des Matériaux de Montpellier Matériaux Avancés pour la Catalyse et la Santé Advanced materials for catalysis Francesco Di Renzo Institut Charles Gerhardt Montpellier Advanced Materials for Catalysis and Healthcare 1st SINCHEM School Bologna, 17-20 February 2014 Control of structure, porosity and size of zeolite catalysts for refinery and petrochemistry

Transcript of Advanced materials for catalysis UMR 5253 - Institut de Chimie … · 2014. 10. 14. · jet fuel or...

  • UM

    R 5

    253

    -In

    stitu

    t de

    Chi

    mie

    Mol

    écul

    aire

    et d

    es

    Mat

    éria

    ux d

    e M

    ontp

    ellie

    rM

    atér

    iaux

    Ava

    ncés

    pou

    r la

    Cat

    alys

    e et

    la S

    anté Advanced materials for catalysis

    Francesco Di RenzoInstitut Charles Gerhardt Montpellier

    Advanced Materials for Catalysis and Healthcare

    1st SINCHEM School Bologna, 17-20 February 2014

    Control of structure, porosity and size of zeolite catalysts for

    refinery and petrochemistry

  • Anastas P. T. et Warner J. C Green Chemistry: Theory and Practice. Oxford University Press 1998

    Green chemistry's twelve principles

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • what chemists think about the principles of green chemistry?

    the application of a process engineering basic principle

    whole-of-system approach to optimisation

    increased accountability, complete cycle analysis, think globally

    nothing newchemists always did it

    Molière (1622-1673)“there are more than forty years that I speak prose and I didn’t know it”

    a public relation need in a world of increasing public awareness

    Coluche (1944-1986) “ça va sans dire, mais il vaut

    mieux en le disant”

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • what a catalyst is for?

    to make a reaction possibleobtain a product from cheaper or renewable reagents

    to improve productivityreduce time-on-stream, plant volume, energy costs

    to improve selectivityavoid side-reactions or consecutive reactionatom efficiency means no need for separation (hence energy efficiency, less capital investment)

    better catalysts: the key for better processes

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Giuseppe Bellussi

    1992 Breck Award for the Ti-silicalite

    current president of the IZA

    isomorphous substitution in zeolite networks

    Ti-silicalite

    a redox site in a hydrophobic environment

    SzigmundCsicsery

    the theoretician of the shape selctivity in

    zeolites Zeolites, 4 (1984) 202

    M. Taramasso, G. Perego, B. Notari, US 4,410,501, 1983.G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli, R.Millini, J. Catal. 133 (1992) 220.

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • environment-friendly propylene oxide synthesis

    made possible by TS-1 catalyst

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • environment-friendly propylene oxide synthesis

    made possible by TS-1 catalyst

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    M. Clerici, G. Bellussi, EP 526945A1 (1993).

    HClHCl

    anthraquinone to be reduced to hydroxyanthraquinone by H2

  • 7.4 Å

    network of aluminosilicate tetrahedra in zeolite Y (faujasite with Si/Al 2.5)

    Control of structure, porosity and size of zeolite catalysts for refinery

    and petrochemistry

    active site (acid or redox) : where the reaction takes place

    micropore: shape selectivity by

    molecular sieving

    mesopores and micropores improve the diffusion of reagents and products

    the size of crystals controls the diffusion

    time

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Distillation fractions of different crude oils

    -46

  • boiling point

    the hydrogen deficit crude oil has lower H/C than most oil products (except gasoline = light naphtha)

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • HC hydrocracking

    purposes: decrease boiling range (molecular mass), increase H/C ratiodifferences with FCC: hydrogen prevents the formation of olefins (sources

    of gumming and coke), less deep cracking, less gas formedbifunctional catalyst: metal for hydrogenation, acid site for crackingNi/silica-alumina or Pt/zeolite catalysts, 300-370 °C, 10-20 bar H 2

    HDT hydrotreatments

    purpose: remove undesirable heteroatoms (sulfur, nitrogen), secondary effect: reduction of alkenes (gumming), aromatics

