Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter,...

45
1 Advanced 2.5D and 3D IC Systems Enabled by Mechanically Flexible Interconnects and Advanced Embedded Cooling Concepts Muhannad Bakir [email protected] School of Electrical and Computer Engineering Georgia Institute of Technology Jan 20 2016

Transcript of Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter,...

Page 1: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

1

Advanced 2.5D and 3D IC Systems Enabled by Mechanically Flexible

Interconnects and Advanced Embedded Cooling Concepts

Muhannad Bakir

[email protected]

School of Electrical and Computer EngineeringGeorgia Institute of Technology

Jan 20 2016

Page 2: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

2 2

Off-Chip Bandwidth TrendOff-Chip Bandwidth Trend

Page 3: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

3 3

Off-chip Bandwidth and I/O PowerOff-chip Bandwidth and I/O Power

I/O Power

Power Breakdown for Intel Ivytown (22 nm)

S. Rusu et al., “Ivytown: A 22nm 15-core Enterprise Xeon® Processor Family,” IEEE ISSCC 2014 (Presentation slides).

Core65.80%Uncore

21.20%

IOs11.60%

PLL & DTS

1.40%

Page 4: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

4 4

Off-chip InterconnectsOff-chip Interconnects

- Highly bandwidth limited due to coarse pitch at the motherboard level

+ Reduced equalization requirement- Interconnects can be ‘messy’- Still relatively coarse pitch

+ Fine pitch interconnects possible- Channel becomes extremely lossy for longer

lengths

+ Longer length interconnects possible with low loss- Typically limited by pitch (~ 60 um)

+ Fine pitch waveguides (< 10um) can be fabricated+ Lower energy operation possible for longer lengths

Fiber ribbon

Electrical Optical

Page 5: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

5

• Enabling Technologies for Next Generation 2.5-D/3-D Systems– Scalable Interposer Platform– Low-Loss TSV technology– Monolithic-scale TSV technology

• Embedded Microfluidic Cooling For Densely Integrated Altera Stratix V FPGAs– FPGA-CPU Integration– Thermal (and Power delivery) Challenges and

Solutions

5

OutlineOutline

Page 6: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

6

2.5D Systems2.5D Systems

Wish List:

1. Large area and scalable interposers; warpage free

2. Low-Loss platform for interconnects and RF components

3. Low-cost batch fabrication process• High aspect ratio Bosch-free TSVs

4. Advanced cooling integration

Challenges:

1. ‘Small’ area and warpage (More Functions)

2. Lossy Signaling

3. Fabrication processes are not ‘low cost’

Page 7: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

7 7

Interposer Based SystemInterposer Based System

• Traditional 2.5D interposer based system Vs. MFIs and PSAS enabled platform

H. S. Yang et al., IEEE TCPMT 2014

Page 8: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

8 8

Interposer Tiles and Bridges Interposer Tiles and Bridges

An inverted pyramid pit

PSAS • Diameter of PSAS = 300 μm• Width of Pit = 300 μm

H. S. Yang et al., IEEE TCPMT 2014

Page 9: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

9 9

PSASPSAS

An inverted pyramid pit

PSAS • Diameter of PSAS = 300 μm• Width of Pit = 300 μm

H. S. Yang et al., IEEE TCPMT 2014

Page 10: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

10 10

Interposer Tiles and Bridges Interposer Tiles and Bridges

An inverted pyramid pit

PSAS

MFIs between interposer tile and bridge

• Diameter of PSAS = 300 μm• Width of Pit = 300 μm

MFIs between interposer tile and motherboard

H. S. Yang et al., IEEE TCPMT 2014

Page 11: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

11 11

Interposer Tiles and Bridges Interposer Tiles and Bridges

An inverted pyramid pit

PSAS • Diameter of PSAS = 300 μm• Width of Pit = 300 μm

MFIs between interposer tile and bridge MFIs between interposer

tile and motherboard

Page 12: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

12 12

Mechanically Flexible InterconnectsMechanically Flexible Interconnects

• Thickness of Au-NiW MFIs = 9.1 μm• Resistance of Au-NiW MFIs = 118 mΩ

C. Zhang et al., IEEE TCPMT 2013

Page 13: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

13

Mechanical CharacterizationMechanical Characterization

• Indentation test results show the Au-NiW MFIs have up to 65 μm vertical range of motionIndentation

head

13

Page 14: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

14

MFIs with Highly Scalable PitchMFIs with Highly Scalable Pitch

14

C. Zhang, H. S. Yang and M. Bakir, "Mechanically flexible interconnects (MFIs) with highly scalable pitch," Journal of Micromechanics and Microengineering, Vol. 24, no. 5, pp. 055024-1-055024-8, May 2014.

