Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5...

16
Advanced Anneal Solutions for Silicides Shankar Muthukrishnan RTP Anneals GPM July 15 th 2010

Transcript of Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5...

Page 1: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

Advanced Anneal Solutions for Silicides

Shankar Muthukrishnan

RTP Anneals GPM

July 15th 2010

Page 2: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

2

Challenges Scaling Nickel Silicide Contacts

Improved silicide contact is key to scaling

45nm32nm

shrinking

increases risk

of leakage

!yield inhibiting

Diffusion control for thinner layer formation

Silicide-Silicon interface morphology

Avoiding yield limiting piping defects, especially with proximity to SDE, channel

Sensitivity to agglomeration

Page 3: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

3

Integration Alternatives to Suppress NiSi Piping

Pre amorphous implant (PAI)

Pre clean using “flourine” dry etching

Co implant dopant in substrate (F, C)

Nickel alloy (Pt)

Modifying anneals

Page 4: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

4

Nickel-Silicide Process Steps

NiPt Salicide Flow:

pre clean (native oxide removal)

metal deposition (NiPt/TiN)

RTP-1 anneal : Ni diffusion into Si creating Ni2Si

RTP-2 anneal : transformation into low resistance NiSi

non-reacted (NiPt) metal removal by selective etching

280-300ºC Soak

400-500ºC Soak

Traditional

anneals

Advanced

alternative

200-250ºC Soak

~850ºC millisecond

Page 5: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

5

Soak to Millisecond Transition for Silicides

Driven by

­ Enabling thinner silicides without comprising conductivity or yield

Millisecond Provides

­ Improved Yield performance

­ Improved Junction Leakage performance

­ Fewer leakage-inducing defects through steep temperature profile

Logic (65nm) Logic (45nm) Logic (32nm)

Ni Silicidation / Diffusion Soak Low temp Soak Low temp Soak

NiSi Phase

TransformationSoak

Soak or

Millisecond Millisecond

Page 6: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

6

Nickel Silicidation Transformation Curve

0.00

5.00

10.00

15.00

20.00

25.00

30.00

700 725 750 775 800 825 850 875 900 925 950

Temperature

Rs Rs Average

Large process window available for RTA 2

Page 7: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

7

The Ideal Time-Temperature Profile for NiSi

Key parameters to consider

Preheat : Must be low enough to avoid uncontrolled diffusion

Jump temp : Must be high enough to enable optimal activation w/o wafer breakage or agglomeration

Dwell time : Must be short to avoid wafer bow and breakage

Above profile is key to enabling optimal nickel silicide

Preheat temperature

Time

Te

mp

era

ture

Dwell time

700

800

900

1,000

100

200

300

400

500

600 Jump

temperature

Page 8: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

8

Yield Results and Scaling Impact for NiSi Process

imec confidential 2009 24

Why it seems to be less interesting compare to 1st trials

Piping

induces

leakage(Statistical)

Large spacer = less

sensitivity

0

10

20

30

40

50

60

70

80

90

100

1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06

Leakage from Source to Drain [A/µm]

Pro

ba

bilit

y [

%]

Silicidation by Soak

Silicidation by Laser

x5000 PMOS, L=60nm

Ioff Source

0V

0V

-1V

Statistical

silicide pipe

AL090036: small spacer

0

10

20

30

40

50

60

70

80

90

100

1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06

Ioff_Source [A/µm]

Pro

ba

bilit

y [

%]

Soak/Soak

Soak/850°C (Ch150°C)

700°C

AL090131: Large spacer

Larger spacer could reduce the

sensitivity against piping:

It is the reason why the potential yield gain seems

to be less pronounce in

AL090131RTA1/RTA2

Single laser step

Scaling spacer

affects RTA2

leakage, but not

DSA2

Data source : IMEC IEDM 2009

No difference in

leakage when using

large spacer

Page 9: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

9

Results: NiSi Morphology Improvement

Process B (lower RTP-1 Soak) roughness reduced vs process A (baseline)