    HDN denitrogenation

    analog to desulfurisation butrequires higher T and more H2, as N can be removed only by hydrogenation of the aromatic ring:

    HDS desulfurisation

    RSH + H2 → RH + H2S

    CoMoS/alumina catalyst300-420 °C, 10-50 bar H 2

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • 0

    0,5

    1

    1,5

    2

    300 350 400 450 500 550

    Re

    lati

    ve

    fir

    st o

    rde

    r h

    yd

    rocr

    ack

    ing

    ra

    te c

    on

    sta

    nt

    Final boiling point of the feed

    NiW/ SiO2-Al2O3(395°C)

    NiW/ Y(355°C)

    I.E. Maxwell, Catal. Today 1(1987)385

    Zeolites vs ASA:

    -Higher activity (Strong acid sites)

    -Diffusion limitations(Micropores) prevent treatment of heavy molecules

    - Lower middle distillate selectivitiy(Secondary cracking due to high residence time)

    Hydrocracking catalystszeolites vs. amorphous silica-alumina (ASA)

    Adequate (meso)porosity

    Adequate acidity

    need for Micro-Mesoporous zeolites: hierarchical porosityFrancesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • P. O’Connor, A.P. HumphiesAccessibility of functional sites in FCCPrep. ACS Div. Petrol. Chem. 38 (1993) 598-603

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    15-45 %

    10-60 %

    silica-alumina 15-30 %

    FCC catalyst

    a hierarchical pore system

  • distribution of cracking products

    J. Weitkamp, S. Ernst, in Guidelines for mastering the properties of molecular sieves(D. Barthomeuf, E.G. Derouane, W. Holderich Eds), Plenum Press, New York 1990, 343

    n-hexadecane feed hydrogen stabilizes the products of primary crackin gless secondary cracking = less gas, more liquid

  • Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    Micro-Mesoporous zeolites: hierarchical porosity to retain activity and decrease secondary reactions

  • R. Chal, C. Gerardin, M. Bulut, S. Van Donk. Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem, 3, 2011, 67-8

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • TEM image of a hierarchical TS-1 zeolite sample prepared using Carbon Black Pearls as hard-template

    I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson and C. J. H. Jacobsen, Chem. Commun., 2000, 2157–2158.

    hard templating

    solid porogens in the zeolte

    synthesis

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • TEM image of a hierarchical TS-1 zeolite sample prepared using Carbon Black Pearls as hard-template

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    yield ratios between classical and mesoporous TS-1 in epoxidation of 1-octene and cyclohexene

  • I.I. Ivanova, E.E. Knyazeva, Chem. Soc. Rev. 2013, 42,.3671-3688

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    D. P. Serrano, J. M. Escola, P. Pizarro, Synthesis strategies in the search for hierarchical zeolites, Chem. Soc. Rev. 2013, 42, 4004-4035

    C. Gerardin, J. Reboul, M. Bonne, B. Lebeau, Ecodesign of ordered mesoporous silica materials, Chem. Soc. Rev. 2013, 42, 4217-4255

  • the aluminium content of zeolites increases with the alkalinity of the synthesis system

    S.P. Zhdanov, in Molecular Sieves, R.M. Barrer Ed.,

    Society of Chemical Industry, London 1968

    at high alkalinity, silicates have less tendency to oligomerize and the spacing among aluminates decreases

    selective solubility of silicate and aluminate in acid ans basic conditions

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Creation of a zeolite Y material with crystals comprising Trimodal intra-crystalline porosity:

    K.P. de Jong, J. Zecevic, H. Friedrich, P.E. de Jongh, M. Bulut,, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula,

    Angew. Chem.49 (2010) 10074

    SteamingAcid leaching

    Micropores +”Large”mesopores

    Micropores

    Al-removal Base leaching

    Si-removal

    CBV 760 from Zeolyst

    HY-30

    Dealumination :a classical method to

    increase the Si/Al ratio of zeolite network

    Desilication :a method to decrease the

    Si/Al ratio of zeolite networkR. Le Van Mao, S.T. Le, D. Ohayon, F. Caillebot, L. Gelebart, G. Denes.