Page 15: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

15

• Enabling Technologies for Next Generation 2.5-D/3-D Systems– Scalable Interposer Platform– Low-Loss TSV technology– Monolithic-scale TSV technology

• Embedded Microfluidic Cooling For Densely Integrated Altera Stratix V FPGAs– FPGA-CPU Integration– Thermal (and Power delivery) Challenges and

Solutions• 3D IC Technology for Bioelectronics

15

OutlineOutline

Page 16: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

16

Low-Loss Silicon Interposer PlatformLow-Loss Silicon Interposer Platform

Thick silicon interposer

Logic Memory stack

• Silicon interposer platform with low-loss TSVs using air.

Low-loss TSVs using air

TSVs are partially isolated using air.

Conventional TSVs in silicon

High‐density interconnects

• Result in reduced capacitance and coupling between TSVs.

Thickness ↑:(+) Warpage ↓(+) Loss, cap., x-talk ↓

16

Silicon

H. Oh, et al, IEEE 3DIC conference, 2015.

Page 17: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

17

Low-Loss Through-Silicon Vias Using Air: FabricationLow-Loss Through-Silicon Vias Using Air: Fabrication

2. Etch silicon using oxide mask.

Si 

Oxide

4. Deposit seed layer and do electroplating.

Si 

Si 

Oxide

1. Deposit and etch silicon dioxide.

3. Perform wet oxidation for oxide liner.

Si 

5. Pattern metal pads and etch silicon.

Conventional TSVsLow-loss TSVs

G S G G S G

6. Perform high-frequency measurements

1. Deposit and pattern silicon dioxide.

17

5. Pattern metal pads and etch silicon.

Circular silicon pillars Rectangular silicon pillars

2. Etch silicon using oxide mask.*

TSV AR = 23:1

*Y. Zhang, H. Oh, 3DIC 2013

254.2 µm

13 µm

H. Oh, et al, IEEE 3DIC conference, 2015.

Page 18: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

18

Low-Loss Through-Silicon Vias Using Air: FabricationLow-Loss Through-Silicon Vias Using Air: Fabrication

18

Circular silicon pillars Rectangular silicon pillars

TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in diameter (circular pillars)

50 µm in width and 200 µm in length (rectangular pillars)

*HAR TSV technology demonstrated at 3DIC 2013.

H. Oh, et al, IEEE 3DIC conference, 2015.

Page 19: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

19

Low-Loss Through-Silicon Vias Using Air: TSV Loss Measurements Low-Loss Through-Silicon Vias Using Air: TSV Loss Measurements

Two-port measurements withL-2L de-embedding technique.

• To extract the loss of a single TSV from de-embedding structures.

Insertion Loss [dB]

SEM images: TSVs with metal pads

19H. Oh, et al, IEEE 3DIC conference, 2015.

Page 20: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

20

Low-Loss Through-Silicon Vias Using Air: TSV Capacitance ExtractionLow-Loss Through-Silicon Vias Using Air: TSV Capacitance Extraction• To extract TSV capacitance and conductance using single-port measurements

* D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.** I. Ndip et al., IEEE Trans. Components, Packag. Manuf. Technol., vol. 4, no. 3, pp. 504–515, 2014. 20

1. Convert s-parameters to z-parameters.

2. Take real and imaginary parts of it.11

11011 S1

S1ZZ

ωZIm1C11

TSV **

*

11TSV ZRe1G

Page 21: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

21

Polymer-embedded ViasPolymer-embedded Vias

65 µm Diameter and 370 µm  Tall Polymer‐Embedded Vias on 150 µm Pitch

21P. A. Thadesar, L. Zheng and M. S. Bakir, IEEE VLSI Technology Symposium 2014.

Page 22: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

22 22

Coaxial Vias: Impedance ExtractionCoaxial Vias: Impedance ExtractionFabrication

ProcessFabricated 65 µm diameter and

285 µm tall copper vias

Extracted Impedance from RF Measurements

Simulations give 0.1 dB insertion loss at 50 GHz for the 150 µm pitch structure.

Page 23: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

23 23

W-band Antenna Fabrication and MeasurementW-band Antenna Fabrication and Measurement

Measurement Setup

Return Loss Measurement

Fabricated Antenna

1100 μm x 650 μm and 2 μm thick patch antennas over 1530 μm x 1030 μm and 280 μm deep wells.

Simulation at 100 GHz

• 13.35 GHz 10-dB return loss bandwidth• 4.4 dBi gain and 70% radiation efficiency at 100 GHz

P. A. Thadesar, and M. S. Bakir, IEEE TCPMT 2015/2016 accepted

Page 24: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

24 24

Inductors: Measurements for Inductor Over SU-8 WellInductors: Measurements for Inductor Over SU-8 Well

Extracted L and Q of the Inductor Over SU-8 Well:Qpeak = 55 at 6.75 GHz with 1.14 nH inductance and an SRF at 21 GHz.