Process C (lower RTP-1 Soak + DSA RTP-2) achieves lowest roughness

T1 Soak

T2 Soak

T1-40ºC Soak

T2 Soak

T1-40ºC Soak

T2 + 400ºC DSA

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process,

Dr. Chen et al. Co-published by UMC / Applied Materials

RTP-1 anneal:

RTP-2 anneal:

RTP-1 anneal:

RTP-2 anneal:

RTP-1 anneal:

RTP-2 anneal:

Page 10: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

10

Results: NiSi Piping Defects Reduction

Process B (lower RTP-1 Soak) achieves lower defect count than baseline

Process C (lower RTP-1 Soak + RTP-2 DSA) achieves lowest piping defect count

0

20

40

60

80

100

60%

B

A

30%N

orm

ali

ze

d D

efe

cts

(%

)

Based on e-beam Bright Voltage Contrast (BVC) measurement count on a pattern wafer, post CMP

C

T1 Soak

T2 Soak

T1-40ºC Soak

T2 Soak

T1-40ºC Soak

T2 + 400ºC DSA

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process,

Dr. Chen et al. Co-published by UMC / Applied Materials

TEM Top View Piping Defects Count

RTP-1 anneal:

RTP-2 anneal:

Page 11: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

11

Results: Electrical Performance – RS/D

The series S/D Rs (Rsd) decreased using DSA

CBACBA

8%6%

Rsd

_N

+(a

.u.)

Rsd

_P

+(a

.u.)

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process,

Dr. Chen et al. Co-published by UMC / Applied Materials

T1 Soak

T2 Soak

T1-40ºC Soak

T2 Soak

T1-40ºC Soak

T2 + 400ºC DSA

RTP-1 anneal:

RTP-2 anneal:

T1 Soak

T2 Soak

T1-40ºC Soak

T2 Soak

T1-40ºC Soak

T2 + 400ºC DSA

NMOS PMOS

Page 12: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

12

Results: Electrical Performance – Ion/Ioff

Drive current gain achieved by enhancing nickel silicide contact using

millisecond annealing with low temperature RTP-1 Soak

RTP-1: Soak @ T1-40ºC

RTP-2: Millisecond (T2+400ºC)Io

ff (

nA

/m

)

NMOS gain = 4% PMOS gain = 3%

0.5 1.0 1.5 2.0 2.5

Normalized Ion

0.5 1.0 1.5 2.0 2.5

Normalized Ion

100

100

0

10

1

0.1

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process,

Dr. Chen et al. Co-published by UMC / Applied Materials

Page 13: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

13

The Ideal Time-Temperature Profile for NiSi

Key parameters to consider

Preheat : Must be low enough to avoid uncontrolled diffusion

Jump temp : Must be high enough to enable optimal activation w/o wafer breakage or agglomeration

Dwell time : Must be short to avoid wafer bow and breakage

Delivered by Applied Materials’ Vantage Astra system

Applied Vantage Astra

Flash Competitor

Laser Competitor

250ºC or less

350ºC

400ºC

0.25msec

0.8msec0.4msec

Time

Te

mp

era

ture

100

700

800

900

1,000

200

300

400

500

600

Ideal Profile

Page 14: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

14

Applied Vantage® Astra™ DSA System

Uniquely powerful silicidation

– Up to 5% greater device speed

– Higher yields enabled by up to 15x lower leakage

– Less wafer stress

Versatile dynamic millisecond anneal

– Broad range of processing conditions

– Ambient control

– Extendible to high-k/metal gate applications

Compact, reliable, cost-effective

– Simple, compact and smart chamber design

– Solid-state laser with prolonged lifetime

– > 40 WPH per two- chamber system

– Compatible with an RTP chamber on same system as hybrid

FAST. SMART. RELIABLE.

Simply Better Anneal

Page 15: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on

15

Vantage Astra DSA System Photos

Page 16: Advanced Anneal Solutions for Silicides · 0.5 1.0 1.5 2.0 2.5 Normalized Ion 0.5 1.0 1.5 2.0 2.5 Normalized Ion 100 100 0 10 1 0.1 Source: IEEE - RTP2009 Conference, Advances on