    Zeolites 19 (1997) 270

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    Secondary porosity is formed by both destructive methods

  • bifunctional catalysisthe effect of temperature

    J. Weitkamp, S. Ernst, in Guidelines for mastering the properties of molecular sieves(D. Barthomeuf, E.G. Derouane, W. Holderich Eds), Plenum Press, New York 1990, 343

    shifts from isomerisation to cracking with the incr ease of temperature

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Catalysts with hierarchical porosity

    to combine the high selectivity of shape-selective microporous zeolites with the high diffusivity in

    mesoporous channels

    Angew. Chemie Int. Ed. 49 (2010) 10074WO 2010/072976

    Chem. Commun. 46 (2010) 7840

    Electron tomography and pore size distribution of a zeolite Y with trimodal porosity obtained by consecutive dealumination and desilication treatments. A first acid leachingallows to connect the structural micropores (0.7 nm) by 3 nm mesopores. A consecutive basic leaching further improves the accessibility of reagents by opening 30 nm mesopores.

    The addition of surfactants to the leaching solution allows to obtain monodispersed mesopores

    Due to better accessibility of reagents, a zeolite Y with hierarchical porosity (green triangles) requires lower temperature than the parent dealuminated zeolite (black crosses) to reach high conversion in hexadecane hydrocracking.

    catalysts with 0.3 % Pt, 20 bar H2

  • Hydroconversion of n-hexadecaneWHSV = 1-3 h-1, PH2 = 20 Atm., H2/hc = 4 (mol.), 220-280°C

    Hydroisomerisation and hydrocracking yields vs total conversion

    0

    10

    20

    30

    40

    50

    60

    70

    0 20 40 60 80 100

    Rendem

    ent en p

    roduits

    (%)

    Conversion totale (%)

    Pt/HY-30 ♦ HC ◊ HIPt/HY-30A ● HC ○ HIPt/HY-30B ▲ HC ∆ HI

    Total conversion (%)

    Yie

    ld (

    %)

    cracking

    Desilication Towards ideal hydroconversion behaviour

    Isomerization

    Cracking

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Pt/HY-30

    Pt/HY30-A Pt/HY30-B

    Pt/HY-30: Conv. : 68 %; Cracking yield. 25.2 %; C6/C10 = 1.79Pt/HY-30A: Conv. : 85,6 %; Cracking yield. 44.7 %; C6/C10 = 1.21Pt/HY-30B: Conv. : 72,6 cracking yield. 15.6 %; C6/C10 = 0.92

    Hydroconversion of n-hexadecaneDistribution of hydrocracking products

    Classical DealuminatedY zeolite

    Dealuminated & Desilicated

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    better accessibilityno secondary crackingsymmetrical product distribution

  • Hydroconversion of n-hexadecane

    Symmetry index (C 6/C10 ratio) of the distribution in cracking products as a function of conversion

    Desilicated zeolites primary cracking

    Dealuminated

    Dealuminated & desilicated

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • @ 75% conversion

    For hydrocracking of squalane (i-C30) the product s ymmetry is largely improved:

    • Limit residence time of reactants in micropores

    • Decrease in the contribution of secondary cracking (gas production)

    • Enhanced selectivity and yield of middle distillate s.

    gasolinejet fuel or diesel oil

    Pt/Dealuminated Y zeolite

    Pt/Dealuminated & Desilcated Y zeolite

    hydrocracking of squalane

    Pt/HY-30 Pt/HY30-A

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • why squalane?

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    bacteria-produced C15 sesquiterpene

    squalenea triperpene extracted from some plants

    (cosmetics) and actively studied for industrial production from microalgae (biofuel)

    T.G. Tornabene, Formation of hydrocarbons by bacteria and algae, US Dpt Energy SER I /TP-621 -999 (1980)

    Makazawa et al. Biores. Technol. 109 (2012) 287–291

  • Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    can micelle-templated mesoporous silicas

    find useful applications in catalysis?