Fabrication Results

Inductors over thick SU-8 layer Inductor over polymer well

Page 25: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

25

• Enabling Technologies for Next Generation 2.5-D/3-D Systems– Scalable Interposer Platform– Low-Loss TSV technology– Sub-micron TSV technology

• Embedded Microfluidic Cooling For Densely Integrated Altera Stratix V FPGAs– FPGA-CPU Integration– Thermal (and Power delivery) Challenges and

Solutions• 3D IC Technology for Bioelectronics

25

OutlineOutline

Page 26: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

26 26

Motivation for TSV ScalingMotivation for TSV Scaling

AR=26:1, Tohoku UniversityM. Koyanagi et al., Proc. IEEE, 2009

AR=5:1, TezzaronD. H. Kim et al., ISSCC, 2012.

AR=10:1, IMECRedolfi A. et al., ECTC 2011.

AR=10:1, XilinxBanijamali B. et al., ECTC 2011.

AR=8:1, OracleShubin I. et al., ECTC 2013

Through Silicon Via Scaling

AR=17:1, GLOBALFOUNDRIESZhang D. et al., TSM 2015.

AR=15:1, TSMCChang H.B. et al., VLSI 2012.

AR=23:1, Georgia TechZhang Y. et al., 3DIC 2013.

AR=17:1, Georgia Tech.Abbaspour R. et al.,

Device

System

Page 27: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

27 27

Sub-micron Via: FabricationSub-micron Via: Fabrication

8.2um 480nm

Cross-sectional view of a cleaved sample, shows void-free copper filled 480nm diameter via with 17:1 aspect ratio

The wafer is backside-etched and the void-free 920nm viasare showing up from the buried end

Side-view: Cleaved sample right after deep Si etching using developed nano-Bosch process

Page 28: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

28 28

Resistance MeasurementResistance Measurement

DUT

Page 29: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

29 29

Current Carrying Capacity & CapacitanceCurrent Carrying Capacity & Capacitance

Page 30: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

30

• Enabling Technologies for Next Generation 2.5-D/3-D Systems– Scalable Interposer Platform– Low-Loss TSV technology– Sub-micron TSV technology

• Embedded Microfluidic Cooling For Densely Integrated Altera Stratix V FPGAs– FPGA-CPU Integration– Thermal (and Power delivery) Challenges and

Solutions

30

OutlineOutline

Page 31: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

31

• 3-D/2.5-D stacking of multiple high performance chips– Higher power density

• heat removal• power delivery (multiple power hungry chips)

31

Power Integrity and Thermal Challenges for 3-D/2.5-D IC stacksPower Integrity and Thermal Challenges for 3-D/2.5-D IC stacks

Next generation system: high performance processor with deep learning FPGA acceleratorSource: Intel, Altera, Microsoft

Page 32: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

32

• 3-D/2.5-D stacking of multiple high performance chips– Higher power density

• heat removal• power delivery (multiple power hungry chips)

– Heterogeneous stack of multi-functional chips• Thermal crosstalk: high power processor heats up the other dice• Multiple power domains: I/O pins, analog, digital; critical block, low power

block)

32

Power Integrity and Thermal Challenges for 3-D/2.5-D IC stacksPower Integrity and Thermal Challenges for 3-D/2.5-D IC stacks

Next generation system: high performance processor with deep learning FPGA acceleratorSource: Intel, Altera, Microsoft

Page 33: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

33

• Power supply noise consists of– IR drop

• On-chip, package, board resistive loss– L·∆I/ ∆t noise

• Inductive elements: board wire, BGA, package wire, microbump, TSVs• Frequencies from MHz (package\board) to GHz (on-chip)

• Comparison to literature

33

Modeling Overview --- Power Delivery Network Modeling Overview --- Power Delivery Network

IR drop Transient noise

Distributed on‐chip PDN or lumped

Detailed Board/packaging model

VRM incorporated

Gatech, J. Xie Yes No Distributed Yes NoUVA, R. Zhang Yes Yes Distributed Partially1 No

Harvard, X. Zhang Yes Yes lumped No NoRPI, H. He Yes No Distributed No No

OSU, Y. Shao Yes Yes Distributed Partially1 NoGatech, G. Huang Yes Yes Partially2 No No

This work Yes Yes Distributed Yes Yes, it can be incorporated

1. Lumped wire model and distributed C4 model 2. Uniform power density assumption

Page 34: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

34

• Finite difference method– Finite volume scheme for IR drop (resistance network)– Trapezoid scheme for transient noise analysis

34

Distributed Circuit Model for Power Delivery NetworkDistributed Circuit Model for Power Delivery Network

Conventional PDN as an example

Page 35: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

35

• Two-die stack simulation.• Noise suppression

– Adding decoupling capacitors

– Adding P/G pads/TSVs

35

Numerical Modeling for On-Die PDN: Full Chip SimulationNumerical Modeling for On-Die PDN: Full Chip Simulation