  • Towards ideal hydrocracking catalysts

    Mesoporous Silica (MCM-48)

    Nitrogen sorption isotherms of parent and aluminated mesoporous silic a

    0 100 200 300 400 500 6000,000

    0,004

    0,008

    0,012

    0,016

    Vite

    sse

    de d

    esor

    ptio

    n de

    NH

    3 (u

    a)

    Temperature oC

    Pt/MCM-48B sites forts sites faibles

    Acidity profile (Ammonia TPD) of MSA(Total : 0.7 mmol/g, Strong : 0.22 mmol/g)

    Post-synthesis alumination of a mesoporous silica (MCM-48)

    No microporesNo large mesopores

    M. Bulut, R. Kenmogne-GatchuissiF. Fajula, J.P. Dath, S. van Donk, A. Finiels, V. Hulea WO 2012/085289

    Mesoporous Silica Alumina (MCM-48, 13 wt% Al2O3)

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Towards ideal hydrocracking catalysts

    Comparison of the activity of hydrocracking catalysts based on dealuminated Y (HY-30), dealuminated & desilicated Y

    (Pt/HY-30A) and Mesoporous Silica Alumina (Pt/MSA)

    Pt/MSA (MCM-48)

    Hydroconversion of n-hexadecaneWHSV = 1-3 h-1, PH2 = 20 Atm., H2/hc = 4 (mol.)

    Pt/MSA (MCM-48) same activity & higher selectivity than desilicated HY

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    Re

    nd

    em

    en

    t en

    pro

    du

    its (%

    )

    Conversion totale (%)

    Hydroisomerisation and hydrocracking yields vs total conversion

    Pt/MSA(MCM-48)

    (Pt/HY-30A)

    M. Bulut, R. Kenmogne-GatchuissiF. Fajula, J.P. Dath,

    S. van Donk, A. Finiels, V. Hulea WO 2012/085289

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Towards ideal hydrocracking catalysts

    Comparison of the activity of hydrocracking catalysts based on dealuminated Y (HY-30), dealuminated & desilicated Y

    (Pt/HY-30A) and Mesoporous Silica Alumina (Pt/MSA)

    Pt/MSA (MCM-48)

    Hydroconversion of n-hexadecaneWHSV = 1-3 h-1, PH2 = 20 Atm., H2/hc = 4 (mol.)

    Pt/MSA (MCM-48) same activity & higher selectivity than desilicated HY

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    0

    1

    2

    0 20 40 60 80 100

    C6

    /C1

    0

    Conversion totale (%)

    Pt/HY-30

    Pt/HY-30A

    Pt/MCM-48Pt/MSA (MCM-48)

    Symmetry (C6/C10 ratio) of the distribution of cracking products as a function of

    conversion

  • a: Reaction rate slower than reagent diffusion (k i < kd), CS = C – Chemical controlb: Reaction faster than reagent diffusion (k i > kd), CS > C – Physical control

    ⇒ If (b): not worth looking for a more active catalys t!⇒ same rationale for thermal conduction as for reagen t diffusion

    physical or chemical control?

    catalyst particleC reagent concentrationK i reaction rateKd diffusion rate

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • E.A. Swabb, B.C. Gates, Ind. Eng. Chem. Fund. 11 (1972) 540

    the effectiveness of a porous catalyst can be affected by diffusional constraints related to the length of the pores

    size matters

    mordenite : unidirectional pores

    along the c axis

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • F. Hamidi, F. Boukli-Hacène, A. Bengueddach, F. Di Renzo, Microp. Mesop. Mater. 153 (2012) 59

    1.E+14

    1.E+15

    1.E+16

    1.E+17

    1.E+18

    0 1 2 3 4 5

    OH- (moles L-1)

    germ

    s pe

    r m

    ole

    Ag

    The number of zeolite crystals nucleated by silver seeding does not depend on the type of zeolite formed (A, LSX, X, Y, L, Beta), nor on the Si/Al

    ratio and decreases only at high alkalinity, due to partial Ag2O dissolution)

    Nucleation promotion of zeolite crystals by in-situ formation of silver-based heterogeneous nuclei

    The addition of silver nitrate to the synthesis gel of zeolites allows to form heterogeneous silver oxide seeds on which zeolite crystals can grow.

    The enhanced nucleation brings to the formation of smaller zeolite crystals, with improved diffusional and kinetic properties.

    2Ag+ + 2OH → 2AgOH↓→ Ag2O↓ + H2O

    0 2 4 6grain size D (µm)

    fre

    que

    ncy

    M/(Σ

    M*∆

    D)

    0 1 2 3grain size D (µm)

    fre

    que

    ncy

    M/(Σ

    M*∆

    D) LSX X

    0 2 4 6grain size D (µm)

    fre

    que

    ncy

    M/(Σ

    M*∆

    D)

    0 1 2 3grain size D (µm)

    fre

    que

    ncy

    M/(Σ

    M*∆

    D) LSX X

    Size distribution of crystals of zeolites LSX and X formed in the absence (dashed lines) and in the presence (full line) of silver nucleation promoter

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • why pore geometry is important ?

    SAPO-34 (CHA)SAPO-17 (ERI)SAPO-18 (AEI)

    ZSM-5 (MFI)

    UOP/Hydro LurgiExxonMobil

    J.Q. Chen et al. Catal. Today 106 (2005) 103

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    methanol to olefinsMTO

  • SAPO-34:

    light olefins highly favoured,

    C2=/C3= higher than equilibrium distribution

    C2=-C5= olefin equilibria

    ZSM-5:

    near to the equilibrium distribution

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • addition of Ethylene Glycol led to the formation of SAPO-18

    instead than SAPO-34

    not completely unexpected: the earliest synthesis of SAPO-18 were in the presence of EtOH

    and isopropanol can also be used

    SAPO-34 (CHA)

    D6R in parallel rows

    SAPO-18 (AEI)

    D6R in alternate rows

    very similar structures with 8R channels formed by connected D6R (hexagonal prisms)

    [110]

    Cmcm[001]

    R3m

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • 36-tetrahedra cages of SAPO-34 and SAPO-18 : same volume, different shapes

    [001] windows of CHA (left) and AEI (right)

    similar MTO behaviour of SAPO-18 and SAPO-34

    J. Chen, J.M. Thomas, P.A. Wright, R.P. Townsend, Catal. Lett. 28 (1994) 241.

    R. Wendelbo, D. Akporiaye, A. Andersen, I.M. Dahl, H.B. Mostad, Appl. Catal. A 142 (1996) L197

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • common morphologies of SAPO-34

    common morphologies of SAPO-18

    J. Chen et al., J. Phys. Chem. 98 (1994) 10216

    R. Wendelbo et al., Appl. Catal. A 142 (1996) 197

    1 µm 1 µm

    1 µm1 µm

    D. Chen et al., Microp. Mesop. Mater. 29 (1999) 191 commercial calcined SAPO-34

    1 µm CHAR3m

    AEICmcm

  • typical pseudocubic rombohedra of chabazite (Parrsboro, Nova Scotia)

    rombohedra of trigonal crystals are formed by slow growth of apical faces

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Synthesis of EthGly SAPO-18

    Synthesis formulation (molar basis)

    1.0 TEAOH ⋅ xSiO2 ⋅ Al2O3 ⋅ P2O5 ⋅ zH2O ⋅ yEThGlyx = 0.025 ÷ 0.1 y = 1 ÷ 12 z = 0 ÷ 45 150 °C

    possible to form SAPO-18 with Si/tet ratio in the range 0.01-0.08

    peculiar morphology

    50 nm-thick lamellae

    orientation (h00)

    EthGly/TEA ratio in crystals ≤ 0.05

    1 µm

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    W. Vermeiren, N. Nesterenko, C. Petitto, F. Di Renzo, F. Fajula, WO 2008/110526

  • Catalytic testsTemperature: 450 °C MeOH WHSV: 2h -1

    C2/C3 olefin ratio on thick SAPO-34 crystals (500 nm) and thin SAPO-18 crystals (50 nm)

    0

    0.5

    1

    1.5

    2

    0 1 2 3 4 5 6 7

    lamellar EthGly SAPO-18

    time on stream (Hours)