PSN of the top die(Max PSN 242.8 mV)

Double decap in I - IV:17.2% noise reduction,Max PSN 201.0 mV

Double pad/TSV in IV:13.8% noise reduction,Max PSN 209.4 mV

Double pad/TSV in I - IV24.6% noise reduction,Max PSN 183.1 mV

Double decap in IV:10.2% noise reduction,Max PSN 218.1 mV

Page 36: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

36

Die

Package

TIM Heat Spreader

Microelectronic CoolingMicroelectronic Cooling

• Power limit ~100W/cm2

• Large Footprint• Incompatible with  high power 3DIC

Air Cooled Heat Sink

Page 37: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

37

Microelectronic CoolingMicroelectronic Cooling

• Liquid cooled cold plates used in some datacenters, supercomputers, and enthusiast PCs.

• IBM Aquasar server cooling– PowerxCell 8i Processor (TDP 92W)– Rth ≈ 0.16 °C/W

• Used in SuperMUC supercomputer (#20 in TOP500)– Xeon E5‐2680 (TDP 130W) and Xeon E5‐2697 

v3 (TDP 145W) processors

Die

Package

TIM Heat Spreader

Microchannel Cold Plate

Cold Plates

EKWB 1U CPU Water Block

S. Zimmermann, I. Meijer, M. K. Tiwari, S. Paredes, B. Michel, D. Poulikakos, “Aquasar: A hot water cooled data center with direct energy reuse”, Energy, Vol. 43, Issue 1,, pp. 237‐245, July 2012.

Page 38: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

38

Asetek Liquid Cooled Cray Blade

38

More Commercial Liquid Cooling ExamplesMore Commercial Liquid Cooling Examples

CoolerMaster Liquid Cooling System

Asetek.com Coolermaster.comhttp://techreport.com/gallery/28513/amd-radeon-r9-fury-x-graphics-card-reviewed/80653/card-compario-2560

http://techreport.com/review/28513/amd-radeon-r9-fury-x-graphics-card-reviewed/2

AMD Radeon Fury X HBM

Page 39: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

39

Heat Spreader

Package

Die

Package

Microchannel Cold Plate

Our Approach: Monolithic Microfluidic Heat Sink in ICOur Approach: Monolithic Microfluidic Heat Sink in IC

Inlet Outlet

Etched FPGA Backside

Micropin-fin Dimensions

Assembled Microfluidic-cooled FPGA

TIM

T. Sarvey et al IEEE CICC 2015

Page 40: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

40

Demo with Pulse Compression CoreDemo with Pulse Compression Core

• A functional design for Stratix V DSP kit– Multiple independent Pulse Compression

test units. The number of active cores to be enabled is run time configurable

• Design optimized for streaming data and low latency

Page 41: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

41

Microfluidic Cooled FPGA PerformanceMicrofluidic Cooled FPGA Performance

Power Flow Rate Die Temp29W 147mL/min 24°C

1.5x of Baseline Compute CapabilityBaseline Design

Junction-to-ambient Rth ≈ 0.08°C/W

Page 42: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

42

Thermal Isolation for Heterogeneous 3D ICThermal Isolation for Heterogeneous 3D ICProcessor on memory: thermal coupling

42

High power (CPU) Low power (Memory)

Top: 75w Bottom: 2.8w

Proposed stack1. Microfluidic cooling

2. Air gap isolation3. Thermal bridge for isolated die

48.92 °C61.67 °C

Y. Zhang, et al, IEEE TCPMT, 2014 and 2016.

Page 43: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

43 43

Experimental DemonstrationExperimental Demonstration

Prototype of proposed stackBottom die

Bottom die power maps for isolation demonstration

Low power tier

High power tier with microfluidic cooling

300 µmSpacer (10 µm)

Heaters

300 µm

Top die

Yue Zhang, et al, IEEE TCPMT, 2016.

Page 44: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

44 44

ConclusionConclusion

• Plenty of open questions and new concepts for next steps in research

• We look forward to collaboration with colleagues in our community on current and forward looking research

Page 45: Advanced 2.5D and 3D IC Systems Enabled by Mechanically ... · TSV dimension: 13 µm in diameter, 300 µm in height (AR = ~23:1), 100 / 200 µm in pitch Silicon pillars : 50 µm in

45

• Q1 What are the major challenges in packaging, interconnections and/or testing of next generation electronic systems?

• Q2 What are the projections for pad or I/O pitch scaling and what are the foreseeable challenges pertaining to it?

• Q3 What are the challenges in replacing or upgrading a chip in electronic devices? Or thoughts about modular electronics?

45

Off Topic: Questions from GT Team for an NSF Program We are Part ofOff Topic: Questions from GT Team for an NSF Program We are Part of