    70% MeOH 30%H2O

    100% MeOH

    C2/

    C3

    olef

    inra

    tio

    0

    0.5

    1

    1.5

    2

    0 1 2 3 4 5 6

    pseudocubic SAPO-34

    time on stream (Hours)

    70% MeOH 30%H2O

    100% MeOH

    C2/

    C3

    olef

    inra

    tio

    the ethylene/propylene ratio does depend on the crystal size

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • TON = 340 TON = 317

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6 7

    SAPO-18 Si/(Si + Al + P) = 0.031

    Time on stream (Hours)

    C2H4

    C3H6

    C4 =

    CH4C5=

    MeOH

    DME

    wt

    (%)

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6 7Time on stream (Hours)

    SAPO-34 Si/(Si + Al + P) = 0.041

    DME

    MeOH

    C3H6

    C2H4

    C4 =

    CH4C5=

    wt

    (%)

    MTO test450 °C MeOH WHSV: 2h-1Feed : 70 % MeOH 30 % H2O

    isometric morphology

    C2=/C3= ratio 1.3 C2=/C3= ratio 1.3

    the ethylene/propylene ratio does not depend on the structure difference between SAPO-18 and SAPO-34

    MTO test450 °C MeOH WHSV: 2h -1

    Feed : 100 % MeOH

    EthGly SAPO-18 TON = 100

    SAPO-34 TON = 60

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • 1 µm

    lamellar SAPO-18 crystals formed in the presence of 'EG

    thickness ~ 50 nmorientation (h00) (postdoc Rossella Arletti)

    control of the ratio Si/(Si+P+Al) in the range 0.01-0.08

    a better dispersion of heat shifts the equilibria towards higher olefins

    S.W. Kaiser, US 4,499,327 (1985), US 4,613,721 (1986), D.M. Ruthven, in Karge, Weitkamp, Molecular Sieves Adsorption and Diffusion, Springer 2008, 1

    historical mechanism of MTO reaction ∆H° STP

    -23.4 KJ/mol

    5.4 KJ/mol

    -66.5 KJ/mol

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • historique AIE, CCFA

    40

    90

    140

    190

    240

    290

    1998 2000 2002 2004 2006 2008 2010 2012 2015

    FOD

    Gasoline

    Diesel

    Heavy Fuel

    Jet/kero

    Mto

    n/y

    Evolution of demand in Europe-27 dieselisation

    In the coming years:

    � GOM and JET demands are foreseen to increase in the next year

    � Gasoline demand will continue to decrease

    Traditionally, gasoline excesses are exported to th e USA; however, gasoline importation in the USA is decreasing due to:

    � The use of cars with a better fuel-economy

    � The generalization of bio ethanol use

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Olefins oligomerisationOverview of existing technologies

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    Company Cuts Purpose Catalyst Process

    UOP Olefins ex FT Gasoline SPA CATPOLY

    IFP C3-C4 Gasoline IP501 (ASA) Polynaphta

    IFP C3-C4 Gasoline Ion Liquid Dimersol

    ExxonMobil Olefins ex MTO Gasoline/Jet/Diesel ZSM-5 or ZSM-22 MOGD

    Shell C2-C6 Gasoline/Jet/Diesel Ni/MOR SPGK

    Süd-Chemie/Lurgi Olefins ex MTO Gasoline/Jet/Diesel ZSM-5 MTS

    Süd-Chemie FT naphtha Jet/Diesel CODZSM-5

    Süd-Chemie Olefins ex FT Gasoline SPA

    Gasoline

    Jet/Diesel

    valorisation of excess ethylene

    formation of hydrocarbons in the jetfuel-diesel rangea double challenge

  • Ni-exchanged porous catalysts(~ 1.5 %Ni, Si/Al = 15-20, 150 °C, 35 bar, 1 h)

    ethylene oligomerisation

    120

    140

    Ni-MCM-48interconnected mesopores(3.5 nm)

    Ni-SBA-15interconnected mesopores(8.5 nm)

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    M. Lallemand, A. Finiels, F. Fajula, V. Hulea, Chem. Eng. J. 172 (2011) 1078

  • Distillate-Range Products from Non-Oil-Based Sources by Catalytic Cascade ReactionsA. Lacarrière, J. Robin, D. Swierczynski, A. Finiels, F. Fajula, F. Luck, V. Hulea, ChemSusChem. 5 (2012) 1787

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    Activity of Ni-MCM-41(3.5) catalysts in ethylene oligomerization as a function of nickel loading (150 8C, 3.5 MPa, reaction time 1 h).

    TPR profiles of Ni-MCM-41(3.5) for various nickel loadings. a) Ni1.4-MCM-41(3.5), b) Ni2.0-MCM-41(3.5), and c) Ni7.5-MCM-41(3.5).

  • 15.8 kmol ethylene /mol Ni/h 25 kmol ethylene /mol Ni/h

    1 catalyst (Ni-MCM-41) 2 catalysts (Ni-MCM-41 + H-MCM- 41)

    Single-site Ni catalystC4 olefins

    Bifunctional catalystJetfuel

    oligomerisation catalyst

    condensation catalyst

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    A. Lacarrière et al. ChemSusChem. 5 (2012) 1787

  • Self-assembly of surfactant aggregates and inorganic precursors to form an orderedmesophase in which the micelles are separated by amorphous silica walls

    + silicates

    ∆T

    An ordered pore system is formedby extraction or calcination of the micellar template

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Design of new mesostructure directing agents

    Previously : Sacrificial porogens to be removed

    Use smart micelles : responsive to stimuli in aqueous medium� Dissociable in water for recovery under soft conditions

    � Able to confer functionalities to the mesoporous material

    Double-hydrophilic block copolymers (DHBC)

    Two hydrosoluble blocks : - different affinities for a substrate or a molecule- different sensitivities to a change of parameter- neutral or charged, with variable functions

    stimuluspH, ionic strength,

    T, radiationhydrophilichydrophilic

    Reversible micellizationin waterDHBC

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    N. Anik, M. Airiau, M.P. Labeau, C.T. Vuong, J. Reboul, P. Lacroix-Desmazes, C. Gérardin, H. Cottet, Macromolecules 2009, 42, 2767

  • PolyIon electrostaticComplex (PIC) Micelle

    pH-sensitive electrostatic complex micelles of DHBC

    DHBC : weak acid – neutral

    - - - - - - - - - - - - - -neutral

    pKaacid

    pH

    DHBC micellization induced by complexation of an oppositely charged polymer :

    + + + + + + + + + + + + + + +

    pKabase

    Weak base : polyamine neutral

    pH

    AUXILIARY OF MICELLISATION

    PAA-b-PEO(CH2-CH(COOH))m-b-(CH2-CH2-O)n

    ChitosanFrancesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    N. Anik, M. Airiau, M.P. Labeau, C.T. Vuong, J. Reboul, P. Lacroix-Desmazes, C. Gérardin, H. Cottet, Macromolecules 2009, 42, 2767

  • Micelle dissociation Washing

    Inorganicpolycondensation

    Micelle arrangement

    Hybrid material

    PAA b PEO and chitosane in

    solution, without TEOS.

    +

    +TEOS

    TEOS hydrolysis

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2 4 6 8 10 12pH

    Inte

    nsité

    (Kcp

    s/s)

    Inte

    nsity

    (kc

    ps/s

    )

    PAA b PEO and chitosane with

    TEOS :

    silica structuring

    MATERIAL SYNTHESIS

    Templating of mesoporous silica by pH-switchable mic ellar assemblies

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    N. Baccile, J. Reboul, B. Blanc, B. Coq, P. Lacroix-Desmazes, M. In, C. Gérardin, Angew. Chem. Int. Ed. 2008, 42, 3681

  • H20

    Electrostatic complex

    Environment-friendly process

    Versatile/functional micelle system Controlled reversible micellization

    Controlledmesostructures

    lamellar, hexagonal…

    Polymer- functionalized mesoporous silica

    H20

    PIC

    pH=2

    pH=5.5

    pH=7.7

    pH=5.5

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

    N. Baccile, J. Reboul, B. Blanc, B. Coq, P. Lacroix-Desmazes, M. In, C. Gérardin, Angew. Chem. Int. Ed. 2008, 42, 3681

  • Elemental analyses :N/COO=1 in the solid

    Silica based hybrid material templated with PEO5000-b-PAA1580/chitosan

    100

    1000

    104

    105

    0 0,05 0,1 0,15 0,2

    q en A -1

    Inte

    nsité

    (K

    cps/

    s)

    JRS4

    d(100)=13.9 nm

    SAXS

    3 µµµµm3 µµµµm

    Polyion electrostatic complex micelles can adopt a c ylindrical morphology in long-range ordered mesophases: lyotropic behaviour / silicates

    2D hexagonal structure.

    1 2 √7(100) (200) (210)

    0

    50

    100

    150

    200

    250

    0 0,2 0,4 0,6 0,8 1p/p

    0

    Va

    ds (

    cm3 /

    g)

    TEM SEM

    N2 adsorption

    WO2009/081000

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • POE(113)-b-PAA(4)

    100 nm100 nm100 nm

    100 nm100 nm100 nm

    POE(113)-b-PAA(15)

    AA/OE = 0.03

    AA/OE = 0.13

    POE(113)-b-PAA(33)

    AA/OE = 0.3

    Non mesostructuredmaterial

    2D hexagonal structure

    Lamellarmesostructure

    AA/OE

    ++

    ++

    +-

    --

    --

    -++

    +

    ++

    ++

    ++

    ++

    ++

    --

    --

    --+

    ++

    Tuning mesostructures by varying the volume fraction of polymer blocks

    --

    --

    -+

    ++

    ++

    --

    --

    --

    ++

    ++

    ++

    ++

    ++

    -

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • Micelle dissociation

    Template removal

    Inorganicpolycondensation

    Micelle arrangement

    +

    +TEOS

    TEOS hydrolysis

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2 4 6 8 10pH

    Inte

    nsi

    té(K

    cps/

    s)

    Inte

    nsi

    ty (

    kcp

    s/s)

    Micelle dissociation

    Template removal

    Micelle dissociation

    Template removal

    Micelle dissociation

    Template removal

    Inorganicpolycondensation

    Micelle arrangement

    Inorganicpolycondensation

    Micelle arrangement

    +

    +TEOS

    TEOS hydrolysis

    +

    +TEOS

    TEOS hydrolysis

    +

    +TEOS

    TEOS hydrolysis

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2 4 6 8 10pH

    Inte

    nsi

    té(K

    cps/

    s)

    Inte

    nsi

    ty (

    kcp

    s/s)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2 4 6 8 10pH

    Inte

    nsi

    té(K

    cps/

    s)

    Inte

    nsi

    ty (

    kcp

    s/s)

    Silica structuring and template removalAfter material washing in water at pH 7.7

    100 nm

    (100

    )

    (110

    )(2

    00)

    (210

    )

    10

    100

    1000

    104

    105

    106

    0.04 0.08 0.12 0.16 0.2

    matériau hybridematériau lavématériau calciné

    Inte

    nsité

    (u

    .a.)

    q (A-1)

    (100

    )

    (110

    )(2

    00)

    (210

    )

    10

    100

    1000

    104

    105

    106

    0.04 0.08 0.12 0.16 0.2

    matériau hybridematériau lavématériau calciné

    Inte

    nsité

    (u

    .a.)

    q (A-1)

    Calcined materialWashed materialHybrid material

    0

    100

    200

    300

    400

    0 0,2 0,4 0,6 0,8 1

    Vad

    s (cm

    3 /g

    )

    p/p0

    10

    6,5

    Pore diameter

    (BJH) (nm)

    15,513,5Washed

    13,511,5Calcined

    15,513,5Hybrid

    dc-c (nm)

    d100 (nm)

    Matérial

    Angewandte Chemie, 2008, 47, 8433.

    Francesco Di Renzo (Institut Charles Gerhardt Montpellier) 1st SINCHEM School Bologna, 17-20 February 2014

  • thank you for your attention